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Accurately predicting the spatio-temporal evolution trends and long-term

dynamics of three-dimensional ocean temperature and salinity plays a crucial

role in monitoring climate system changes and conducting fundamental

oceanographic research. Numerical models are the most prevalent of the

traditional approaches, which are often too complex and lack of generality.

Recently, with the rise of AI, many data-driven methods are proposed. However,

most of them take no consideration of natural physical laws that may cause

issues of physical inconsistency among different variables. In this paper, we

proposed PGTransNet, a novel physics-guided transformer network for 3D

Ocean temperature and salinity forecasting. This model is based on Vision

Transformer, and to enhance the performance we have three aspects of

improvements. Firstly, we design a loss function that deliveries the physical

relationship among temperature, salinity and density by fusing the

Thermodynamic Equation. Secondly, to capture global and long-term

dependencies effectively, we add the Pacific Decadal Oscillation (PDO) and

North Pacific Gyre Oscillation (NPGO) in the embedding layer. Thirdly, we

adopted the Laplacian sparse positional encodings to alleviate the artifacts

caused by high-norm tokens. The former two are the core components to

leverage the physical information. Finally, to comprehensively evaluate

PGTransnet, we conduct rich experiments in metrics RMSE, Anomoly

Correlation Coefficients, Bias and physical consistency. Our proposal

demonstrates higher prediction accuracy with fast convergence, and the

metrics and visual izations show that our model is insensit ive to

hyperparameter tuning, ensuring better generalization and adherence to

physical consistency. Moreover, as observed from the spatial distribution of the

anomaly correlation coefficient, the model exhibits higher forecasting accuracy

for coastal and marginal sea regions.
KEYWORDS

physics-guided machine learning, spatio-temporal data analysis, ocean temperature
prediction, ocean salinity prediction, ViT
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1 Introduction

Temperature and salinity, as fundamental climate variables of

the ocean, play a crucial role in ocean circulation, global climate,

and biological systems. Accurately predicting the spatio-temporal

evolution trends and long-term dynamics of three-dimensional sea

temperature and salinity is essential for monitoring climate system

changes and conducting fundamental oceanographic research (Kug

et al., 2004; Aguilar-Martinez and Hsieh, 2009; Lin et al., 2024).

Simultaneously, an accurate and in-depth understanding of the

variabilities and correlations of the temperature and salinity both on

the surface and subsurface is also helpful for ecological environment

protection, Ocean-atmosphere phenomena prediction (El Nino, La

Nina), and disaster warning (tsunami, hurricane) (Xiao et al., 2022;

Zhu et al., 2022; Wang et al., 2023; Zhou and Zhang, 2023).

However, the intricate marine environment, the coupling,

interplay, and mutual constraints among various elements make

its forecasting inherently challenging, encompassing the multi-

source multi-modal data processing and fusion, high nonlinearity

in temporal dynamics dealing, spatio-temporal information

extraction, and physical laws capturing between variables.

Most state-of-the-art approaches for predicting these two

variables are based on physics-based numerical models and data-

driven algorithms. While numerical models are physically plausible

and mathematically well-posed, the discretization approximation of

nonlinear equations and the challenge of determining the

uniqueness of solutions may lead to pseudo-physical effects,

generality, and temporal limitations. Moreover, numerical models

are computationally expensive. Typical and commonly used ocean

numerical models include ROMS (Regional Ocean Modeling

System), MOM (MITgcm Ocean Model), NEMO (Nucleus for

European Modeling of the Ocean), and POP (Parallel

Ocean Program).

Data-driven methods attempt to predict long-term variations in

temperature and salinity by leveraging their powerful learning and

nonlinear mapping capabilities, making them well-suited for spatio-

temporal data forecasting. Common approaches for forecasting

fundamental marine variables include LSTM, ConvLSTM, CNN,

and their variants such as FC-LSTM (Fully Connected LSTM), RC-

LSTM (Regional Convolution-LSTM), CFCC-LSTM (Combined

FC-LSTM and Convolution Neural Network), and DPG (Dual

Path Gated Recurrent Unit Network) (Zhang et al., 2017; Xiao

et al., 2019; Song et al., 2020; Xu et al., 2020; Patil and Iiyama, 2021).

However, these networks predominantly rely on homogeneous

datasets for univariate sea surface temperature forecasting, which

limits their ability to fully capture correlations between

coupled variables.

While some researchers have proposed spatio-temporal data

fusion models like MUST (Multi-source Spatio-Temporal data

fusion Model) (Hou et al., 2022), TemproNet (Transformer-based

deep learning model) (Chen et al., 2024), and attention-based

PredRNN (Qiao et al., 2023), these models are primarily designed

for short-term SST (Sea Surface Temperature) prediction. In

contrast, Dai (Dai et al., 2024) focuses on long-term SST

prediction in the China Sea. The proposed TransDtSt-Part
Frontiers in Marine Science 02
(Transformer with temporal embedding, attention distilling, and

stacked connection in part) achieves high prediction accuracy

across five China Sea regions, even with a forecast length of 360

days. However, the absence of known and objective physical

information within the meteorological and oceanographic

domains is a significant concern. The lack of physical constraints

limits the accuracy and reliability of purely data-driven approaches,

highlighting the need for models that integrate both data-driven

techniques and physical laws. Fortunately, the emergence of

physics-guided deep learning and AI for science presents a new

scientific paradigm for these problems. One of the earliest relevant

papers found to date is the article published in Nature Materials in

2006 (Fischer et al., 2006). The authors attempted to integrate

quantum mechanical mechanisms to enhance the accuracy of

crystal predictions. In addition, to enforce the reliability of model

prediction, Patil (Patil et al., 2016) proposes a wavelet neural

network (WNN) to make wavelet transforming among the error

time series between model output and observation data. It’s a

primary attempt to integrate physical information with neural

networks for temperature prediction. In general, prior research

has shown that physics-guided deep learning models have great

potential to improve data utilization, enhance interpretability, and

improve physical consistency (Daw et al., 2017; Jiang et al., 2019;

Daw et al., 2020; Jia et al., 2021; Von Rueden et al., 2021; Wu et al.,

2021; Yuan et al., 2022; Zhu et al., 2022; Wu et al., 2023).

Inspired by the successes mentioned above, we propose a novel

physics-guided spatio-temporal self-attention transformer network

for temperature and salinity forecasting, named PGTransNet.

PGTransNet repurposes the Vision Transformer (ViT), which can

naturally accommodate our image-like 3D sea temperature and

salinity data, and is capable of modeling long-range dependencies

effectively. We combine ViT with laplacian sparse positional

encodings, which somewhat alleviate the artifacts caused by high-

norm tokens, and embed the Pacific Decadal Oscillation (PDO) and

North Pacific Gyre Oscillation (NPGO) to help the model capture

global and long-term dependencies further. Moreover, temperature

and salinity control water density, thus governing the vertical

movement of ocean waters, which further affects the occurrence

and extinction of other large and mesoscale ocean phenomena.

Therefore, we incorporate the thermodynamic equation of

seawater-2010 (TEOS-10) representation formula for the

relationship between temperature, salinity, and density into the

loss function to achieve physics-guided model training.

Simultaneously, the feasibility of restricting the solution space

based on this thermodynamic equation is discussed.

In summary, the contribution of this paper are summarized in

the following three aspects:
• We propose a physics-guided spatio-temporal self-attention

transformer network for jointly predicting ocean

temperature and salinity;

• We consider laplacian sparse positional encodings and

build an embedding layer to embed decadal variability to

a l l e v i a t e a r t i f a c t s and s t r eng then long - t e rm

trend forecasting;
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Fron
• We design a loss function that deliveries the physical

relationship among temperature, salinity and density by

fusing the Thermodynamic Equation to achieve physics-

guided model training.
The remainder of this paper is organized as follows. Section 2

briefly describe the data sources and pre-processing methods, and

elaborates the workflow, algorithmic designs and implementation

details of PGTransNet. Section 3 describe the experimental results

and analysis. Finally, conclusions and future plan are remarked in

Section 4.
2 Methodology

2.1 Overall model architecture

Given the extensive availability of large-scale temperature and

sal inity datasets , coupled with the intrinsic physical

interdependencies and correlations between these variables, our

objective is to develop a physics-guided spatio-temporal self-

attention transformer network. This network is designed to

enable the simultaneous prediction of oceanic temperature and

salinity by integrating domain-specific physical principles into the

learning architecture. In other words, by processing multiple inputs,

PGTransNet generates corresponding outputs that adhere to

predefined physical principles.

As illustrated in Figure 1, given the ocean parameters input X of

dimensions Tin � C �H �W , PGTransNet is trained to forecast

the future ocean scenario Y of identical dimensions Tout � C � H �
W at a specified lead time Tout . Here, C denotes the number of input

features, while H and W represent the latitude and longitude grid

points, respectively. Tin and Tout correspond to the input history

time step and the output lead time step. In our study, we utilize

historical data spanning the previous year to predict temperature

and salinity for the subsequent year, where Tin = Tout =  12.

PGTransNet relies on several key components to derive the

ultimate prediction from historical inputs. These components

include data preprocessing, data embedding and merging, revised

ViT-based blocks, and physics-guided information integrating. The
tiers in Marine Science 03
specific details of each component will be introduced sequentially in

the subsequent subsections.
2.2 Datasets and data preprocessing

We utilize the IAP ocean temperature and salinity products

from the Institute of Atmospheric Physics (IAP) at the Chinese

Academy of Sciences (CAS) Cheng et al. (2017). This dataset is

gridded onto a 1° × 1° grid with 41 vertical levels ranging from 1-

2000m globally, and monthly resolution spanning from 1940 to the

present. The product is developed by using new XBT data bias

correction scheme, MBT correction scheme, new reduction of

sampling errors scheme (an ensemble optimal interpolation

method based on dynamic ensemble samples), and “subsample

test” evaluation scheme, which effectively overcomes the problems

of large systematic bias and sampling errors. Extensive systematic

analysis and evaluation have demonstrated the dataset’s ability to

accurately replicate various climate features, including

climatological means, decadal variations (such as PDO),

interannual variability (such as ENSO), and long-term trends

within the historical period from 1940 to 2015, as well as long-

term trends Cheng et al. (2017, 2019a, 2019b); Cheng and Zhu

(2016); Li et al. (2020). Considering the tropical Pacific Ocean’s

pivotal role in the ocean circulation and global climate system,

particularly its strong correlation with El Niño and La Niña through

changes in upper-ocean temperatures, we specifically select the IAP

data over the region spanning from 120°E to 90°W and 20.5°S to

20.5°N, covering the upper-ocean mixed layer from 1 to 160m

depths (1, 30, 60, 90, 120, and 160m). We concatenate the salinity

and temperature data along the depth dimension, resulting in C =

12. Additionally, it’s worth mentioning that all variations used for

predictors and predictands are normalized using min-max

normalization within the range [0,1]. The Pacific Decadal

Oscillation (PDO) index, as defined by the National Climate

Center, serves as the temporal coefficient of the primary mode

extracted through empirical orthogonal function (EOF)

decomposition of sea surface temperature anomalies within the

North Pacific region, spanning from 20°N to 70°N and 110°E to

100°W. This index effectively encapsulates the principal features of
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FIGURE 1

Overall model architecture.
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large-scale oceanic decadal variability. The cold and warm phases of

the PDO index correlate well with the cold and warm anomalies in

the tropical Pacific sea surface temperatures, which are strongly

associated with many North Pacific and Pacific Northwest climate

and ecology records, especially the occurrence of El Niño and La

Niña extreme events. Moreover, Liu and Zhu (2015) analyzed the

regime shift and its possible causes of winter North Pacific sea

surface temperature around the 1990s. The analysis indicates that

PDO predominantly influenced the dynamics before 1990, whereas

the North Pacific Gyre Oscillation (NPGO) took precedence in the

subsequent period. Additionally, it suggests that NPGO is likely to

dominate in the future. Therefore, considering the significance of

these climate indices in capturing oceanic variability, we propose to

embed the first two EOF modes (PDO, NPGO) to alleviate artifacts

and strengthen long-term trend forecasting. Notably, according to

its definition, the NPGO can be understood as the second EOF

mode of sea surface height (SSH) anomalies in the North Pacific.

Some studies suggest that the second EOF mode of SST can also

approximate the NPGO. Therefore, the NPGO used in this paper is

based on the second EOF mode of SST.

As shown in the Figure 2, EOF decomposes a time-dependent

vector field of oceanic variables A (e.g., temperature or salinity) into

spatial modes and temporal coefficients, assuming it consists of m

spatial points and n time points. In this context, S represents the

diagonal matrix of singular values, which are the eigenvalues of the

covariance matrix of A. Matrix U corresponds to the left singular

vector matrix, capturing the spatial patterns, while matrix V

represents the right singular vector matrix, reflecting the

projection of spatial modes onto the original data matrix A.

Essentially, the ith spatial mode is the ith nonzero eigenvector of

the covariance matrix of A, and the projection of spatial modes onto

the original A corresponds to the respective time coefficients.

Table 1 gives the explained variance ratio of the first four modes

of the SSTA (SST anomalies) in Pacific. Notably, the cumulative

explained variance ratio of the first four modes account over 65%,

and the cumulative explained variance ratio of the first two modes

over 45%. It is generally believed that the first two modes can
Frontiers in Marine Science 04
basically reflect the main characteristics of the SST variation in

this region.
2.3 Data embedding

In our approach, the data undergo several embedding steps before

it feed into the model. Firstly, We incorporate patch embedding as a

preprocessing step to streamline computational complexity and

enhance local feature capture. Inspired by the methodology of ViT,

we segment the input data into fixed-size sub-patches and transform

each patch into a vector through linear projection.

As depicted in Figure 3, Given an input sample X with shape

B� Tin � C � H �W , and considering a patch size of (p0, p1), we

generate a sequence of patches with dimensions B� Tin � Np �
 (p0 · p1 · C), where Np =  (H=p0) �  (W=p1)  = h� w. For this

study, we opt for a patch size of (2, 2), although this parameter

can be adjusted based on model performance and computational

efficiency considerations. Subsequently, it undergoes linear

projection to map it into a specific D-dimensional space.

Secondly, to bolster the model’s temporal and spatial acuity,

we introduce spatio-temporal positional encoding and long-term

trend embedding into the spatio-temporal embedding process. In

this investigation, we employ linear embeddings to convert input

tokens into vectors of dimension D, and we evaluate the efficacy of

two positional encoding methods within the temporal-positional

embedding. One approach utilizes sinusoidal positional

encodings, following the methodology proposed by Vaswani

Vaswani et al. (2017), while the other incorporates laplacian

positional encodings Maskey et al. (2022); Dwivedi et al. (2023).

Laplacian encodings represent a natural extension of node

position encoding in a graph, based on transformer positional

encodings. Leveraging the laplacian eigenvectors facilitates the

encoding of relative positional relationships among adjacent

graph nodes. Therefore, we explore the integration of laplacian

encodings to better capture the spatio-temporal characteristics of

neighboring grids within gridded thermodynamic element data.
FIGURE 2

EOF decomposition.
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We compute a simple laplacian matrix by subtracting the

adjacency matrix from the degree matrix. Subsequently, we

utilize the eigenvector with a size of max(h� w,D) of the

laplacian matrix as the position encoding. The long-term

decadal variations embedding will be elaborated further in

Section 2.5.
2.4 Revised ViT-based block

Recently, transformer-based models have emerged as leading

contenders for object detection and prediction tasks, often adopting

an encoder-decoder architecture. In our study, we leverage a

standard transformer encoder-decoder framework with minor

adaptations to jointly capture spatio-temporal features of

temperature and salinity. As illustrated in Figure 4, the encoder

comprises a stack of n1 = 4 identical layers. Each layer incorporates

a multi-head time-space attention block with four attention heads

and a two-layer MLP block with a ReLU non-linearity, facilitating

the aggregation of spatial-temporal features and physical

information. Drawing inspiration from the efficiency of the ViT

transformer in computational resource-saving, we feed the resulting

sequence of linear embeddings of the fixed-size patches after patch

embedding into the encoder. Meanwhile, the decoder consists of a

stack of n2 = 4 identical layers. In contrast to the encoder, the
Frontiers in Marine Science 05
decoder focuses on multi-head time attention concerning the

output from the encoder stack.
2.5 Physics-guided information integrating

Next, we elucidate our approach on how we incorporating

physics information into the model. This integration encompasses

three facets: long-term dynamics embedding, the imposition of soft

constraints based on the thermodynamic equation, and the

restriction of the output solution space. We make linear PDO or

NPGO embedding to capture long-term dynamics. As detailed in

Section 2.2, the PDO index effectively characterizes large-scale

oceanic decadal variations, serving as the temporal coefficient of the

primary mode obtained from EOF analysis. It manifests as a one-

dimensional time series, encapsulating the principal features of such

variations. Henceforth, we augment the dimension of the PDO index

and integrate it with the input data through linear aggregation. A

similar procedure is employed for processing the NPGO.

Subsequently, we incorporated the thermodynamic properties of

seawater (specifically, density) into the model in a soft-constraint

manner to guide the model’s output to match a specific thermohaline

density relationship. It is worth noting that the thermodynamic

equation used to calculate density is based on the latest seawater

thermodynamic calculation standard TEOS-10. TEOS-10 supersedes

the former standard EOS-80 (Equation of State of Seawater, 1980;

International Association for the Properties of Water and Steam,

2018), and it provides a comprehensive, thermodynamically

consistent manner for all thermodynamic properties of seawater

(density, enthalpy, entropy sound speed, etc.) based on Gibbs

function (named after Josiah Willard Gibbs) formulation. This

primer Pawlowicz (2010) points out that all thermodynamic

properties of the system can be determined by specific

combinations of derivatives of the Gibbs function. So the key to

solving the seawater problem becomes how one compute the Gibbs

function for seawater. TEOS-10 defines the Gibbs function of
FIGURE 3

Data embedding.
TABLE 1 The explained variance of the first four modes of EOF
decomposition of the Pacific SST anomaly field.

Modes Explained
variance ratio (%)

Cumulative explained
variance ratio (%)

mode 1 48.10 48.10

mode 2 8.71 56.81

mode 3 7.23 64.04

mode 4 3.69 67.73
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seawater as the sum of a pure water gW part and the saline part gS

(IAPWS-08), g(SA,T , P)  = gW(T , P) + gS(SA,T , P) Commission

et al. (2010). Concretely, the density of seawater r is determined by

the reciprocal of the pressure derivative of the Gibbs function (g) at

constant absolute salinity (SA) and in situ temperature T. Specifically,

r = r(SA,T , P) = (gP)
−1 = ( ∂ g= ∂ P gSA,T)−1 (1)

where, 0  ≤ SA ≤  120g=kg ,−12°C ≤ T ≤  80°C,−0:1 Pa ≤ P

≤  100MPa, and P means sea pressure. Besides, it’s noteworthy

that all the equations to calculate thermodynamic properties were

integrated into the open source Gibbs-Seawater (GSW)

Oceanographic Toolbox McDougall and Barker (2011).

Consequently, we call the function gsw_rho_t_exact(SA,T,P) that

computes the density in this tool directly [for more information

about this, please refer to Commission et al. (2010)].

Given the prediction Ŷ and the ground truth Y, the combined

loss is formulated as follows:

Combine _ Loss = Loss + l1*Loss
T + l2*Loss

S + l3*Loss
r (2)

Where,

Loss = Loss(Ŷ ,Y) =
1

C �H �Wo
C

c=1
o
H

h=1
o
W

w=1
(Ŷ c,h,w

t − Yc,h,w
t )2 (3)
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LossT =
1

C=2� H �W o
C=2

c=1
o
H

h=1
o
W

w=1
(Ŷ c,h,w

T ,t − Yc,h,w
T ,t )2 (4)

In our formulation, Loss denotes a composite temperature-

salinity loss, wherein LossT and LossS represent the independent

losses for temperature and salinity, respectively. Additionally, Lossr

signifies the density loss, which is computed based on the model’s

temperature and salinity outputs using the TEOS-10 equation. The

calculation formula for LossS and Lossr mirrors that of LossT .

Furthermore, l1, l2, and l3 denote adaptive hyperparameters,

with an optimal combination typically being (0.5, 0.3, 0.2).

Finally, considering the range of temperature and salinity values,

we incorporated a constraint layer to confine them within a

predetermined range, thus ensuring adherence to fundamental

physical laws.

As for the output solution space restriction, we sought to limit

the model’s output by applying the maximum and minimum ranges

of temperature and salinity consistent with the TEOS-10 equation

0  ≤ SA ≤  120g=kg ,−12°C ≤ T ≤  80°C. These constraints were

standardized alongside the data. To mitigate the impact of

normalization, we conducted ablation experiments by directly

inputting the raw temperature and salinity data into the model,

applying the original scale constraints accordingly. Regardless of

whether the data were standardized or not, our experiments
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revealed no enhancement in the model’s forecasting performance

upon integrating these constraint ranges. This outcome suggests

that the ranges may have been overly broad, surpassing the actual

extremities of temperature and salinity within the studied area.

Future endeavors could focus on pinpointing more precise ranges

based on genuine environmental conditions.
3 Experiments and results

3.1 Experimental settings

We conduct extensive experiments using temperature and

salinity data in the tropical Pacific from January 1940 to

September 2023. The model training is conducted on a server

equipped with a TESLA-V100 GPU with 16GB memory. Detailed

model parameters are provided in Table 2.
3.2 Baseline and evaluation metrics

In this section, we consider the following CNN-based, ConvLSTM-

based, and TransNet as baseline. TransNet is the backbone of

PGTransNet which does not contain any physical information, but is

a modified version of ViTDosovitskiy et al. (2020). Figures 5 and 6 give

the competitive model based on CNN and ConvLSTM, both the

prediction models have been trained with a batch size of 8 and

kernel size (2,2) or (2,2,2) by adaptive momentum (Adam) with an

initial learning rate of 0.001 for 30 epochs, and the learning rate is

adjusted using the ReduceLROnPlateau mode.

Besides, we use the following evaluation metrics to measure the

performance of different methods:

1. Root mean square error (RMSE); It is used to measure the

deviation of computed values concerning observed ones.

RMSE = o
N

k=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N �H �W o
H

h=1
o
W

w=1
(Ŷ k,h,w − Yk,h,w)

2

s
(5)

2. Anomaly correlation coefficient (ACC); It quantifies the

correlation between anomalies of predicted values and validation

values (ground truth):
Frontiers in Marine Science 07
ACC = o(Ŷ −Mean)(Y −Mean)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o(Ŷ −Mean)2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o (Ŷ −Mean)2

q (6)

3. Bias/Mean Bias. We employ Bias to gauge the positive and

negative deviations between grids, and Mean Bias to quantifies the

disparity between the spatial mean of the prediction and the spatial

mean of the ground truth.

Mean Bias =
1

N � C �H �W o
N

k=1
o
C

c=1
o
H

h=1
o
W

w=1
 

Ŷ −
1

N � C �H �W
  o
N

k=1
o
C

c=1
o
H

h=1
o
W

w=1
Y

(7)

For all metrics, we denote Ŷ and Y as the prediction and ground

truth, which have a shape of N � T � C � H �W, where N is the

number of test samples, C refers to the depth channel,H �W is the

spatial resolution.
3.3 Quantitative evaluation results

3.3.1 Overall performance
To comprehensively evaluate the performance of PGTransNet, we

utilize 12 consecutive months of historical data to forecast temperature

and salinity for the subsequent 12 months. We conducted ablation

experiments to perform a sensitivity analysis and evaluate the

effectiveness of each module in the model based on various validation

factors. Figure 7 presents the averaged RMSE and ACC over the

forecasting times of the baseline model alongside the augmented

model with progressively integrated physical information modules.

Figure 7 presents the performance of each model in terms of

RMSE and ACC. Specifically, TransNet is the modified version of ViT

as mentioned above, PGTransNet_PDO represents TransNet

augmented with combine loss of temperature, salinity and density,

and PDO long-term decadal variations embedding. PGTransNet_

NPGO further incorporates NPGO embedding on top of

PGTransNet_PDO. PGTransNet_PDO_Laplacian integrates

laplacian encodings on top of PGTransNet_PDO, and

PGTransNet_NPGO_Laplacian integrates laplacian encodings on

top of PGTransNet_NPGO. For brevity, we denote PGTransNet_

PDO, PGTransNet_NPGO, PGTransNet_PDO_Laplacian, and

PGTransNet_NPGO_Laplacian as PGTransNet1, PGTransNet2,

PGTransNet3, and PGTransNet4 in the diagram, respectively. All of

these models belong to the PGTransNet group.

The x-axis and y-axis denote the forecast time and the

corresponding forecasting RMSE/ACC, respectively. Lower RMSE

and higher ACC values indicate better model performance and

prediction accuracy. From Figure 7, it’s evident that the

PGTransNet group outperforms the CNN-based and ConvLSTM-

based models in both temperature and salinity forecasting.

Surprisingly, the ViT-based backbone TransNet, which lacks

incorporation of any physical laws, performs the worst. We observe

that while TransNet achieves an accuracy of 0.99 on the training set, it

yields an RMSE of 1.932 on the test set. Embedding decadal

variability and the thermodynamic equation into the model

significantly improves prediction accuracy on the test set by over
TABLE 2 Model parameters.

Hyperparameters Optimal Values

patch size (2 × 2)

batch size 1

learning rate 0.001

epochs 20

encoder/decoder layers 4

attention heads 4

l1,2,3 (0.5, 0.3, 0.2)
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40%. This highlights the robustness and generalization capabilities of

PGTransNet in forecasting. Moreover, ablation experiments

involving the incremental addition of PDO, NPGO, and laplacian

encodings reveal that all these physics-guided models achieve
Frontiers in Marine Science 08
comparable performance. The benefits of incorporating various

physical information and embedding the laplacian encodings are

evident in mitigating prediction biases in coastal and marginal sea

regions, and improving prediction accuracy in high-temperature
FIGURE 5

CNN based model.
FIGURE 6

ConvLSTM based model.
FIGURE 7

The PGTransNet performance on tropical Pacific forecasting, and its comparison against other ablation models. (A) RMSE of temperature; (B) RMSE
of salinity; (C) ACC of temperature; (D) ACC of salinity.
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areas at different vertical depths. For further details, refer to

Section 3.4.1.

Additionally, we present the average performance of the

aforementioned models across all test samples (averaged from

January 2020 to September 2023) in Table 3. It can be observed

that our physics-guided model outperforms the baseline model in

terms of temperature and salinity forecasting, and all models

achieve comparable performance.

3.3.2 Temperature/salinity profiles evaluation
To comprehensively assess the model’s forecasting ability in the

vertical direction, Figure 8 presents the average RMSE in vertical
Frontiers in Marine Science 09
temperature and salinity profiles for different models within the

upper 160 meters (at depths of 1, 20, 50, 80, 120, and 160

meters, latitude=0°).

Figure 8 illustrates that the physics-guided PGTransNet model

group outperforms the baseline model significantly. For salinity

prediction, PGTransNet4, which incorporates PDO, NPGO, and

laplacian positional encoding, notably performs better than the

others. Except for TransNet, the RMSE decreases with increasing

depth for other models. For temperature prediction, PGTransNet4

demonstrates the best performance overall. However, from the

temperature profile curve, the predictions at lead times 1 and 6 are

slightly inferior to the other models in the PGTransNet group at a
TABLE 3 Ablation experiment performance of PGTransNet.

T S

RMSE ACC Mean-Bias RMSE ACC Mean-Bias

ConvLSTM 1.028 0.946 -0.026 0.23 0.9397 -0.013

CNN 1.072 0.939 0.0149 0.246 0.930 -0.014

TransNet 1.932 0.884 0.082 0.486 0.881 -0.083

PGTransNet_PDO 0.8087 0.9803 -0.163 0.182 0.962 0.0015

PGTransNet_PDO_NPGO 0.816 0.9806 -0.2178 0.186 0.961 -0.0025

PGTransNet_PDO_Laplacian 0.82 0.980 -0.141 0.178 0.965 -0.030

PGTransNet_PDO_NPGO_Laplacian 0.805 0.981 -0.126 0.169 0.967 0.0068
FIGURE 8

The profiles of temperature and salinity RMSE above 160m for different models at lead time = (1, 6, 12). The reported RMSE is averaged from Jan.
2020 to Sep. 2023. (A) RMSE of temperature profile (lead time = 1); (B) RMSE of temperature profile (lead time = 6); (C) RMSE of temperature profile
(lead time = 12); (D) RMSE of salinity profile (lead time = 1); (E) RMSE of salinity profile (lead time = 6); (F) RMSE of salinity profile (lead time = 12).
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depth of 160m. Nonetheless, this model exhibits better forecasting

performance for sea surface temperature. As the depth increases, the

model’s forecasting accuracy for underwater temperature deteriorates,

leading to higher RMSE values. Besides, it is evident that for both

temperature and salinity profiles, the ViT-based TransNet exhibits the

largest RMSE, even worse than the CNN-based and ConvLSTM-

based models. This is attributed to the overfitting issue mentioned

earlier, leading to a deterioration in performance on the test set.
3.4 Cases study for visualization

3.4.1 Predictions and bias
Figures 9 and 10 visualizes the ground truth, predictions and bias

of these model for the temperature and salinity. The first column of

the graph represents the ground truth, displaying actual values. The

second column represents the predicted values of each ablation

model. Finally, the third column illustrates the bias between the

predicted values of each ablation model and the ground truth.

For sea surface temperature prediction, the graph illustrates that

all models effectively capture the large-scale distribution of sea surface

temperature in the tropical pacific region except TransNet. It is
Frontiers in Marine Science 10
obvious that all the models within the PGTransNet group can learn a

better distribution than CNN-based and ConvLSTM-based model.

Comparing the distribution of sea surface temperature ground truth

and predictions, PGTransNet4, which integrates PDO, NPGO, and

laplacian encodings, can better captures the high-temperature center

region with just a slight overestimation. PGTransNet2 exhibits lower

bias in regions with relatively lower temperatures. Additionally, from

the bias, it can be observed that PGTransNet4 has lower bias in the

gulf and nearshore areas. Regarding salinity prediction, all the models

demonstrate the capability to capture the large-scale distribution

characteristics in the tropical pacific region except TransNet. In

general, PGTransNet4 has the best performance.

3.4.2 ACC distribution
To clearly assess the model’s forecasting performance across

oceanic geographical space, we present the spatial distribution of

anomaly correlation coefficient (ACC). As shown in the Figure 11,

the physics-guided PGTransNet group exhibits higher forecasting

accuracy in coastal and marginal sea areas compared to the baseline

TransNet, CNN-based and ConvLSTM-based model. Whether only

adding PDO or further incorporating laplacian encoding on top of

it, the effect is quite satisfactory.
FIGURE 9

Example visualizations of temperature prediction by PGTransNets (Depth=1m, Jan. 2020).
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3.5 Parameter insensitivity analysis

During model training, we found that without adding any physical

information, inappropriate hyperparameter adjustments can easily lead

to overfitting or underfitting. For instance, when the patch size and

batch size are both small (e.g. p = 2×2, batchsize = 1), TransNet can

achieve an accuracy of 0.99 on the training set. However, the RMSE on

the test set is 1.932, indicating poor performance in predicting the

large-scale temperature distribution. In contrast, our model can achieve

comparable forecasting accuracy as long as the parameters are within a

reasonable range, regardless of how small they are set.
3.6 Physical consistency analysis

Under normal circumstances, the density of the upper ocean

mixed layer increases gradually with depth. The density of lower

seawater is greater than that of upper seawater, exhibiting amonotonic

behavior. Therefore, based on the TEOS-10 thermodynamic equation,

we calculate the corresponding ocean density values from the

temperature and salinity data predicted by the model. Figure 12

present the density profiles mean values for the entire study area in

January 2020, under the parameter settings described earlier, the
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densities of all models satisfy the monotonicity condition. However,

during the training and parameter tuning process, we find that

although the backbone model TransNet performs well on the

training set, its performance on the test dataset is poor, under

certain parameter conditions (e.g. batchsize = 2,patchsize = 2 × 3),

there are occasional instances of density values deviating abnormally,

as indicated by the solid brown line the Figure 12.
3.7 Generality analysis

To further analyze the generalization capability of the model, we

conduct temperature and salinity forecasting for two localized

regions at the Earth’s northern and southern extremes. Region 1:

part of the Arctic Ocean, with a latitude range of [66.5°N, 89.5°N]

and a longitude range of [1°E, 40°E]. Region 2: latitude range [29°S,

69°S] and longitude range [25°W, 85°W]. Region 1 is selected to

assess the effect of the model on the prediction of ocean temperature

and salinity in the polar region. Region 2 is chosen because its

latitude spans high, medium, and low latitudes, and geographically,

it encompasses parts of South America, the Antarctic Peninsula,

and the South Shetland Islands. This ensures that the study area

includes various complex spatial topographical variations in ocean
FIGURE 10

Example visualizations of salinity prediction by PGTransNets (Depth=1m, Jan. 2020).
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temperature, allowing for a more comprehensive evaluation of the

proposed model’s capabilities. Figure 13 presents the performance

of sea surface temperature forecasting for Region 1. The distribution

is similar to that shown in Figure 9. From the figure, it is evident

that the PGTransNet_PDO model outperforms other models,

indicating that our proposed method achieves superior

forecasting performance even in polar regions.

Figure 14 shows the sea surface temperature forecasting results for

Region 2 during spring (March). We can see from the picture that the
Frontiers in Marine Science 12
overall bias of the ConvLSTM and CNN models is significantly higher

than that of PGTransNet_PDO, especially in coastal and nearshore

areas. The biases of the two baseline models are significantly higher,

possibly because the ocean environment in coastal and nearshore

regions is heavily influenced by topography. Additionally, at the

boundary between land and sea, geographical features such as ocean

currents and tides affect the movement of water bodies and

temperature distribution, thereby increasing the complexity of

forecasting. In contrast, PGTransNet_PDO exhibits a lower bias in
FIGURE 11

Distributions of the ACCs among all models calculated between analyzed and predicted fields during Jan. 2020 to Sep. 2023.
FIGURE 12

Density profiles of varying algorithms on Jan. 2020 in tropical pacific.
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coastal and nearshore areas, indicating that PGTransNet_PDO

demonstrates superior forecasting performance and greater

model robustness.
4 Conclusions

In this paper, we propose a novel physics-guided spatio-temporal

self-attention hybrid network PGTransNet for temperature and salinity

jointly forecasting in the Tropical Pacific. Compared with the

benchmark model without physical knowledge, the PGTransNet

group can obtain higher prediction accuracy. Extensive experiments

and visualizations show that our model is insensitive to

hyperparameter tuning, ensuring both better generalization and

physical consistency. Moreover, as observed from the spatial
Frontiers in Marine Science 13
distribution of anomaly correlation coefficient, the model exhibits

higher forecasting accuracy for coastal and marginal sea regions.

As for the output solution space restriction, it confine the

temperature-salinity outputs within a specific range. Since the

TEOS-10 provides a broad range of constraint values, which are

generally applicable to the outputs, they do not significantly affect

the model results. Subsequent refinements of the constraint values

can be made based on specific circumstances.

From the Figures 9 and 10, it is evident that high biases occur in the

central equatorial Pacific region. We know that this anomalous area

aligns with wind-driven circulation. Ocean circulation is influenced by

wind stress, heat flux, and water flux acting together, with different

factors dominating in different scenarios. In the future, we will

incorporate sea surface zonal and meridional wind stress as input

features, and embedding ocean heat flux information and other
FIGURE 13

Generality analysis: example visualizations of temperature prediction by CNN, ConvLSTM ans PGTransNet_PDO in Region 1 (Depth=1m, Jan. 2020).
FIGURE 14

Generality analysis: example visualizations of temperature prediction by CNN, ConvLSTM ans PGTransNet_PDO in Region 2 (Depth=1m, Mar. 2020).
frontiersin.org

https://doi.org/10.3389/fmars.2024.1477710
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wu et al. 10.3389/fmars.2024.1477710
relevant data into the model to guide model training and improve

predictions in anomalous marine areas.
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