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Coastal marine heatwaves in
the Santa Barbara Channel:
decadal trends and
ecological implications
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Amelia L. Ritger3,4 and Gretchen E. Hofmann3,4

1School of Oceanography, University of Washington, Seattle, WA, United States, 2Biology Department,
Swarthmore College, Swarthmore, PA, United States, 3Marine Science Institute, University of
California, Santa Barbara, Santa Barbara, CA, United States, 4Department of Ecology, Evolution, and
Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
Marine heatwaves (MHWs) are of increasing concern due to the emerging

ecological and socioeconomic impacts on coastal ecosystems. Leveraging the

data of the Santa Barbara Coastal Long-Term Ecological Research project, we

analyzed the MHW event metrics observed in the kelp forest ecosystem and

across Santa Barbara Channel, CA, USA. Not only was there a significant positive

trend in the number of MHWs recorded, their duration and intensity were also

increasing over time. MHWs were detected year-round, suggesting that marine

organisms have exposure risks regardless of their phenology. Exposure at one life

history stage could have a legacy effect on the subsequent stages, implying little

temporal refuge. In contrast, the coastal mooring data revealed that near-surface

and bottom events were not necessarily coupled even at less than 15 m. Such

spatial variation in MHWs might provide a temporary refuge for mobile species.

These observations also highlight the importance of depth-stratified, long-term

coastal monitoring to understand spatio-temporal variation in MHW stress on

coastal communities.
KEYWORDS

extreme events, climate change, LTER, climate variability, marine heatwave, kelp forest,
ocean warming
1 Introduction

Extremes of warm ocean temperatures – events known as marine heatwaves (MHWs) –

have caused ecological disturbance in marine ecosystems, and are expected to increase in

frequency and intensity (Oliver, 2019). The biological impacts of MHWs have been

significant, causing dramatic mortality events and altering community structure via

changes in biodiversity (Leggat et al., 2019; Sanford et al., 2019; Smith et al., 2023; Joyce

et al., 2024). While MHWs have been defined as extreme anomalies in sea surface
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temperature (Hobday et al., 2016, 2018), these events are far from

being a surface-only phenomenon. Analyses of bottom or

subsurface MHWs (Amaya et al., 2023b; Sun et al., 2023; Wyatt

et al., 2023) highlight the needs and urgency to reflect on how

MHW events might interact with coastal marine communities

using nearshore monitoring data given their spatial and

temporal dynamics.

MHWs are particularly impactful in coastal ecosystems. The

rapid onset, seasonality, and vertical dynamics of these extreme

events interact with a wide array of species, including foundational

species such as kelp and coral (Leggat et al., 2019; Rogers-Bennett and

Catton, 2019; Smith et al., 2024), and in turn alter key ecological

processes such as reproduction (Wild et al., 2019; Shanks et al., 2020;

Peruzza et al., 2023). First, MHWs occur quickly relative to ecological

time-scales, often leaving little time for species to acclimatize

(Stillman, 2019; Guo et al., 2022; Amaya et al., 2023a).

Furthermore, the seasonal timing can align with critical life history

events (Leach et al., 2021; Harvey et al., 2022), creating phenological

mismatches (Laurel et al., 2021; Correia-Martins et al., 2022). Lastly,

bottomMHWs can expose vulnerable key sessile species to heat stress

(Amaya et al., 2023b). However, there are contrasting reports that

demersal fishes lack significant responses to MHWs (Fredston et al.,

2023). Such penetrations of warm temperature to the benthos have

resulted in mortality (Rogers-Bennett and Catton, 2019; Thomsen

et al., 2019; Smale, 2020; Wernberg, 2021), coral bleaching (Couch

et al., 2017; Le Nohaïc et al., 2017; Gaspar et al., 2021; Wyatt et al.,

2023), changes in biodiversity and ecological interactions (Reed et al.,

2016; Sanford et al., 2019; Michaud et al., 2022; Starko et al., 2023),

and restructuring of microhabitats and refugia after thermal stress

(Woodson et al., 2019; Starko et al., 2022).

Kelp forests are ideal for examining the impacts of MHWs on a

coastal ecosystem that is dominated by a single foundation species.

The health of kelp forests globally has been threatened by MHWs,

with large variations in local level responses (Cavanaugh et al., 2019;

Filbee-Dexter et al., 2020; Smale, 2020; McPherson et al., 2021; Tait

et al., 2021). The giant kelp (Macrocystis pyrifera) forest community

of the Santa Barbara Channel within the California Current System

serves as a model system to explore the multidimensional impacts

of MHWs on kelp forests. This region is home to the Santa Barbara

Coastal Long-Term Ecological Research (SBC LTER) project, which

has collected in situ temperature at multiple study sites since 1999.

The SBC LTER has collected both temperature data and biological

data that has supported important observations regarding the

ecological response within the region (Reed et al., 2016; Michaud

et al., 2022; Kozal et al., 2024) and has been used to inform

ecologically-relevant experiments (Leach et al., 2021; Clare et al.,

2022; Lowman et al., 2022; Csik et al., 2023; Leach and

Hofmann, 2023).

With MHWs predicted to increase in intensity and frequency

(Oliver et al., 2018; Oliver, 2019), understanding their dynamics and

vertical structure is critical, especially for near-shore ecosystems

such as kelp forests that are characterized by a productive benthos.

In this region, physical processes such as upwelling could modify

the low-frequency background temperature and stratification and

drive the initiation of MHWs (Dalsin et al., 2023). Similarly,
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interactions between coastal features and internal waves can alter

the adjustment of the thermocline and heat transport (Zhang et al.,

2023). It is therefore important to consider near-shore dynamics

when investigating the future of MHWs.

Using in-situ data from the SBC LTER within the coastal kelp

forest, we compared the characteristics and trends of MHW events

detected through mooring data with those identified by satellite-

based sea surface temperature. We hypothesized that MHWs occur

not only at the channel-wide spatial scale but also across the vertical

water column, with similar frequency and intensity. Additionally,

given the shallow nature of the coastal SBC LTER sites (<15 m), we

predicted that near-surface and bottom MHW metrics would be

uniform. Alternatively, we considered the possibility that MHWs

might exhibit earlier onset and higher intensity near the surface due

to solar insolation. The ultimate goal of this work is to enhance our

understanding of how MHWs affect shallow coastal ecosystems,

providing crucial insights into the threats these events pose to

marine biodiversity and resilience.
2 Materials and methods

2.1 SST data sets

Sea surface temperature (SST) from the Santa Barbara Channel

area (from -120.625° to -119.375° and 33.875° to 34.625°) was retrieved

from the NOAA National Centers for Environmental Information via

the ERRDAP Server (https://coastwatch.pfeg.noaa.gov/erddap/

griddap/ncdcOisst21Agg.html). This Daily Optimum Interpolation

Sea Surface Temperature Analysis (Version 2.1) derived its data

from satellite (Advanced Very High Resolution Radiometer) and in

situ platforms (i.e., ships and buoys). The analysis provided 18 grid

points (hereafter referred to as sites) within the Santa Barbara

Channel, with a spatial resolution of 0.25° and temporal coverage

spanning from 1982 to 2023 (Kui, 2024). The vertical temperature

profile data was retrieved from long-term moorings (2004-2023)

managed by the SBC LTER at five coastal sites, namely Alegria Reef

(Washburn et al., 2024a), Arroyo Quemada (Washburn et al.,

2024b), Naples Reef (Washburn et al., 2024e), Mohawk

(Washburn et al., 2024d), and Carpinteria (Washburn et al.,

2024c). These data were gathered from one Conductivity,

Temperature, and Depth sensor (SBE37CTD) as well as two

Onset StowAway Tidbit Temp Loggers at 20-min intervals at

each site’s mooring. The SST data were gathered at approximately

2-4 m (“near-surface”) and the bottom temperature data were

gathered at 9-15m depth (“deep”, Figure 1). The bottom Tidbits

were mounted approximately 1m above the sea floor, while the

Acoustic Doppler Current Profiler (ADCP) was positioned about 10

meters away at a similar depth, half a meter above the seafloor.

Therefore, the depth at which the sensors were mounted differed

between each site and reflects local bathymetry (Supplementary

Table 1). All data are publicly available in the Environmental Data

Initiative (EDI) repository. The near-surface and bottom

temperature data used in the analysis were primarily sourced

from the Tidbit, with the temperature readings from the SBE37
frontiersin.org
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CTD and ADCP filling gaps when the Tidbit data for the

corresponding depths and sites were unavailable.
2.2 Statistical analysis

2.2.1 Marine heatwave identification
MHW events were identified separately for each of the sites

(satellite grid data and mooring data) and depths (mooring data),

following the methodology of Hobday et al. (2016). A discrete

MHW event refers to times during which SST was above the

threshold for at least five consecutive days. The daily threshold

was the 90th percentile of the temperature recorded across all daily

temperatures from 1982-2023 within an 11-day window centered

on the day, which were then smoothed using a 31-day moving

average following Hobday et al. (2016). Consecutive events that

were separated by less than two days were combined into one. For

each event, metrics described by Hobday et al. (2016) were

computed: “duration” is the time between the event’s start and

end dates; “maximum intensity” is the maximum temperature

anomaly compared to the seasonal-varying mean over the

duration of the event, “cumulative intensity” is the cumulated

daily temperature anomaly over the duration of the event, and

“onset and decline rate” is the rate of temperature increase or

decrease at the start and end of the event, respectively. All

computations of heatwave metrics were performed using the

heatwaveR package (version 0.4.6) (Schlegel and Smit, 2018) in R

(version 4.1.2).

2.2.2 Spatial-temporal analysis
To examine the spatial and temporal pattern of the MHWs, an

empirical orthogonal function (EOF) was performed on the time

series of annual total MHW days for each of the 18 sites across the

study period. This metric was chosen after Oliver et al. (2018) and
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because of its simplicity – more frequent and longer events both

increase this metric. The analysis was conducted with the MetR

package (version 0.15.0) in R (Campitelli, 2021). To study the

temporal trend of MHWs, we compared the trends in total

intensity and duration of MHWs observed between 1983-2003

and 2004-2023 with Kendall’s tau based Sen’s slope estimator

(Sen, 1968). Mann-Kendall test method in the trend package

(version 1.16) in R was used to determine the significance of the

detected trends (Pohlert, 2023).

To investigate the vertical structure of MHWs observed, we

computed the nearest pairing from a top event to a bottom event

and vice versa for the coastal mooring data based on the start date of

the event. If the top-and-bottom pairing agreed, the two

observations were considered as a single event, unless the

difference in initiation dates exceeded five days. All unpaired

observations were labeled as top-only or bottom-only event.
3 Results

3.1 Satellite data trends

Based on the 40-year satellite data, there were on average two

MHW events annually in the Santa Barbara Channel. The average

duration of the event was 11.2 days and the mean average intensity

of the events was 2.01°C (Figures 2A-C). MHW events were

detected in all months of the year (Figure 3A). There were over

20 events in spring (Mar-May) and summer (Jun – Aug), which was

higher than the number recorded in fall (Sept –Nov; 14 events) and

winter (Dec – Feb; 10 events). These MHW events lasted the longest

in fall (28 days) and had an average intensity of 2.3°C.

There were significant positive trends in the number of events

observed, their duration and cumulative intensity of MHWs

between 2004 and 2023 (Sen’s slope = 0.11, 1.08, and 2.08; z ≥
FIGURE 1

Santa Barbara Channel (SBC), the study area. At a 0.25° resolution, 18 grid points (sites) within the SBC were used for sea surface temperature
analysis from 1983-2023. An additional five SBC long-term mooring sites from 2004-2023 were used for the coastal analysis. The coastal sites are
Alegria Reef (ale), Arroyo Quemada (arq), Naples Reef (nap), Mohawk (mko) and Carpinteria (car). The four islands in the channel from west to east:
Santa Miguel, Santa Rosa, Santa Cruz, Anacapa.
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2.54; p ≤ 0.05 respectively). In contrast, there was no statistically

significant trend in all the above-mentioned metrics during the

time period between 1984 and 2003. Comparing these two time

periods, 2004 to 2023 had more observed MHWs (692 vs. 646)

that were on average more intense (mean intensity 2.04°C

compared to 1.99°C) and had a slower rate of decline (0.23°C

day-1 compared to 0.26°C day-1).

The first mode of the EOF analysis explained 93% of the

variance in the total MHW days in this 40-year dataset. The

largest peaks corresponded to the historically intense MHW

events in 1983, 1999 and 2014-2015 (Figure 4B). 2015 was the
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most intense event recorded. Recapitulating the pattern of

increasing number of events in the past decade, there were more

peaks with normalized values over 0.1 since 2012.

The observed spatial variation was much smaller than the

temporal variation (Figure 4A). The difference in normalized

units differed by 0.03 between sites compared to 0.5 between

years. There appeared to be an East-West pattern such that the

sites receiving more open ocean influence on the West (closer to

Point Conception) and the station on the south side of the Santa

Rosa Island experienced relatively less MHW days compared to the

islands due East.
FIGURE 2

Summary statistics of marine heatwave (MHW) metrics between 1983-2023 of the Santa Barbara Channel (A-C), using sites 7-12; MHW metrics from
2004-2023 near-surface (D-F) and bottom (G-I) mooring from five sites of the SBC LTER project (see Figure 1 for station locations). The gray area
indicates no data because there was no MHW during that time at the given site.
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https://doi.org/10.3389/fmars.2024.1476542
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Chan et al. 10.3389/fmars.2024.1476542
3.2 Mooring data trends

Temperature derived from satellite data had a significant and

close to 1:1 correlation with near-surface mooring data gathered at

the 5 coastal sites (p <0.001, r2 = 0.9; Supplementary Figure 1),

indicating compatible results from the two data sources. Every year,

there were on average 2.7 MHW events detected by the surface and

bottommooring, respectively. These events were on average 14 days

long and the mean average intensity was 2.2°C (Figures 2D-I).
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Similar to the channel-wide satellite data, MHW events were

detected across all months of the year (Figures 3B, C). There were

more MHW events recorded during spring and summer (~25

events per site compare to ~16 events in fall and winter). The

events in fall were also the longest (35 days).

Given there were only 20 years of mooring data, the trend in

intensity and duration of MHW events observed were analyzed as a

single group. The Sens’s slope of the number of events, duration, and

cumulative intensity had positive slopes for both observations near

surface and at the bottom, although these trends were not statistically

significant. However, it is important to note that the site-average

monthly temperature from 2014 to 2023 appeared to be higher than

those recorded for the period 2004 and 2013 (Figures 5A, B).

Furthermore, there was not complete concurrence when a MHW

event occurred near the surface and when seawater temperature was

anomalously high on the benthos (Figures 2D-I; Figures 3B, C). On

average, approximately one quarter (27%, 62 of 229 events) of the

MHW events detected near the surface did not have a corresponding

bottommarine heatwave (BMHW) event. In addition, approximately

one fifth (21%, 49 of 229 events) of BMHW events did not have a

corresponding MHW signal near the surface. When there were

paired events, i.e., a MHW was detected both near the surface and

at the bottom, the events initiated first at the bottom, leading the

surface signal by about 1 day. Of all top- or bottom-only MHW

events detected (180 for top, 166 for bottom), the average duration

(12.6 and 13.1 days, respectively) and intensity (2.28 and 2.24°C,

respectively) were comparable between top and bottom. When

compared to top events, bottom events had a faster rate of onset

(top = 0.28°C day-1, bottom = 0.36°C day-1, respectively) and a slower

rate of decline (top = 0.61°C day-1, bottom = 0.47°C day-1).

There appears to be an East-West pattern along these five coastal

sites (Figures 2D-I), such that the easternmost site (car, Carpinteria)

had a higher yearly average number of events (3.1 near surface events

and 2.6 at bottom events) compared to the westernmost site at

Alegria Reef (ale, 2.5 near surface events and 2.6 at bottom events).
4 Discussion

Using satellite and in situ monitoring data, we catalogued the

spatial and temporal pattern of marine heatwaves in a biodiverse

coastal habitat — the kelp forest community in the Santa Barbara

Channel. Consistent with the global pattern, the Channel

experienced an increase in frequency and intensity of MHWs

over the last four decades. MHW events were recorded in all

months of the year such that regardless of phenology, marine

organisms in the region’s kelp forests could encounter thermal

anomalies consistent with MHW events. Subsurface MHWs were

detected; our high frequency coastal monitoring showed that MHW

events could be depth stratified such that there was no concordance

in anomalously high temperature between the surface and benthos.

On a basin or regional scale, vertical structuring in the MHW

signals, combined with spatial variation in total MHW days

between the northern and southern sides of a large island,

suggested the potential for short-lived refuges from MHW-related

ocean warming.
FIGURE 3

Monthly patterns of mean MHW intensity in Santa Barbara Channel
derived from satellite data from 1983-2023 (A) and from coastal
moorings at five sites near-surface (B) and at the bottom (C) from
2004 and 2023.
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4.1 Increasing MHW events

The frequency and intensity of MHWs are rising across the globe

(Scannell et al., 2016). This increasing trend has been attributed to

anthropogenic ocean warming (Oliver, 2019; Laufkötter et al., 2020)

and changes in atmospheric processes (Barkhordarian et al., 2022).

While our data sets were not particularly long (ca. 40 years for the

satellite and 20 years for coastal in situ monitoring), we observed

significant positive trends in number of events, duration, and

intensity. Persistent and intense MHWs, like the ones observed in

2014-2016 in the Santa Barbara Channel, strongly correlated with

variability in winter SST, namely the Pacific Decadal Oscillation

(PDO), and the North Pacific Gyre Oscillation (NPGO; (Joh and Di

Lorenzo, 2017). Shorter time scale local dynamics such as wind
Frontiers in Marine Science 06
relaxation and the subsequent weakening of upwelling (Wei et al.,

2021) and cloudiness (Myers et al., 2018) also contributed towards

intense, long-lasting MHWs. With the predicted increase in NPGO-

PDO coupling (Joh and Di Lorenzo, 2017), MHW events are likely to

become more frequent, intense, and persistent in the Santa Barbara

Channel in the next decade.
4.2 MHW coinciding with multiple key life
history events

We observed more MHW events in spring and summer, and

more persistent and intense events were observed in fall. It is,

however, important to note that there were MHW events in winter
FIGURE 4

The dominant patterns of the Santa Barbara Channel total MHW days from 1983 to 2023. The spatial second mode (EOF1, A) and its corresponding
temporal evolution (PC1, B). Both metrics are shown in normalized variance units.
FIGURE 5

Mean monthly sea surface temperature across from the near-surface (A) and bottom (B) moorings of the SBC LTER coastal sites from 2004 to 2023.
Relative abundance of sporophyll (reproductive part) of giant kelp (Macrocystis pyrifera), and key life history events of purple urchins
(Strongylocentrotus purpuratus), and California spiny lobsters (Panulirus interruptus) in a year (C). All icons were obtained from theNounProject.com.
frontiersin.org
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as well. Similar seasonal variation in MHW occurrence were reported

in other ocean basins (Thoral et al., 2022;Wang et al., 2024). For giant

kelp that release zoospores year round (Reed et al., 1997), their

reproductive success can be influenced by MHWs throughout the

year. Furthermore, this seasonal variation in MHW events could

coincide with key life history events of kelp forest organisms,

including, purple urchin (Chatlynne, 1969; Pearse, 1980), and spiny

lobsters (Barsky, 2008). This phenological alignment is illustrated in

Figure 5C, where life history data were gleaned from the literature.

For example, planktonic larval stages are often considered the most

vulnerable phase of the multi-phasic life histories of marine

organisms. Various economically and ecologically important

species in the Southern California Bight spawn or perform

gametogenesis during the spring and summer, including anchovies

(Picquelle and Hewitt, 1983), sardines (Alheit, 1993), market squids

(Zeidberg et al., 2012), spiny lobsters (Engle, 1979) and sea urchins

(Ebert et al., 1994; Teck et al., 2018). Indeed, during the persistent

2014-2016 MHW event, the catch of pollock larvae was the lowest of

the 30-year record along the Californian coast (Rogers et al., 2021).

Recruitment failure after MHWs were also reported in rabbitfish

(Siganus sp.) along the west coast of Australia (Lenanton et al., 2017)

and oysters (Crassostrea gigas) in Mediterranean coastal lagoons

(Correia-Martins et al., 2022).

Given MHWs occur year round, even if the most sensitive stage is

not directly exposed to the thermal stress of a MHW, there is a potential

for a legacy effect. Legacy effect refers to the experience in one life history

stage affecting the subsequent stage (Padilla andMiner, 2006). Leach et al.

(2021) showed that for purple sea urchins (Strongylocentrotus

purpuratus), exposure to prolonged warming (28 days) in a simulated

MHW during gametogenesis reduced male gamete performance such

that fewer of their offspring developed successfully. Maternal effects on

progeny traits have also been observed in purple urchins (Chamorro

et al., 2023). Further experiments demonstrated that matching parental

and larval experiences confer a higher thermal tolerance (Leach and

Hofmann, 2023). Similarly, larval exposure to a simulated MHW was

demonstrated to reduce juvenile performance by narrowing their

thermal tolerance in an Australian urchin (Gall et al., 2021). These

lab-based observations appeared to match field observations, such

that during the 2013-2016 persistent MHW events, purple urchin

recruitment remained high in the Santa Barbara Channel only to

decline in the following year (Okamoto et al., 2020). This field

observation highlights that the impact of MHWs may not be

immediate. One reasonable inference is that adults exposed to a

MHW produced lower quality gametes, resulting in lower performing

larvae that have higher mortality and lower recruitment, i.e., legacy

effects. Therefore, in addition to thermal niche and physiology (Harvey

et al., 2022), the phenology of a given species relative to the timing of

MHWs, which can be inferred from coastal monitoring similar to that

presented here, plays vital roles in shaping its response to thermal stress.
4.3 Spatial variations as potential refuge for
mobile species

While others have demonstrated the presence of subsurface

MHWs at the continental slope (Amaya et al., 2023b; Zhang et al.,
Frontiers in Marine Science 07
2023), we showed that the lack of concordance between surface and

bottom could occur even in relatively shallow waters (<15 m). Such

vertical dynamics in MHWs could be associated with several

physical drivers including wind and cloud cover, coastal trapped

waves and suppression of upwelling due to reduced mixing (Chen

et al., 2021; Amaya et al., 2023b). Mobile species may be able to

navigate the water column to avoid warmer waters when the

MHWs do not extend throughout the water column. Fishes and

even marine invertebrate larvae can respond to temperature by

alternating their swimming behaviors (Matern et al., 2000; Gray and

Kingsford, 2003; Chan and Grünbaum, 2010). Indeed, Fredston

et al. (2023) showed that demersal fish were little affected by

MHWs. However, subsurface MHWs could exert significant,

previously underestimated pressure on benthic marine ecosystems

(Amaya et al., 2023b), particularly on species with sedentary or

sessile lifestyles such as kelp (Cavanaugh et al., 2019). Differential

impacts of subsurface MHWs on sedentary and mobile species may

lead to shifts in ecological interactions and community structures

and warrant further analysis (Correia-Martins et al., 2022; Michaud

et al., 2022; Panzeri et al., 2024).

The East-West difference in current velocity in the Santa Barbara

Channel coincided with the spatial variations of the EOF of total

MHW days and the enticing trend along the coast. A cold plume

extended westward from Pt. Conception towards the Channel

Islands, resulting in the relatively cold water towards the south of

the islands. This pattern might also explain the relatively lower

variance in EOF of total MHW days observed near Santa Rosa

Island. This observed East-West spatial variation in MHW days

suggests potential between-sites differences in stress exposure,

including temperature anomalies and the associated change in

nutrient availability (Landry et al., 2024). Starko et al. (2022)

showed that warm microclimates increased the risk of habitat loss

(kelpmortality) duringMHWs. Interestingly, the area associated with

stronger total MHW days in our record coincided with the area of

slower recovery observed through Landsat imagery (Bell et al., 2023).

Recent satellite-based analysis of bull kelp cover in Northern

California (Cavanaugh et al., 2023) and airborne surveys of coral

reef in Hawaii (Asner et al., 2022) identified pockets of resilience to

MHWs. The elevated resilience to thermal stress could be a result of

local genetic variations (Becheler et al., 2022) and other mediating

factors, including other stressors and hydrodynamics. Identifying

these refuges and their effectiveness as potential sources to reseed kelp

communities in the future requires consistent long-term, community

monitoring (Weitzman et al., 2021; Michaud et al., 2022).
5 Conclusion

In situ mooring data revealed vertical dynamics in MHWs,

suggesting SST alone is not sufficient for estimating the risk of

MHWs. Instead, long-term monitoring throughout the whole water

column combined with ecological surveys is essential for understanding

how coastal communities would persist in the future ocean, and how

further ocean warming will impact giant kelp as a foundation species

(Smith et al., 2024). Our analysis of satellite records and long-term

coastal monitoring data showed that the sentinel kelp forest ecosystem
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in the Santa Barbara Channel, like other marine ecosystems, are

experiencing an increasing frequency, intensity, and duration of

MHWs. Such an increase in MHW events poses a significant threat

to marine biodiversity and the socioeconomic resources from coastal

environments (Smith et al., 2021, 2023).
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