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selection of optical flow
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Chencheng Gao1,2,3,4 and Yue Wang1,2,3,4

1College of Information Engineering, Dalian Ocean University, Dalian, China, 2Dalian Key Laboratory of
Smart Fisheries, Dalian Ocean University, Dalian, China, 3Key Laboratory of Facility Fisheries, Ministry
of Education (Dalian Ocean University), Dalian, China, 4Liaoning Provincial Key Laboratory of Marine
Information Technology, Dalian, China
Fish segmentation in underwater videos can be used to accurately determine the

silhouette size of fish objects, which provides key information for fish population

monitoring and fishery resources survey. Some researchers have utilized

underwater optical flow to improve the fish segmentation accuracy of

underwater videos. However, the underwater optical flow is not evaluated and

screen in existing works, and its predictions are easily disturbed by motion of

non-fish. Therefore, in this paper, by analyzing underwater optical flow data, we

propose a robust underwater segmentation network, RUSNet, with adaptive

screening and fusion of input information. First, to enhance the robustness of the

segmentation model to low-quality optical flow inputs, a global optical flow

quality evaluation module is proposed for evaluating and aligning the underwater

optical flow. Second, a decoder is designed by roughly localizing the fish object

and then applying the proposed multidimension attention (MDA) module to

iteratively recover the rough localization map from the spatial and edge

dimensions of the fish. Finally, a multioutput selective fusion method is

proposed in the testing stage, in which the mean absolute error (MAE) of the

prediction using a single input is compared with that obtained using multisource

input. Then, the information with the highest confidence is selected for

predictive fusion, which facilitates the acquisition of the ultimate underwater

fish segmentation results. To verify the effectiveness of the proposed model, we

trained and evaluated it using a publicly available joint underwater video dataset

and a separate DeepFish public dataset. Compared with the advanced

underwater fish segmentation model, the proposed model has greater

robustness to low-quality background optical flow in the DeepFish dataset,

with the mean pixel accuracy (mPA) and mean intersection over union (mIoU)

values reaching 98.77% and 97.65%, respectively. On the joint dataset, the mPA
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and mIoU of the proposed model are 92.61% and 90.12%, respectively, which

are 0.72% and 1.21% higher than those of the advanced underwater video object

segmentationmodel MSGNet. The results indicate that the proposedmodel can

adaptively select the input and accurately segment fish in complex underwater

scenes, which provides an effective solution for investigating fishery resources.
KEYWORDS

underwater video processing, motion evaluation, adaptive output selection, robust
segmentation, deep learning
1 Introduction

Fish are essential marine resources, providing approximately

20% of daily high-quality animal protein for more than 3.3 billion

people worldwide (Food and Agriculture Organization of the

United Nations, 2022), and the consumption demand for fish and

other seafood is still growing; therefore, fishery resource surveys

have naturally become a focus of attention. To effectively conduct

fishery resource surveys and simultaneously control the impact of

production on the environment, the growth status of fish

populations in natural habitats, as well as that of artificially

cultured fish, must be monitored (Saleh et al., 2023). Currently,

the commonly used fish monitoring method involves mounting a

camera on underwater equipment for automatic fish segmentation

or detection (Chatzievangelou et al., 2022). Through accurate

segmentation of underwater fish, information such as fish outline

morphology, body length, and size (Zhao et al., 2022) can be

obtained; this information can provide key support for the

prediction of the long-term production capacity of fish

populations (Hall et al., 2023), among other applications. In

addition, the size profile information obtained from fish

segmentation can be applied to marine environmental protection

through monitoring the size and length of juvenile fish. This

monitoring can help with formulating a reasonable fish grading

feeding and fishing strategy and mitigate marine pollution caused

by the irrational discharge of breeding pollutants, such as bait and

fish excreta (Cheng et al., 2023). Therefore, accurately segmenting

fish objects in underwater environments is important.
02
In the past, fish length was typically measured by catching and

then measuring the fish, which may cause damage to the fish and

requires considerable labor and time (Petrell et al., 1997). With the

development of computer vision technology, automatically

segmenting underwater fish to obtain their size has attracted

increasing attention from related researchers. Underwater fish

segmentation is a binary semantic segmentation task that is used

to separate foreground fish objects from complex backgrounds in

underwater scenes. As shown in Figure 1, underwater scenes may

exhibit many complex conditions, such as turbid water, insufficient

light, and camouflage, so accurately segmenting fish in underwater

environments is challenging. In early work, binary masks of

underwater fish were typically obtained using hand-selected

features such as color, texture, or image morphology methods for

segmentation. For example, Yao (Yao et al., 2013) et al. proposed a

K-means clustering segmentation algorithm combined with

mathematical morphology for fish image segmentation, which

separates fish from the background. To address the poor

robustness of fish segmentation under low-light conditions,

Chuang et al. (Chuang et al., 2011) proposed a method using

histogram back-projection to ensure fish segmentation accuracy.

However, the particularity of the underwater environment was not

considered in these works. Furthermore, the robustness of fish

segmentation is poor, and the segmentation accuracy for nongray

images and complex background conditions is limited. Since

underwater fish images are usually characterized by color

deviation and blurring, some researchers have considered

enhancing or preprocessing underwater images before segmenting
FIGURE 1

Complex underwater example with turbid water, insufficient light, small target, and camouflaged target scenarios from left to right.
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the fish objects. Banerjee et al. (Banerjee et al., 2023) first used

vertical flipping and gamma correction to enhance images and then

applied two deep learning-based segmentation networks, U-Net

and PSPNet, to automatically segment the heads of fish. However,

the model’s segmentation mIoU was only 76%, and its

generalizability in complex underwater situations was not shown.

Similarly, Li et al. (Li et al., 2023) proposed a multifeature fusion

model-based segmentation method for fish images in aquaculture

environments. In this method, the threshold value is first redefined

by using the minimum Euclidean distance between the peaks of the

original image, and the thresholded image is fused with the original

image to augment the fish features in the underwater image; then, a

multiscale attention module is proposed for the fusion of the

different scale features to obtain the final prediction. Such

methods tend to depend on data preprocessing, and the datasets

used are small. These methods are thus limited and cannot be

effectively applied to real marine environments. Because the

attention mechanism is simple and effective, in some works, the

attention mechanism from different dimensions is used in

underwater scenes to improve the generalizability of the model,

quickly locate blurred fish in complex scenes, and ignore

background interference. To address the inability of general

semantic segmentation methods to accurately segment fish objects

in underwater images, Zhang (Zhang et al., 2022) and others

designed a novel dual-pooling aggregated attention mechanism,

which utilizes maximum pooling and average pooling to address

and aggregate the target information from the spatial and channel

dimensions while remaining lightweight. To distinguish foreground

underwater targets from cluttered low-contrast backgrounds, Kim

(Kim and Park, 2022) proposed a parallel semantic segmentation

model that simultaneously segments the foreground fish and

background of a complex underwater scene. This method utilized

different attentional attention and loss functions for the foreground

and background, and achieved better segmentation results than

previous methods. To handle underwater foreground targets with

different scales, Chen (Chen et al., 2022) first used style adaptation

to enhance underwater images and then applied multiscale

attention to fuse the information of different types of features,
Frontiers in Marine Science 03
effectively improving the segmentation accuracy of small fish in

complex underwater scenes.

Considering the unclear fish features caused by turbid water,

insufficient light, camouflage, and other conditions in marine

environments, in recent work, motion optical flow has been used

to help recover enhanced underwater degraded fish appearance

features. Salman et al. (Salman et al., 2020) combined the

segmentation results of optical flow with the Gaussian Mixture

Model (GMM), and used the predicted pixels as the input of the

Convolutional Neural Network (CNN) model to complement each

other, and obtained higher segmentation accuracy. Saleh et al.

(Saleh et al., 2022) constructed an unsupervised wild fish tracking

and segmentation method by combining optical flow, background

subtraction, and unsupervised refinement networks with a

pseudolabel generation method to achieve more accurate

predictions when training a self-supervised segmentation depth

model. Zhang et al. (Zhang et al., 2023) proposed multisource

guidance segmentation method for fish in underwater video, where

the final predictions are obtained using a multiple mutual attention

guidance module with a feature adaptive method that fuses the

preprocessed optical flow motion information with the RGB

appearance information. Ye et al. (Ye et al., 2024) used the

Gunnar Farneback optical flow method to quantitatively express

the motion characteristics of fish, combined with the surface

characteristics of fish, and used convolutional neural networks

with different depths to extract the depth feature information of

optical flow images to improve the accuracy of high-density fish

segmentation in industrial aquaculture. However, the quality of

underwater optical flow is often variable and difficult to control. For

example, in Figure 2, the images in the first row exhibit less

background motion, the scene is relatively static, and the motion

of the fish is more significant, whereas the floating seaweed in the

second row of the scene exhibit a large amount of motion

interference from nonfish objects in the optical flow map, at

which time the fish motion information can easily be drowned

out by noise. The above method directly fuses the appearance

information with the motion information and thus overly relies

on the underwater optical flow information, which may result in
FIGURE 2

Underwater motion data of different qualities. From left to right are the video frames, optical flow, and ground truth.
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incorrect segmentation when the network contains low-quality

motion information. To solve this problem, in this paper, by

rethinking the contribution of optical flow to underwater fish

segmentation, we innovatively propose a robust underwater fish

segmentation method with adaptive input filtering and fusion,

which effectively overcomes the limitations of underwater

segmentation models that rely on optical flow. Specifically, the

main contributions of this paper are as follows:
Fron
(1) To avoid overly relying on optical flow information, which

leads to the inflow of low-quality optical flow information

into the network and results in final segmentation failure, the

robust underwater segmentation network RUSNet is

proposed in this paper. A lightweight optical flow quality

evaluation module is proposed in the model decoder stage. By

channel division and normalization of cross-modal stitching

features, the two-dimensional pixel-level global confidence of

optical flow features is obtained. This confidence is used to

evaluate and correct input motion information.

(2) To segment ambiguous fish and camouflaged fish more

accurately, inspired by the human visual perception system

for localizing the target before focusing on the details, a

decoder structure containing multidimensional attention

(MDA) for step-by-step recovery from coarse to fine

segmentation is proposed. The rough localization map is

obtained through dense pyramid pooling, which is used to

capture the coarse map of fish objects, and then this map is

used as a guide to iteratively optimize the fish object features

in complex underwater scenes from three perspectives—

spatial perception, channel separation, and edge detail

restoration—to obtain more accurate predictions.

(3) By analyzing the data and rethinking the contribution of optical

flow in underwater fish segmentation, an output selective

fusion method is designed in the test stage, in which the final

underwater fish predictions are obtained by comparing the

MAEs of single video frame prediction, optical flow prediction,

and multisource input prediction and identifying the modal

information with high credibility to be fused with multisource

input prediction. The results on two publicly available

underwater video datasets and two underwater camouflage

datasets show that the proposed robust underwater

segmentation network, RUSNet, outperforms other state-of-

the-art underwater target segmentation models in terms of

mean pixel accuracy and mean intersection over union metrics

and achieves excellent performance in terms of model

generalizability and robustness.
2 Materials and methods

2.1 Data preparation

To validate the segmentation effectiveness of the proposed

model in complex underwater scenes, four publicly available

underwater datasets are used for training and validation:
tiers in Marine Science 04
DeepFish (Saleh et al., 2020), Seagrass (Ditria et al., 2021), and

MoCA-Mask (Cheng et al., 2022). The DeepFish dataset contains

approximately 40K images of fish from 20 different habitats in

remote coastal marine environments of tropical Australia. The

underwater video fish images were captured using a high-

definition digital camera, and these images were divided into

three subsets: counting, segmentation, and classification. The

segmentation subset contains video clips from 13 different

underwater environments, totaling 310 video frames, with a

resolution of 1920 × 1080, and there are more scenes of a single

fish than of multiple fish. The Seagrass dataset was collected from

two estuarine systems in southeastern Queensland, Australia. The

raw data were collected using an underwater camera and includes

video clips from 18 underwater fishes, totaling 4,280 video frames.

The image resolution is 1920 × 1080, and most video clips

containing multiple fish objects. Considering that the

segmentation set of the DeepFish dataset has only 310 images, to

maximize the generalizability of the model, in this paper, the same

approach as Zhang et al. (Zhang et al., 2023) is adopted, in which

the DeepFish dataset and the Seagrass dataset are jointly trained and

tested, and the optical flow data corresponding to video frames are

extracted. From the joint dataset, 12 video clips with 3107 images

are selected for training, 8 video clips with 693 images are selected

for validation, and 11 video clips with 609 images are selected for

testing. MoCA-Mask is a subset of the camouflage video dataset

MoCA (Lamdouar et al., 2020), from which 32 underwater

camouflaged organism video clips are selected in this paper; these

videos contain devil scorpion fish, flatfish, and other underwater

camouflaged creatures, and a total of 1539 frames are used for

testing. In the above datasets, DeepFish and Seagrass have more

severe brightness attenuation and water turbidity, as well as

complex backgrounds, such as floating dense seaweeds. MoCA-

Mask, on the other hand, contains complex scenes of underwater

camouflage. These datasets are thus challenging.
2.2 RUSNet

The presence of turbidity and low-light conditions in

underwater environments is the primarily reason for the low

accuracy of video fish segmentation. Earlier work prioritized

using methods such as manually selecting features to help recover

unremarkable fish object features. However, underwater motion

information is often overlooked in video data. From a biological

perception perspective, moving targets are more likely to attract

attention. This movement thus helps with locating dynamic fish in

underwater scenes and improving the effectiveness of fish

segmentation in underwater videos. The work of Zhang (Zhang

et al., 2023) and Saleh (Saleh et al., 2022) also illustrated that the

application of underwater motion information will greatly enhance

fish segmentation in complex underwater videos. However, as

mentioned in the previous section, underwater optical flow does

not positively impact segmentation in all cases. For example, the

motion of backgrounds such as floating seaweeds and the haloing of

optical flow caused by underwater illumination variations can easily

interfere with the motion information of the fish, which can lead to
frontiersin.org
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segmentation failures. In previous work (Zhang et al., 2023), the

quality of underwater optical flow information was not effectively

assessed; rather, this work aimed to directly reduce the interference

of low-quality optical flow on the segmentation model through the

cross-modal feature fusion of appearance and motion, which could

not effectively improve the robustness of the model to low-quality

optical flow input and would lead cause the fish segmentation

model to depend on the optical flow for underwater video. The

segmentation accuracy loss was thus serious when the optical flow

was unavailable or of poor quality. Therefore, evaluating the quality

of underwater optical flow and performing effective feature

selection and fusion while still maintaining a certain robustness is

challenging when the optical flow input is not ideal.

To avoid the overreliance of complex underwater fish

segmentation models on optical flow information and prevent

interference of low-quality optical flow on the segmentation

accuracy, the robust underwater segmentation network RUSNet is

proposed in this paper. As shown in Figure 3, RUSNet contains

three key parts. First, to effectively utilize underwater motion optical

flow information, a lightweight global optical flow quality

evaluation module, called flow calibration (FC), is proposed for

screening and correcting motion information. Second, a decoder

structure with step-by-step recovery from coarse to fine

segmentation is designed. This structure is guided by a rough

localization map and combined with multidimensional attention

to iteratively optimize the spatial localization and edge details.

Finally, a multioutput adaptive fusion method is proposed to

determine which modal information RGB or optical flow, is more

reliable by comparing the MAE output of single RGB information

and cross-modal branch information and the MAE output of single

optical flow information and cross-modal branch information.

The more reliable information is fused with the cross-modal
Frontiers in Marine Science 05
branch prediction to obtain the final prediction of complex

underwater fish.
2.3 Flow calibration module

Introducing motion information in complex underwater scenes

is beneficial for localizing underwater fish and reducing

segmentation interference caused by blurring underwater.

However, as mentioned in the introduction, underwater optical

flow does not have a positive impact in all scenes, and when the

scene does not contain a foreground target or drastic lighting

changes, the quality of the motion optical flow decreases

dramatically, which ultimately leads to model segmentation

failure. To ensure the inflow of low-quality motion information

does not affect the segmentation accuracy, a lightweight global

optical flow calibration module (FC) to evaluate and correct the

optical flow features is proposed in this paper. As shown in Figure 4,

the visual feature Fa and the motion feature Fm are first extracted

through two backbone networks with shared weights. Considering

that the previous self-attention-based optical flow alignment

module (Zhang et al., 2023; Zhou et al., 2020) is computationally

large, in this paper, Fa and Fm are directly concatenated along the

channel. This channel is used to align the RGB information and the

motion information and to perform implicit interactions, which

helps capture the relative relationship between multimodal features.

Subsequently, a 3×3 convolution operation and a channel split

operation are performed on the concatenated features to extract the

valid information in the fused features and separate those features.

Finally, sigmoid normalization is performed to obtain the global

optical flow quality assessment score Gi. The process can be

represented by Equation 1:
FIGURE 3

RUSNet network. On the left is the encoder, used to extract features, and on the right is the decoder, used to fuse features and
generate predictions.
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Gi = s (Split(Conv(Cat(Fa
i , F

m
i )))) (1)

In Equation 1, s denotes the sigmoid normalization function,

Split denotes the channel squeeze and split operation, Conv denotes

the 3×3 convolution, and Cat denotes the concatenation along the

channel. The final fused feature Fi contains both the original

appearance and corrected motion information and is computed

as follows:

Fi = Fa
i + Gi⊗ Fm

i (2)

In previous methods for RGB-D quality assessment (Zhang

et al., 2021) or optical flow quality assessment (Yang et al., 2021),

the fused features are typically pooled and then normalized to

obtain a one-dimensional weight. This weight is used as a

confidence score for the image-level optical flow information to

globally deflate the three-dimensional optical flow features;

however, the quality of each localized optical flow of a single

image may vary. Furthermore, the one-dimensional weights

represent the global feature weights, but this approach may be

limited. As a result, instead of calculating the image-level

confidence, we remove the pooling layer. In our proposed

method, a pixel-level quality assessment is used to correct the

global optical flow by two-dimensional weights to ensure that the

motion information flowing into the network is relatively reliable.
2.4 Coarse-to-fine decoder

The traditional FPN (Lin et al., 2017) decoder structure has

achieved relatively strong performance when handling the fusion of

multiscale features by using a multiscale pyramid. However, for

complex scenes, the FPN cannot effectively use the decoder features

of the previous layer to guide the iterative recovery of the subsequent

features. Considering water turbidity and camouflage, which result

in a lack of detailed information, such as edges in the upsampling

recovery of features, a decoder structure that recovers the

segmentation step-by-step from coarse to fine is applied in this
Frontiers in Marine Science 06
paper. Coarse-to-fine recovery follows the law of human visual

perception, as the rough position of the target is located before

detailed observation is conducted. In this paper, we first perform a

DenseAspp (Yang et al., 2018) computation on the highest-level

fusion feature F5 to obtain the coarse map of the underwater fish at

the high-level feature and output the coarse localization map Cmap as

the bootstrap recovery feature for the subsequent decoder. To

consider both global information and local details in feature

upsampling recovery and to facilitate the perception of fish objects

in complex underwater scenes, we design a multidimensional

attention module (MDA) in a coarse-to-fine decoder structure. As

shown in Figure 5, the MDA consists of two main modules, the

spatial channel attention module CBAM (Woo et al., 2018) and the

reverse attention module RA. From the three dimensions of spatial

localization, channel recovery, and edge guidance, the output of the

former stage is used to globally and locally guide the decoder features
FIGURE 5

Multidimensional attention module (MDA).
FIGURE 4

Global optical flow calibration module (FC).
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of the latter stage to enhance the location and edge details of the

underwater fish. The MDA computation process consists of two

parts, CBAM and reverse edge attention (RA), in which the RA is

computed as follows:

RA = E − s  (Cat(Max(CBAM(Di)),  Avg(CBAM(Di)))) (3)

where E denotes the unit matrix, s denotes the sigmoid

normalization function, Cat denotes concatenation along the

channel, Max denotes the maximum pooling operation, Avg

denotes the average pooling operation, and CBAM denotes the

channel spatial attention. Di denotes the decoder feature of the

current layer, and the specific computation process for the final

decoder feature Di is as follows:

Di =
CBAM(RA(DenseAspp(F5)))         i = 4

 CBAM(RA((Di−1)))      i ∈ 3, 2, 1f g

(
(4)

The DenseAspp-processed high-level features contain

preliminary target location information. However, edge details are

missing. The ablation results show that guided detail recovery

through rough localization maps is very effective in underwater

scenes. Moreover, designing multidimensional attention to avoid

overly focusing on details and neglecting global information is

another issue worth discussing. This topic will be further explored

in ablation tests.
2.5 Output selective fusion method

In the testing stage, to obtain more accurate binary

segmentation masks for underwater fish, a multioutput selective

fusion method is designed in this paper. Low-quality motion optical

flows usually contain more noise than valid information. To avoid

introducing too much interfering information during segmentation,

the multioutput selective fusion method is combined with a global

optical flow quality assessment module to ensure that the motion

information selected by the network is as reliable as possible.

As shown in Figure 1, the direction and extent of foreground

target motion are more pronounced in high-quality optical flow

maps than in the background and are reflected in optical flow maps

because moving fish tend to have clear, continuous, and distinct

boundaries. Low-quality optical flow maps, on the other hand,

usually contain more background motion, such as cluttered

seagrasses, drastically changing lighting, or blurred fish

boundaries. To effectively incorporate high-quality fish optical

flow and avoid using low-quality motion information or

introducing additional background motion interference, in this

paper, the optical flow quality is evaluated in the feature

extraction stage, and a selective fusion output method is

introduced in the test output stage. First, based on the selected

input branches, three types of prediction results, Pr, Pm, and Pf, are

obtained using the model. These results are calculated as follows:

Pr = RUSNet(RGB、RGB) (5)

Pm = RUSNet(Motion、Motion) (6)
Frontiers in Marine Science 07
Pf = RUSNet(RGB、Motion) (7)

After obtaining these three prediction types in the testing stage,

the mean absolute error (MAE) (Perazzi et al., 2012) of Pr, Pm and Pf
can be compared to determine which modality contributes more to

the final segmentation results. Specifically, if the MAEs of Pr and Pf
are smaller than those of Pm and Pf, the prediction of Pr is more

similar to that of Pf, and the RGB information contributes more to

the results. Unlike segmentation in nonunderwater scenes, the

targets in the RGB inputs are usually not significant enough in

underwater scenes, and thus, both appearance and motion

information may interfere with the final prediction. Therefore,

unlike in (Fan et al., 2020b), a manual threshold is not set for the

MAE; only the similarity between the optical flow branch and the

fusion branch are compared, and the MAEs predicted by two single-

modal branches and the fusion modal branch are calculated

simultaneously to mitigate the poor generalization of the model

caused by the manual threshold. Finally, the selective output of the

test phase is calculated as follows:

Pc =
Pr ,MAE(Pr , Pf ) ≤ MAE(Pm, Pf )

Pm,MAE(Pr , Pf ) > MAE(Pm, Pf )

(
(8)

 Output = a � Pf + (1 − a) � Pc (9)

In the above formula, Pc denotes the candidate features, MAE

denotes the mean absolute error, and a denotes the experimental setup

of the hyperparameters, which is set to the best value of 0.9; this value is

determined through verification. Therefore, the final prediction result

contains the segmentation results of the fusion branch and the

segmentation results of the candidate branch, effectively improving

the model’s robustness under different quality inputs.
2.6 Loss function

The prediction result of video frame t at different decoder stages

is Pt
i, where i∈{1,2,3,4,5}. The standard binary cross-entropy loss

function Lbce is used to measure the difference between the

prediction Pt and ground truth Gt, where Lbce is as follows:

Ｌbce(Pt,Gt)

=  −o(x,y)½Gt(x, y) log (Pt(x, y)) +   (1 − Gt(x, y) log (1 − Pt(x, y)))�
(10)

where (x,y) denotes the positional coordinates of the pixel in the

video frame, and the overall loss Ltotal of the final model is as

follows:

Ltotal   =o4
i=1Lbce(UP(Pt

i),Gt) + Lbce(Pt5,Gt) (11)

UP denotes bilinear interpolation upsampling, which aims to

dimensionally align the prediction result Pt
i with the ground truth

Gt. The loss of the prediction result for each stage of the decoder can

be calculated to accurately control the learning of multiscale

information at different stages and to facilitate the use of the

supervised multidimension attention module MDA for more
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accurately performing iterative feature optimization from the

perspective of spatial localization and detail recovery.
2.7 Evaluation criteria

Fish segmentation in underwater videos is a binary semantic

segmentation task in which the foreground pixel value is 255 and the

background pixel value is 0. Therefore, two evaluation metrics

commonly used in semantic segmentation, the mean pixel accuracy

(mPA) and the mean intersection over union (mIoU), are used to

evaluate the gap between the prediction results of the model and the

ground truth. mPA denotes the mean of the number of correctly

categorized pixels of all the classes as a proportion of the number of

pixels of that class’s predicted number of pixels, andmIoU denotes the

average of the ratio of intersection and concatenation of the predicted

values of pixels of all classes. Thede metrics are calculated as follows:

mPA =
1

k + 1o
k

i=0

Pii

o
k

j=0
pij

(12)

mIoU =
1

k + 1o
k

i=0

Pii

o
k

j=0
pij +o

k

j=0
pji − pii

(13)

where k denotes the number of categories; in our work, k is

taken as 2. Pii denotes the number of pixels correctly predicted as

fish, or true-positive TP. Pij denotes the number of fish category

pixels incorrectly predicted as background or false-positive FP. Pji
denotes the number of fish category pixels incorrectly predicted as

background, false-negative FN. Pjj denotes the number of pixels

correctly predicted as background, true-negative TN.
3 Experiment and results

In this section, the experiment’s relevant environment

configuration and the training details are described. Then, ablation

tests are conducted to validate the effectiveness of the model’s

components, including global optical flow calibration, coarse-to-

fine decoder structures incorporating multidimensional attention,

and output selective fusion methods. Then, the proposed method is

compared with other state-of-the-art underwater object segmentation

methods and state-of-the-art video object segmentation methods on

two publicly available underwater video datasets to validate the

model’s effectiveness in fish segmentation tasks in underwater

videos. Finally, further model robustness tests are conducted on the

optical flow unprocessed DeepFish dataset to verify the robustness of

the model in the presence of low-quality motion inputs.
3.1 Experimental platform and
training parameters

The experiments were conducted using GPUs for accelerated

training, with the following environment configuration: a GPU
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model of Geforce RTX3090 with a graphics memory size of 24 GB, a

CPU model of Intel(R) Core(TM) i7-9700 CPU (3.00 GHz), a

Python 3.8 interpreter, the PyCharm development platform with

CUDA version 11.3, and the deep learning framework

PyTorch 1.11.0.

In the optical flow data preparation stage, the same method as

(Zhang et al., 2023) is adopted for the DeepFish dataset and Seagrass

dataset. Considering the water turbidity and other factors, the dataset

is first processed using simple presegmentation and label conversion.

Optical flow extraction is then conducted by using the RAFT (Teed

and Deng, 2020) network. The MoCa-Mask dataset is directly

subjected to optical flow extraction. All datasets are divided into

training, validation, and test sets at a ratio of 6:2:2. Like the state-of-

the-art video target segmentation methods, after the computational

speed and accuracy are balanced, MiT-b1 (Xie et al., 2021), which

has been pretrained on ImageNet-1K (Deng et al., 2009), is used as

the feature extractor for the two-branch network. To facilitate model

processing, the RGB images and optical flow resolution used for

training and testing are uniformly set to 384 × 384, and the input

data are enhanced through horizontal flipping. Video frames and

corresponding optical flow images were used as model inputs, 3000

iteration rounds were trained, batch sizes were set to 16, adaptive

moment estimation (Adam) was used as the model optimizer, the

learning rate was set to 1e-5, the learning rate was kept constant

during the training phase, and all the BN layers were frozen to

accelerate the model training.
3.2 Ablation test

To verify the effectiveness of the proposed global optical flow

calibration module, the design of the coarse-to-fine decoder

structure, and the multioutput selective fusion method, an

ablation test is conducted on a joint dataset of DeepFish and

Seagrass. The baseline in this test is an ordinary two-stream

network. Specifically, the encoder stage of the model is a Mit-b1

network with shared weights, which is used to extract the input

features of different modalities, and the decoder obtains the final

prediction by concatenating the fish appearance features and

motion features obtained from the encoder along the channel

using a convolution with a kernel size of 3*3. The model

proposed in this paper, RUSNet, is obtained by adding the

designed global optical flow calibration module FC, the decoder

structure including MDA, and the multioutput selective fusion
TABLE 1 Ablation test results for RUSNet.

Method FC MDA Select mPA/% mIoU/%

Base 91.86 86.89

Base + FC √ 93.73 88.07

Base + MDA √ 93.11 89.64

Base + Select √ 91.32 87.63

RUSNet √ √ √ 92.61 90.12
fr
Bold values are the value that gives the best results under the evaluation metrics.
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method to the baseline. The experimental results are shown

in Table 1.

The test results show that compared to Baseline, the proposed

three modules exhibit different enhancements. Introducing the

decoder embedded with MDA yields more obvious enhancements

than introducing the other modules, with the mPA and mIoU

increasing by 1.25% and 2.75%, respectively, compared to those of

the Baseline, Furthermore, the obtained mPA is greater than that of

the full RUSNet module because the Seagrass dataset used contains

more small targets. Due to the lack of strong target positioning

ability and attention to detailed information, the additional global

optical flow quality calibration module FC misidentifies small fish

objects as background, resulting in incorrect pixel prediction and

reducing the mPA. Moreover, using only the multioutput selective

fusion method in the test stage results in the least significant

improvement because the lack of reasonable optical flow quality

assessment and target feature recovery ability in the training stage

causes the initial prediction results to deviate, and the segmentation

mask before fusion is not sufficiently accurate; therefore, improving

the accuracy and the mean intersection over union of segmentation

via multioutput fusion is difficult. By combining these three

modules and methods, the proposed RUSNet achieves a more

significant improvement, with mPA and mIoU improved by

0.75% and 3.23%, respectively, compared to Baseline. Considering

that the decoder MDA better improves the performance, to further

investigate whether the sequence of the use of channel spatial

attention and edge attention in MDA impact the final prediction

results and because segmenting underwater camouflaged fish

usually relies on edge details, more profound ablation tests are

conducted on MDA using the underwater camouflaged organism

video dataset MoCA-Mask. As mentioned above, following the laws

of human visual perception, localization is performed before

recognition during fish segmentation. First, channel spatial

perception attention is used to capture the coarse map of the fish,

and reverse edge attention is then used to iteratively recover the

edge details of the ambiguous object, whereas in the control group,

the opposite order is used. As shown in Figure 6, when edge

correction is performed before spatially aware recovery, due to

the lack of global location information for guiding the prediction,

the prediction results tend to focus excessively on the edges and

ignore the spatial consistency within the target, causing a hollow

phenomenon to appear within the prediction results of the fish

object. The attention heatmap visualization results for reverse MDA

also show that the attention within the fish exhibits more serious

inhomogeneity at this time. In contrast, MDA’s heat map

visualization illustrates that focusing on space and channel first
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can be effective in improving the consistency of attention within fish

objects. This result is consistent with the findings of other work on

saliency detection (Fan et al., 2020a) that incorporate reverse edge

attention, further validating the rationality of the module proposed

in this paper.
3.3 Comparison with other underwater
segmentation methods

To validate the effectiveness of the proposed model, we further

compare it with the advanced video target segmentation models

AMC-Net (Yang et al., 2021) and FSNet (Ji et al., 2021) as well as the

underwater fish segmentation models MSGNet (Zhang et al., 2023)

and WaterSNet (Chen et al., 2022) on the publicly available complex

underwater video dataset DeepFish-Seagrass (Saleh et al., 2020)

(Ditria et al., 2021). Considering the running time and

computational cost and to facilitate a fair comparison, the

experiments conducted in this paper do not include any

postprocessing, such as CRF. The segmentation set of the DeepFish

dataset has only 310 images; to improve the generalizability of the

model and avoid overfitting, following the same training principle as

the SOTA underwater video fish segmentation model MSGNet,

DeepFish is compared with another complex underwater video

public dataset, Seagrass, for joint training. The specific results are

shown in Table 1. FSNet effectively facilitates the information

interaction and enhancement of the RGB branch and the optical

flow branch in the video target segmentation model through

bidirectional cross-attention. However, the optical flow information

is not evaluated and filtered during feature refinement. Instead, the

optical flow branches are reused, which leads to unsatisfactory

prediction results in the presence of low-quality optical flow. AMC-

Net is used for to segment fish in underwater videos by constructing a

set of coattention mechanisms for the joint evaluation of cross-modal

features and incorporating the channel space attention mechanism

into both the encoder and decoder stages. The mean pixel angle and

mean intersection over union obtained using AMC-Net are

substantially better than those obtained using FSNet. However, as

analyzed in the previous section, using a one-dimensional scalar as

the global quality evaluation score limits the optical flow quality

assessment when the regional optical flow quality is inconsistent.

WaterSNet effectively improves the segmentation accuracy of

nonsalient and camouflaged fish through random style adaptation

(RSA) and multiscale fusion of the input image. However, when the

group size for RSA is set, the batch size is directly used as the number

of blended images in the group, significantly decrease the robustness
FIGURE 6

MDA ablation visualization. From left to right are the video frames, ground truth, reverse MDA attention heatmap, reverse MDA prediction, MDA
heatmap, and MDA prediction.
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of the model under hardware constraints. Finally, the mPA andmIoU

of MSGNet are closest to those of the proposed model because of the

use of a self-attention-based multiple interattention interaction

mechanism and feature adaptive fusion. However, its dependence

on the optical flow is too strong, causing the quality of the input

optical flow to greatly impact the segmentation results. Furthermore,

the segmentation robustness of MSGNet has room for improvement.

Figure 7 visualizes the experimental results of a real-world

model that contains light in marine environments with changing

light and complex backgrounds. The prediction results of RUSNet

exhibit more complete targets and more accurate edge detail

information than do those of other advanced models. RUSNet

exhibits an improved robustness by avoiding the introduction of
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low-quality interfering features through the global quality

assessment of the input motion information and the selective

fusion of multiple outputs. Moreover, the coarse-to-fine decoder

structure embedded with multidimensional attention ensures that

the prediction results exhibit relatively complete targets and rich

edge details. Compared with those of the advanced underwater

fish segmentation model MSGNet, the mPA and mIoU of RUSNet

are 0.72% and 1.21% higher, respectively, and compared with those

of the advanced video target segmentation model AMC-Net, the

mPA and mIoU of RUSNet are 1.06% and 2.51% higher,

respectively. The effectiveness of the proposed model in

segmenting fish objects in complex underwater scenes is thereby

demonstrated. Table 2
FIGURE 7

Prediction of different models on the DeepFish and Seagrass datasets.
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To more fairly verify the robustness of the proposed model, the

DeepFish (Saleh et al., 2020) dataset is selected for the experiment;

this dataset has not undergone any preprocessing of the optical flow

and is therefore susceptible to disturbances such as illumination

variations, resulting in lower segmentation quality. According to the

official segmentation strategy, the DeepFish segmented dataset

contains a total of 620 images, and the background and fish

objects in these images are labelled. 310 images are used for

training, 124 images are used for validation, and 186 images are

used for testing. In this paper, we use this approach to train and test

the model and compare it with the state-of-the-art underwater fish

segmentation model. As shown in Figure 8, there are two fish with

different scales in the first row of the scene. However, the optical flow

map does not show the motion of the small target on the left side

because the target remains stationary for a period, and the advanced

underwater multimodal fish segmentation model MSGNet ignores

the information of the RGB video frames due to its strong

dependence on the input optical flow, which ultimately results in

missed detections. The proposed robust underwater segmentation

model reduces the dependence on the input optical flow through

global optical flow quality assessment and coarse-to-fine iterative

recovery; in addition, this model is robust for temporary motionless

object segmentation. The second row of Figure 8 shows the last
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frame of the video clip. Due to drastic scene changes, the optical flow

map presents an irregular motion interference state, fuzzy video

frames, and interference optical flow input. As a result, MSGNet is

unable to segment effective targets from underwater fish, which can

be predicted relatively accurately because RUSNet does not pay

much attention to underwater optical flow information. The last row

of Figure 8 shows the scene without targets when the optical flow is

the change of light in the background environment. In this scene,

MSGNet identifies a part of the background as a target. Table 3

shows the comparison results on the DeepFish dataset. The proposed

segmentation model RUSNet outperforms the current SOTA model

RMP-Net (Chen et al., 2022), especially in terms of the intersection

union of fish objects. Therefore, RUSNet is more focused on learning

fish semantic features and can segment temporary motionless

targets while being robust to interference information such as

background motion.
4 Discussion

4.1 Application

Fish habitat monitoring is an important step towards achieving

sustainable fisheries, so we need to have access to important fish

measurements such as size, shape and weight. These measurements

can be used to judge the growth of the fish and serve as a reference

for feeding, fishing and conservation (Ying et al., 2000). However,

our work focuses on pixel-wise segmentation of fish in underwater

videos. By accurately segmenting fish in underwater videos,

information such as the length and contour of fish can be

obtained, which helps human experts intuitively verify or estimate

the size and weight of fish and facilitates the monitoring of fish.

Laradji et al. (Laradji et al., 2021) and DeepFish’s dataset providers

(Saleh et al., 2020) also point out that pixel-wise segmentation is

more helpful in assessing fish size and shape, and thus analyzing fish

habitat. The segmentation method proposed in this paper can also

be combined with tasks such as counting and tracking to integrate
TABLE 2 Comparison of the test results with those of advanced
segmentation models.

Model Image Flow mPA/
%

mIoU/
%

FSNet (Ji et al., 2021) √ √ 86.77 82.84

WaterSNet (Chen
et al., 2022)

√ 91.14 86.83

AMC-Net (Yang et al., 2021) √ √ 91.55 87.61

MSGNet (Ye et al., 2024) √ √ 91.89 88.91

RUSNet √ √ 92.61 90.12
Bold values are the value that gives the best results under the evaluation metrics.
FIGURE 8

Prediction on the DeepFish dataset. From left to right are the video frames, optical flow, ground truth, MSGNet segmentation results, and RUSNet
segmentation results.
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into a system that automatically performs comprehensive

monitoring to improve efficiency and reduce labor costs. We

hope that our work will inspire relevant researchers and continue

to contribute to fish habitat monitoring and sustainable fisheries.
4.2 Future work

Real marine environments typically include complex conditions

such as turbid water and cluttered backgrounds, and locating and

segmenting fish by RGB visual information alone is difficult in these

environment. In some special environments, such as underwater

and camouflaged environments, optical flow, RGB-D, RGB-T, and

other information can be combined to understand the visual scene

more effectively. However, as mentioned above, the quality of

optical flow introduced in real underwater scenes varies, and this

flow does not always have a positive impact, so quality assessment

of information input frommultiple sources is necessary. The quality

assessment of additional information such as optical flow is usually

categorized into three types depending on how much information

flows into the network. The first type is learnable soft weights,

which are used to control the proportion of multisource

information flowing into the network by obtaining the confidence

(Zhang et al., 2021) or common attention score (Yang et al., 2021)

of the multisource information through a specific quality

assessment module, e.g., edge information learning. This type of

method usually incurs less computational overhead, but its

confidence learning process is not stable enough and is easily

affected by model training and dataset distribution, leading to

unreliable evaluation results. In the second category, additional

new information flows into the network through information

alignment and correction (Wang et al., 2021). This type of

method is adequate in terms of theoretical analysis, but the actual

process is cumbersome, and manual features may be introduced,

resulting in certain limitations. The last method is hard gating-

based information selection, in which all the information from

multiple sources is selected or discarded through 0–1 gates (Fan

et al., 2020b). This type of processing method usually requires a
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threshold to be manually selected for hard gating, resulting in a lack

of generalizability. Compared with these three method types, the

proposed global optical flow quality assessment module achieves

cross-modal feature alignment through simple channel splicing and

separation, and its computational cost is relatively small, which can

satisfy the lightweight requirement. Moreover, instead of using a

pooling operation to obtain a one-dimensional scalar to measure

the optical flow quality, we use pixel-level normalization, which

fully considers the global characteristics of the optical flow motion

information and avoids uncontrollable correction bias. In addition,

in visual tasks that require high-edge details such as processing

camouflage, researchers usually design different reverse attentions

for focusing on target edges. Reverse attention is a lightweight

method that effectively guides the network to learn hard pixels in

difficult edge regions through a simple take-inverse subtraction

operation. The underwater data used in this paper also include

camouflaged scenarios and other difficult scenarios. Following the

human process of capturing hidden targets, a multidimensional

attention guidance module is proposed that first utilizes

DenseASPP and CBAM channel spatial attention to localize

underwater fuzzy and camouflaged fish. This module is then

combined with reverse attention RA to capture target edge

details. In a holistic attention module, target features of complex

underwater scenes are simultaneously and iteratively optimized

from three perspectives—spatial localization, channel recovery,

and edge refinement—and finally, underwater fish are effectively

segmented. Experimental results on public datasets show that the

segmentation accuracy and robustness of underwater video fish can

be effectively improved through assessing the quality of the input

optical flow and multidimensional feature recovery.

In terms of deep learning-based visual perception tasks, in April

2023, Meta AI announced a larger and more powerful segment

anything model, SAM (Kirillov et al., 2023), which prompted the

further development of computer vision tasks through the debugging

of large amounts of data and through prompt engineering and

inspired many researchers to consider the following question: how

can we achieve an open and unified vision model through a unified

structural paradigm or engineering for open scene visual perception

or open task learning? This is not only a problem for academics but

also an issue that needs to be solved urgently for marine fishery

resource monitoring. For example, in real marine environments, how

can a unified visual model be designed that can simultaneously

segment stationary fish and moving fish or even automatically

recognize scenes without fish objects? Some recent works (Zhao

et al., 2023) (Cho et al., 2023) have attempted to address this issue, but

considering the environmental specificity of underwater operations

and hardware limitations, these methods can still be improved. For

this reason, in this paper, a preliminary attempt to design a low-

coupling model structure is also made by separating the encoders and

decoders, which is convenient for subsequent expansion and

improvement. To verify the effectiveness of the proposed model in

segmenting fish in static complex underwater scenes, RGB video

frames are used as the input of the second branch instead of optical

flowmaps. However, the experimental results show that although the

rough location of the fish object can be localized, this method is still

unsatisfactory for detailed recovery. Therefore, this study still has
TABLE 3 Comparison with other advanced underwater segmentation
models on the DeepFish dataset.

Method
Background

IoU (%)
Fish

IoU (%)
mIoU
(%)

SUIM-Net (Islam
et al., 2020)

99.03 78.40 88.71

DPANet (Zhang
et al., 2022)

99.31 82.86 91.08

MFAS-Net (Haider
et al., 2022)

99.15 84.86 92.01

MSGNet (Zhang
et al., 2023)

99.65 85.49 92.57

RMP-Net (Chen
et al., 2022)

99.61 90.9 95.26

RUSNet 99.78 95.52 97.65
Bold values are the value that gives the best results under the evaluation metrics.
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limitations, and designing a unified segmentation model that can

adaptively segment stationary and moving fish in an open marine

scene is the main future research direction.
5 Conclusion

To address the strong dependence of fish segmentation models

on motion optical flow in complex underwater environments, which

yields predictions that are susceptible to the interference of low-

quality motion information, a robust underwater fish segmentation

method, RUSNet, that adaptively filters and fuses the input optical

flow information is proposed by rethinking the contribution of the

optical flow to the underwater fish segmentation task. First, a global

optical flow quality evaluation module is designed to evaluate and

correct the input optical flow information. Second, by embedding the

proposed multidimensional attention module into the coarse-to-fine

decoder structure, the features are guided iteratively from the spatial,

channel, and edge dimensions to fully recover the spatial location and

edge details. Finally, a multioutput selective fusion method is

proposed in the testing phase. This method is used to determine

which modal information contributes more to the final segmentation

by comparing the mean absolute errors of the unimodal and cross-

modal branch prediction results and predicting the fused output. The

experimental results on public datasets show that the proposed

method has high accuracy and robustness in complex underwater

segmentation and can provide key information for the subsequent

sustainability of marine fishery resources. However, this study has

limitations. Considering that both moving fish and static fish may

exist in an open underwater scene, designing a unified segmentation

model that can adaptively segment stationary and moving fish in an

open underwater scene is a major research direction for the future.
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