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different drainage conditions
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Long-term cyclic loading can have a significant effect on the modulus of sand,

and the influence on saturated coral sand has yet to be established. In this paper,

the significant influence of non-plastic fines content (FC) and relative density (Dr)

on dynamic elastic modulus (E) of saturated coral sand has been evaluated by a

series of cyclic triaxial drainage tests. The results show that the dynamic elastic

modulus increases rapidly at the beginning of loading; then the growth slows

down and finally stabilizes. In general, the development of E is influenced

collectively by FC, Dr and cyclic stress ratio (CSR). The initial dynamic elastic

modulus Ed-1 and steady-state dynamic elastic modulus Ed-s increase with the

increase ofDr, and decrease as FC increases. The linear fitting equations are given

by introducing the equivalent skeleton void ratio esk*. Furthermore, the relative

dynamic elastic modulus Er is defined as the ratio of Ed-N to Ed-s, and the

prediction equation for Er was developed to provide a basis for the engineering

mechanical parameters of coral sands under long-term loads.
KEYWORDS

saturated coral sand, dynamic elastic modulus, relative density, equivalent skeleton void
ratio, cyclic triaxial drainage test
1 Introduction

The carbonate sand formed by marine biological deposition, whose CaCO3 content

is >90%, is referred to as coral sand. Coral sand is abundant in nature (e.g. in the Persian

Gulf and the South China Sea) and is often used as the primary geotechnical material for

constructing infrastructures such as coral islands and reefs or harbors (Ding et al., 2021).

Coral islands and reefs or harbors are located in marine environments that are susceptible

to dynamic loads from long-term waves, storm surges, tsunamis, and earthquakes.

Differential subsidence or permanent deformation caused by these marine dynamic
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loads can have a remarkable impact on the foundations of coral

sand (Wen et al., 2021). During analysis of soil dynamics problems,

the dynamic elastic modulus of the soil is considered a key

parameter for studying the soil’s ability to resist deformation

(Seed and Idriss, 1970; Rollins et al., 1998, 2020; Chen et al.,

2024; Ma et al., 2024a). This modulus effectively reveals the

complex nonlinear relationship between dynamic stress and strain

in soils, thereby providing an important theoretical basis for

investigating the dynamic properties of soils. The dynamic elastic

modulus of a sandy soil is an important parameter when describing

its deformation features under dynamic loading. In the fields of

earthquake, foundation, and geotechnical engineering, the dynamic

elastic modulus is one of the key indicators for assessing the

response of a sandy soil under seismic or other dynamic loads.

There are many researches on the dynamic deformation

characteristics of soils in different regions, but most of the

researches devoted to clay and granular soils (Iwasaki et al., 1978;

Kallioglou et al., 2008; Vucetic and Mortezaie, 2015; Kantesaria and

Sachan, 2021; Nong. and Park, 2021), studies on the dynamic elastic

modulus of coral sand are rather limited. Long et al. (2022)

investigated the impact of coral sand grain breakage on its

dynamic properties. The result of resonant column tests indicated

that the maximum dynamic shear modulus (Gmax) of the coral sand

first increased and then decreased with the increase in the degree of

coral sand grain breakage. Furthermore, Wu et al. (2022) conducted

a series of resonant column tests on coral sand with different fines

content (FC) and found that the shear modulus ratio G/Gmax - shear

strain g curves show FC-dependent development and are

characterized by nonlinear enhancement with increasing FC.

Catano and Pando (2012) investigated the CaboRojo coral sand

and found the shear modulus G value of coral sand was smaller than

that of quartz sand. Alternatively, Jafarian and Javdanian (2020)

investigated the Bushehr coral sand using the resonant column

technique and found that the relative density had a minor impact on

the dynamic shear modulus ratio. While, the decay of G/Gmax

gradually slows down as the effective confining pressure increases.

Liang et al. (2023) studied the small-strain shear modulus G0 of

coral sands from Nansha and Xisha Islands. A G0 prediction model

for different types and gradations of sandy soils is proposed by

introducing the concept of critical porosity ratio. Wichtmann et al.

(2015) focused on the impacts of FC on Gmax of quartz sands. At the

same porosity ratio e, when FC< 10%, Gmax decreases substantially

with increasing FC; when FC = 10%–20%, Gmax increases with

increasing FC; however, when FC is >20%, Gmax does not change

significantly with FC. These findings provide an important basis for

a deeper understanding of the impacts of FC on the mechanical

properties of quartz sands.

Previous studies have investigated the development of G of

sands within small strain conditions using resonant column tests. In

this study, the drained cyclic triaxial tests have been conducted to

study the influence of FC and relative density (Dr) on the initial

dynamic elastic modulus (Ed-1) and steady-state dynamic elastic

modulus (Ed-s). Based on the experimental results, a prediction

equation for the relative elasticity modulus ratio (Er) is given, so as

to provide a basis for the engineering mechanical parameters of

coral sands with non-plastic fines under long-term loads.
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2 Test materials and methods

2.1 Test materials

The coral sand from a reef in the Nansha Islands was used for

testing, which is a unique marine soil formed from the remains

of marine organisms through physical, chemical, and biological

processes. The coral sand grains are mainly composed of

aragonite, high-magnesium calcite, and 90% CaCO3. It is a

calcareous sand with a specific gravity of 2.84. Coral sands are

widely distributed in tropical and subtropical waters, and

extensively found across China’s Nansha Islands, serving as

the primary geotechnical media with yellowish–white grains in

the Nansha Islands area. The coral sand used in this study was

found in the complex marine environment of the Nansha

Islands, which results in several distinctive properties of coral

sand grains: they are angular, prone to cementation and

breakage, and have rough surfaces and internal pores (Karatza

et al., 2017; Deng and Haigh, 2022).

The coral sand was first dried in a constant temperature oven at

103°C. Then, to separate the fine grains of the coral sand from the

sand grains, the coral sand was sifted using a standard sieve with a

mesh size of 0.075 mm. This process allowed the separation of two

types of coral sand grains based on the 0.075-mm threshold (Zhao

et al., 2022). Coral sand grains<0.075 mm were considered as fine

grains, while those above this size were considered sand grains. Fine

particles have no discernible liquid or plastic limit and are classified

as non-plastic particles (ASTM International, 2000). Fine and sand

grains of different masses were uniformly mixed to obtain coral

sands with different FC. The gradation curves of pure sand, pure

fine, and coral sand grains with different FCs are shown in Figure 1.

Figure 1 lists the basic physical indicators of the coral sand. The

maximum and minimum porosity ratios were measured according

to ASTM specifications. To avoid changes in grain size distribution

due to breakage during measurement, the minimum porosity ratio

was measured using the vibration metho (ASTMD4253, 2016a; and

ASTM D4254, 2016b).
2.2 Test apparatus and sample preparation

A GDS cyclic triaxial apparatus was used for performing stress-

controlled drainage cyclic loading tests. This apparatus applies a

maximum axial stress of ±5 kN with an accuracy of up to 0.001 kN.

The confining pressure chamber can withstand a maximum

pressure of 2 MPa. The axial displacement range is 100 mm with

a displacement accuracy of 0.07% F.S (full scale). To ensure the

uniformity of coral sand with fine grains, samples were prepared

using the dry sampling method with a diameter of D = 50 mm and a

height of H = 100 mm. According to gradations shown in Figure 1,

the sand required for each specimen was weighed and evenly

divided into five layers for filling into film-bearing cylinders.

During the filling process, the layer height was strictly controlled,

and the surface of each layer was brushed to ensure uniformity.

Upon completion of sample preparation, CO2 was introduced to

displace air, followed by presaturation using air-free water. Then,
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the samples were saturated using the graded back pressure

saturation method. When the measured pore pressure coefficient

B was ≥0.97, the samples were considered fully saturated. After

saturation, an initial effective confining pressure sm’ = 100 kPa was

uniformly applied for consolidation.
2.3 Test scheme

To investigate the development patterns of volumetric strain of

coral sands with differentDr, FC, and cyclic stress ratio (CSR) values

under cyclic drainage loading conditions, coral sands with FC = 0%,

10%, 20%, and 30% were used to prepare samples with Dr = 30%,

50%, and 70%, respectively, followed by uniform consolidation at

s’m = 100 kPa. After consolidation, drainage cyclic loading tests

with CSR = 0.20, 0.25, and 0.30, were conducted. The detailed test

scheme is shown in Table 1, with CSR:

CSR =
sd

2s 0
m

(1)

where sd is the cyclic deviatoric stress. The test was performed

using sine waves with a loading frequency of 0.1 Hz.
3 Test results and analysis

There is relatively limited documentation on how to use a

dynamic triaxial apparatus to test the coral sand from the South

China Sea under drainage cyclic loading conditions to obtain its

dynamic elastic modulus. Hence, the analysis of the dynamic

modulus of the soil is crucial, which is defined as:
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Ed  ¼  
sd

ed
(2a)

where, sd and ed are axial dynamic stress and strain, respectively.

Under cyclic loading, the contact force between saturated coral

sand grains gradually increases with increasing soil density, thereby

increasing the dynamic elastic modulus Ed. When the dynamic

elastic modulus stabilizes, the contact force between grains remains

the same and Ed reaches a steady state. The average dynamic elastic

modulus of saturated coral sand at theN-th cycle id denoted as Ed-N.

Figure 2 illustrates the calculation of Ed-N using Equation 2b.

Ed�N =
sd,max − sd;min

ed,1 − ed,2
(2b)

Where sd,max and sd,min are the maximum and minimum cyclic

deviatoric stresses at the Nth cycle, and ed,1 and ed,2 are the axial

strains corresponding to sd,max and sd,min, respectively. Figure 3

shows the curve of dynamic elastic modulus of the saturated coral

sand Ed-N versus N. As shown in this figure, Ed-N accumulates

continuously with increasing N. It increases rapidly at the beginning

of loading; then, its growth rate slows down until it stabilizes.During

loading, the dynamic elastic modulus of the saturated coral sand

increases with the increase in the relative density Dr; the growth rate

of Ed-N decreases with increasing Dr and increases with increasing

FC and CSR.
3.1 Analysis of the initial dynamic
elastic modulus

In this study, the dynamic elastic modulus Ed-1 at the first cycle

N = 1 is defined as the initial dynamic elastic modulus. Figure 4

shows the relationship curve between the initial dynamic elastic

modulus Ed-1 and FC. With FC ranging from 0 to 30%, the initial

dynamic elastic modulus decreases with increasing FC and CSR and

increases with increasing Dr. Thus, the magnitude of the initial

dynamic elastic modulus is affected by FC, Dr, and CSR. This is

because for Dr, the number of sand grains that make up the soil

skeleton decreases gradually with the increase of FC and some of

them are replaced by fine grains, thus decreasing the stiffness of the
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Gradation curve of coral sand.
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sample in the initial state and Ed-1. With the increase of Dr, the

degree of compaction of the sample increases and the contact

between grains is closer, thus increasing the stiffness of the

sample and Ed-1. The above analysis indicates that the impacts of

the composition of grains on Ed-1 cannot be reasonably

characterized by FC or Dr alone. Thevanayagam (2000) proposed

the equivalent skeleton void ratio esk* considering influence of fines
on the contact of sand particles and the interparticle contact force
Frontiers in Marine Science 04
chain. The formula is as follows:

e∗sk =
e + (1 − b)� FC
1 − (1 − b)� FC

(3)

where e is void ratio, b is the proportion of fines involved in the

force chain between soil particles on the premise that FC is smaller

than the threshold fines content FCth (FCth = 30% for the coral sand

in this study). The parameter b is calculated using the semi-
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empirical formula proposed by Rahman et al. (2008) and

Mohammadi and Qadimi (2015), and its validity has been

verified by Chen et al. (2020).

Therefore, the equivalent skeleton void ratio esk* is used to

characterize Ed−1. It can be found that Ed−1 decreases with the

increase of esk*, indicating a clear relationship between Ed-1 and

esk*; esk* is an appropriate physical indicator for characterizing Ed−1.
As shown in Figure 5, a clear linear relationship between the CSR-

corrected initial dynamic elastic modulus and equivalent porosity

ratio of the skeleton is established:

Ed−1 � CSR2 = −4:3e*sk + 6:67 (4)
3.2 Analysis of the steady-state dynamic
elastic modulus

When the volumetric strain (Dev) development plateaus during

drained cyclic loading (Dev/DN< 0.01), the specimen is considered

to have reached steady state. The Ed−N in this state is defined as the

steady-state dynamic elastic modulus Ed-s. The variation in the

steady-state dynamic elastic modulus Ed-s is affected by Dr and FC,
Frontiers in Marine Science 05
as shown in Figure 6. According to the experimental results, Ed-s
decreases with increasing Dr, and increases linearly with decreasing

FC. In addition, the experimental results show that Ed-s increases

slightly with increasing CSR. This is consistent with the finding of

Ma et al. (2024b) that elastic modulus increases slightly with

increasing strain rate.

When Ed-N reaches Ed-s at a given Dr, it indicates that the sample

has reached the maximum degree of compaction under the applied

stress. When FC< FCth, fine grains fill in between the coarse particle

skeleton or wrapped around the surface of the coarse sand, and their

lubricating effect reduces the stiffness of the soil. This observation is

consistent with the findings Huang et al. (2023) obtained using the

three-dimensional discrete element method. The greater the FC, the

more the fine grains in the soil skeleton, thus remarkably reducing the

stiffness. An increase in the initial Dr would increase the degree of

compaction of the consolidated sample, which strengthens the

contact interaction between soil grains and manifests itself as an

increase in the dynamic elastic modulus.

The equivalent skeleton void ratio esk* is introduced to

characterize the combined impact Dr and FC. As shown in

Figure 7, a clear linear correlation exists between Dr and FC,

which allows us to conclude that
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Ed�s = −70:3e*sk + 135:6 (5)
3.3 Prediction modeling for the relative
dynamic elastic modulus

The ratio of Ed-N to Ed-s is defined as the relative dynamic elastic

modulus Er (Equation 6). Er represents the stability development of

the coral sand under cyclic drainage loading and is of guidance for

the foundation design under long-term loading.

Er =
Ed−N
Ed−s

(6)

Figure 8 shows the development curve of the relative dynamic

elastic modulus Er with the number of cycles N. It can be seen that

the degrees of discreteness of Er–N curves at different FCs and the

same Dr are extremely small, indicating that FC has almost no

impact on the development of Er with N.Er eliminates the impact of

various FC, and during cyclic loading, Er develops with N in the

form of an approximate inverse tangent function.

Er = A arctan½B� (N + 1)� (7)
Frontiers in Marine Science 06
Equation 7 was used to analyze the development of Er, namely,

parameters A and B. A mathematical analysis indicated that

parameter A is related to the final value of the relative dynamic

elastic modulus Er, while parameter B is a variable related to the

growth rate of Er. According to the A–B relationship shown in

Figure 9, parameter A is related to the soil, and remains constant at

0.63 for the saturated coral sand used in this study, unaffected by

FC, CSR, or Dr. The growth rate of the Er is affected by the

combined impact of FC, CSR, and Dr. When the impact of FC is

eliminated, changes in Dr will substantially affect the fitting

parameter B. The value of B shows a linear increase with

increasing Dr. This is because an increase in the Dr would

increase the degree of compaction of the loaded sample, which

strengthens the contact interaction between soil grains and

manifests itself as an increase in the dynamic elastic modulus.

Parameter B is corrected by CSR, and in this study, the density

correction parameter Dr
CSR is used in place of the relative density

Dr. As shown in Figure 10, there is a clear linear relationship

between the two.

B� CSR  =  0:036 + 0:16DCSR
r (8)

Thus, a prediction model for the dynamic elastic modulus of

saturated coral sands can be developed as follows:
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Relationships between the relative dynamic elastic modulus E r and N. (A) Dr = 30%, (B) Dr = 50%, (C) Dr = 70%.
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Er =
2
p
arctan½0:036 + 0:16DCSR

r

CSR
� (N + 1)� (9)
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4 Conclusions

In this study, we investigated the impacts of Dr, FC, and CSR on

the dynamic elastic modulus Ed-N of saturated coral sands with non-

plastic fines and its development patterns, and drew the

following conclusions:
(1) Ed-N of saturated coral sands keeps accumulating with

increasing N during cyclic loading, and it increases with

increasing Dr and decreases with increasing FC during the

loading process.

(2) The initial dynamic elastic modulus Ed-1 is affected by FC,

Dr, and CSR. Alternatively, the steady-state dynamic elastic

modulus Ed-s is affected by the combined impact of FC and

Dr and to a lesser extent by the CSR. Linear relationships

between Ed-1 and esk* and Ed-s and esk* for FC< FCth were

established respectively by introducing the equivalent

skeleton void ratio esk*.

(3) The relative dynamic elastic modulus Er is defined as the

ratio of Ed-N to Ed-s. Er is not affected by the FC, but
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TABLE 1 Test scheme.

ID Dr(%) FC (%) CSR ID Dr(%) FC (%) CSR ID Dr(%) FC (%) CSR

1 30 0

0.20

13 30 0

0.25

25 30 0

0.30

2 30 10 14 30 10 26 30 10

3 30 20 15 30 20 27 30 20

4 30 30 16 30 30 28 30 30

5 50 0 17 50 0 29 50 0

6 50 10 18 50 10 30 50 10

7 50 20 19 50 20 31 50 20

8 50 30 20 50 30 32 50 30

9 70 0 21 70 0 33 70 0

10 70 10 22 70 10 34 70 10

11 70 20 23 70 20 35 70 20

12 70 30 24 70 30 36 70 30
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Fron
increases with increasing N. A prediction model for Er in

the form of an inverse tangent function was developed, and

its fitting parameters A and B were analyzed.
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