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Full-grid bathymetry estimation
in the numerical simulation of 8
tidal constituents using an
ensemble adjustment Kalman
filter-smoothing scheme
Haowen Wu1,2, Wei Li1,2,3*, Guijun Han1,2*, Lige Cao1,2,
Xudong Cui1,2, Kangzhuang Liang3,4, Gongfu Zhou1,2

and Qingyu Zheng1,2

1School of Marine Science and Technology, Tianjin University, Tianjin, China, 2Tianjin Key Laboratory
for Marine Environmental Research and Service, Tianjin, China, 3Tianjin Key Laboratory for Oceanic
Meteorology, Tianjin, China, 4Tianjin Institute of Meteorological Science, Tianjin, China
The spatially varying geographic-parameters introduce significant uncertainty

into the oceanmodel. Due to the impracticality of manually tuning spatial varying

parameters, data assimilation methods are widely used for geographic-

parameter optimization (GPO). Practically, the limited observations do not

contain enough information to perform GPO directly on the entire grid.

Therefore, techniques are required to reduce the complexity of the

parameters. A full-grid GPO scheme based on the ensemble adjustment

Kalman filter (EAKF) is developed. Via smoothing the spatial distribution of

posterior parameter members, the EAKF-smoothing (EAKF-S) introduces

additional spatial correlations among parameters. Meanwhile, the small-scale

correlation between the state and the parameters, which exhibit strong pseudo-

correlations, is filtered out. A tide model of the Bohai Sea and Yellow Sea,

considering 8 principal tidal constituents. is constructed using the Princeton

Ocean Model with the generalized coordinate system (POMgcs). The EAKF-S is

employed for optimizing the full-grid bathymetry. In twin experiment, based on

idealized water level observations, EAKF-S effectively reduced model errors and

approximately inverted the “true” bathymetry. After GPO, the lowest mean

absolute error of the parameter ensemble is 0.83 m. A series of practical GPO

experiments based on synthetic water level observations calculated from

NAO.99Jb data are performed. First, the improvement of EAKF-S in accuracy
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and efficiency over standard EAKF is proven using an M2 tide model. After that, a

practical experiment on an 8 constituents tide model is performed. The results

show that the forecasting performance of all 8 constituents is improved after

GPO, indicating the efficacy of EAKF-S.
KEYWORDS

EAKF-S, bathymetry estimation, geographic-parameter optimization, Bohai and Yellow
Seas, tide
1 Introduction

Numerical models are the primary means for conducting ocean

forecasting and reanalysis. Parameters, such as bathymetry, bottom

friction, and open boundary conditions, have a significant impact

on the accuracy of the model. By introducing observations into

numerical models, data assimilation (DA) methods—including

four-dimensional variational data assimilation (4D-Var; Courtier

and Talagrand, 1987; Talagrand and Courtier, 1987; Rabier et al.,

2000; Stammer et al., 2002), ensemble Kalman filter (EnKF;

Evensen, 1994, Evensen, 2004) and their derivative methods—

allow for the optimization of model parameters (Panchang and

O’Brien, 1989; Smedstad and O’Brien, 1991; Anderson, 2001; Aksoy

et al., 2006). Geographic-parameter optimization (GPO) is one of

the concerns in parameter optimization. Currently, there have been

many studies on GPO based on DA methods (Lardner et al., 1993;

Zhang and Lu, 2008; Zhang et al., 2011; Wu et al., 2012; Guo et al.,

2017; Liang et al., 2023).

Bathymetry is one of the fundamental geographic-dependent

parameters in ocean models. Due to limitations in observational

technology, environmental factors, and other aspects, current

bathymetric datasets still contain certain errors (Li et al., 2023).

In tide simulation, bathymetry significantly affects all state variables:

water level, eastward and northward current velocities. This means

that there is a strong correlation between bathymetry and both

water levels and current. Based on observations of water levels or

current velocities, the inversion of bathymetry can be achieved

through the correlations between bathymetry and state variables

revealed by the model. The key challenge of GPO for bathymetry

lies in the vast number of parameters to be estimated. The ideal

quantity of bathymetry parameters should match the number of 2-

dimensional grid points. As the number of parameters increases, the

uncertainty of the model will rapidly increase. Practically, the

available observational information usually does not adequately

match such finely tuned spatial parameter settings (Das and

Lardner, 1991). This makes it difficult to achieve a deterministic

solution to the optimization problem. To address the discrepancy
02
between the large number of bathymetry parameters and the

limited observations, researchers have employed various

dimensionality reduction methods to meet practical requirements:
1. Partitioning the computational domain into blocks, where

parameters within each block are considered constants

(Das and Lardner, 1991; Lardner et al., 1993; Han

et al., 2006).

2. Selecting independent parameter points within the

computational domain for optimization. Parameter values

at other grid points are determined by interpolation

(Heemink et al., 2002).

3. Incorporating spatial correlation information of

parameters into the background error covariance matrix.

For instance, Wilson et al., 2010; Wilson and Özkan-

Haller2012; Wilson et al, 2014 established a spatial

correlation function based on horizontal length scales and

vertical variance. By defining the expected shape and scale

of bathymetric features, additional information is

introduced into the background error covariance. The

full-grid bathymetry estimation of the EnKF is

then achieved.
It is noting that approaches (1), (2) mentioned above require

tailored treatments for specific problems. Meanwhile, despite being

proficient in achieving full-grid GPO, approach (3) is constrained

by static spatial correlations among parameters. As a result, the

specific spatial patterns are predetermined, imposing limitations on

the optimization results.

Another challenge in bathymetry estimation for tide models

arises from the long-time scale evolutionary processes of the tide.

To obtain the globally optimized parameters, DA methods requires

sufficient observations over a long duration to capture long-period

features. 4D-Var establishes the correlation between state variables

and parameters based on the adjoint model. Via the minimization

time window aligned with the duration of oceanic processes, 4D-Var

can fully capture the temporal features. However, 4D-Var requires
frontiersin.org
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numerous iterations of model integration. Moreover, the extensive

amounts of both model and observational data pose challenges to

computational memory. In contrast, the ensemble-based DA

methods, such as EnKF, store the information of the model and

observations within the ensemble distribution. As the model

integrating, the ensemble dynamically determines the correlations

between state variables and parameters. Although ensemble-based

DA methods don’t retain all temporal information as 4D-Var does,

they avoid the issue of memory limitations. Through parallelization,

the computation time of ensemble-based DA methods can also be

greatly reduced as well. Hence, ensemble-based DA methods are

suitable for optimizing parameters over long periods. However,

employing ensemble-based DA for parameter optimization requires

setting an ensemble size at least equal to the number of parameters.

Conducting parameter optimization on the entire grid directly is

impractical. Therefore, it remains necessary to employ appropriate

techniques to reduce the required ensemble size.

In this paper, an GPO scheme based on ensemble adjustment

Kalman filter (EAKF; Anderson, 2001, Anderson, 2003) is developed.

By incorporating a spatial smoothing term after the standard EAKF

procedure, this EAKF-smoothing (EAKF-S) scheme enables full-grid

GPO with a limited number of ensemble members. This enhancement

not only improves the robustness of the EAKF, but also broadens its

applicability to scenarios with limited observations. Additionally, the

smoothing term effectively filters out small-scale correlations between

observations and the background. Then, the EAKF can focus solely on

the large and medium-scale patterns of observations. As a result, the

complexity of GPO is reduced. The Princeton Ocean Model with a

generalized coordinate system (POMgcs; Blumberg and Mellor, 1987;

Ezer and Mellor, 2004) was used to conduct GPO experiments for

bathymetry. A tide model for the Bohai Sea and Yellow Sea, including

4 semi-diurnal tidal constituents (M2, S2, N2 and K2), and 4 diurnal

tidal constituents (K1, O1, P1 andQ1), was developed. The effectiveness

and performance of EAKF-S were validated through both idealized

twin experiment and a series of practical experiments. Water levels

from POMgcs and those generated from the 1/12° tidal harmonic

constants dataset NAO.99Jb (Matsumoto et al., 2000; https://

www.miz.nao.ac.jp/staffs/nao99/index_En.html) were used as

observations in twin and practical experiments, respectively.

The remainder of this paper is organized as follows: Section 2

introduces the POMgcs model and configurations. In Section 3, the

formulations of the EAKF-S and the procedure of GPO experiments

are described in detail. The twin experiment setups and the results

are introduced in Section 4. The practical experiments based on

NAO.99Jb observations are performed in Section 5. The last section

gives a summary and discussion of GPO experiments.
2 The numerical model

2.1 Governing equations of POMgcs

Here, the external mode of the POMgcs is used to build the

Bohai Sea and Yellow Sea tide model (referred to as “BYM”). The

attributes of POMgcs model include a mixed coordinate system that
Frontiers in Marine Science 03
makes the z-coordinate and sigma-coordinate compatible. The

Arakawa C scheme is implemented for the horizontal grid, while

the leap-frog scheme is used for time differencing. The free surface

and split time step method is adopted. The two-dimensional

external mode uses a short time step for a high-accuracy surface

simulation. Meanwhile, the three-dimensional internal mode uses a

longer time step to reduce the computational cost. In this paper, the

vertical procedure is not considered. The governing equations are as

follows:

∂ z
∂ t

+
∂UD
∂ x

+
∂VD
∂ y

= 0 (1)
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(3)

where t is the model time step; x   and y are the conventional

cartesian coordinates; U and V are the vertically averaged velocity

components; D = H + z, where the z is the water level, H is the

bathymetry; f is the Coriolis frequency, which takes the local value;

ɡ is the gravitational acceleration; ra and rw are the densities of the

air and water, respectively; Cd is the wind drag coefficient; Wx and

Wy are the horizonal wind velocity components; Cb is the coefficient

of bottom friction; AM is the horizontal eddy viscosity.
2.2 Model settings

As shown in Figure 1, the model area extends from 32°N to

42°N in latitude and from 117°E to 127.2°E in longitude. In this

continental shelf sea, tides are the predominant hydrodynamic

influence in the model area. The gridded bathymetry is derived
FIGURE 1

Bathymetry (m) of BYM based on ETOPO5 data.
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through interpolation of ETOPO5 bathymetry datasets

(https://www.ncei.noaa.gov/products/etopo-global-relief-

model). To prevent the occurrence of dry cells (D < 0), the model

enforces a minimum bathymetry of 5 m. The spatial resolution is 1/

30° in both the east and north directions, and the integration time

step is 12 s, which satisfies the Courant-Friedrichs-Lewy (CFL)

condition (Courant et al., 1967) and is sufficient to simulate all 8

tidal constituents. A static initial condition with zero sea surface

height and current velocity is used to spin up the model. The

southern open boundary condition is the tide height, which is

specified by:

z =on=1
ntides fnAn cos (wnt + V0n + un − ɡn), (4)

where ntides is the number of tidal constituents; An and ɡn are

the amplitude and phase lag of the nth tidal constituent,

respectively, which derived from NAO.99Jb datasets; wn is the

frequency of the nth tidal constituent; V0n is astronomical phase

originating from the tide-generating potential of the nth tidal

constituent; fn and un are the nodal factor and correction angle of

the nth tidal constituent, respectively.

Fan et al. (2019) demonstrated that the value of bottom friction

coefficient in the east China shelf seas varies from 0.001 to 0.003.

Therefore, the bottom friction coefficient of BYM is set to a constant

value of 0.001. Additionally, forcing terms from the sea surface,

such as wind stress, heat flux, and precipitation, are not considered

in the BYM.
3 Methodology

3.1 Standard ensemble adjustment
Kalman filter

In this paper, a deterministic EAKF based on the least squares

approach is employed (Anderson and Anderson, 2001; Tippett

et al., 2003). The implementation consists of 2 steps:

For a single observation yo, the adjustments of the kth ensemble

member of yo is first computed by:

Dyok =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(so)2

(so)2 + (sp
y)2

s
− 1

 !
ypk − �yp
� �

+
(sp

y)2

(so)2 + (sp
y)2

yo − �ypð Þ, (5)

where so and sp
y denote the standard deviation of observational

error and prior standard deviation of yo, respectively; ypk is the kth

prior ensemble member of yo, which is obtained by spatial

interpolation of the prior state variable; �yp denotes the ensemble

mean of ypk .

Next, based on the correlations between yk and relevant state

variables or parameters, the observational increment is projected as

follows:

xak = xpk + rx,y
covpx,y
(sp

y)2
Dyok , (6)
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where xak and xpk denote the kth posterior and prior ensemble

member of state variable or parameter, respectively; covpx,y   is the

covariance between the state variable or parameter and the

observation; rx,y is the localization factor, which is determined by

the Gaspari-Cohn function (Gaspari and Cohn, 1999):

rx,y =

− 1
4 (

b
a )

5 + 1
2 (

b
a )

4 + 5
8 (

b
a )

3 − 5
3 (

b
a )

2 + 1; 0 ≤ b ≤ a

1
12 (

b
a )

5 − 1
2 (

b
a )

4 + 5
8 (

b
a )

3 + 5
3 (

b
a )

2 − 5( b
a ) + 4 − 2

3 (
b
a )

−1, a < b ≤ 2a

0,   b > 2a

8>><>>: (7)

where a represents the empirically specified impact radius; b

denotes the spatial distance between yo and xk.

EAKF measures the posterior uncertainty by standard

deviation or ensemble spread. As EAKF progresses, the

posterior uncertainty consistently becomes smaller than the

prior uncertainty. In other words, the ensemble spread gradually

decreases. The model biases introduce an underestimation of the

prior state uncertainty, leading to an overestimation of model

accuracy. Consequently, the effect of the assimilation will

progressively weaken and may even lead to filter divergence.

Therefore, state and parameter inflation need to be introduced

before the EAKF. For state variables, a static multiplicative

inflation scheme is applied. A constant inflation factor is

determined to inflate perturbations of each ensemble member

relative to the ensemble mean. As for parameters, a conditional

static inflation scheme is introduced (Aksoy et al., 2006; Tong and

Xue, 2008). For the ensemble of a single parameter, the inflation is

calculated as follows:

fPm = �P + max (1,
a0s0

st
)(Pm − �P), (8)

where Pm and fPm denote the parameter ensemble before and

after inflation, respectively; �P is the mean of Pm; a0 is the

empirically set inflation factor; s0 and st are the standard

deviation of Pm at the initial time step and the tth time step.
3.2 Framework of EAKF-smoothing

As illustrated by Equation 5, the EAKF linearly adjusts yp based

on the mean and variance of prior ensemble. Subsequently, via the

local least squares fitting outlined in Equation 6, the adjustment is

projected onto the gridded state variables and parameters (Zhang

and Lu, 2008). Both steps ignore the higher-order nonlinear

correlations of the ensemble. Hence, due to the strong

nonlinearity correlation between parameters and state variables,

certain errors arise in the adjustment by EAKF. Moreover,

constrained by the ensemble size and the spatial scale of

observations, pseudo-correlations unavoidably arise in the

covariance between the background and observations. Under the

conditions of full-grid parameter optimization, the projection of the

observational increments affects all grid points. Therefore, the scale

of forementioned error signals can reach the level of model

resolution. Consequently, although observations may indeed

contain small spatial scale information, it is hard for EAKF to

accurately identify them. Therefore, filtering out small-scale
frontiersin.org
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information, relying solely on EAKF adjustments at relatively large

scales should yield better effects.

After conducting parameter optimization with the standard

EAKF, both large and small spatial scale information are projected

onto the posterior parameter. Applying the smoothing term

individually to each parameter member can effectively remove

small scale information. To control the smoothing scale, we adopt

the cost function proposed by Li et al, 2008; Li et al, 2013 for the

multigrid analysis (MGA) method as the smoothing term. For a

one-dimensional with M homogeneous distributed grid points, the

smoothing term can be described as:

PTSP =oi=2
M−1(Pi−1 − 2 · Pi + Pi+1)

2, (9)

Where P is the parameter with dimension M � 1; S is the

smoothing matrix with dimension M �M.

Equation 9 represents the square of the numerator of the second

derivative at the ith point, which characterizes the smoothness of

the grid point. However, if Equation 9 is used directly as the cost

function for P, the optimal solution for the smoothing term would

inevitably be a straight line. To constrain the smoothing scale, we

draw on the form of the MGA observation term and incorporate the

parameters before smoothing (Pb) into the cost function:

J =
1
2
PTSP +

1
2
(P − Pb)TO−1(P − Pb) (10)

O = l2 · (R ∘R), (11)

Where O represents the background weight matrix, which is

determined by a smoothing coefficient l and the confidence matrix

R of the parameters. Where l is empirically specified to prevent

over-smoothing or under-smoothing, as l approaches 0, the

smoothing term will have no effect, while as l approaches

infinity, the smoothing term will cause the P to converge to a

uniform vector (Supplementary Figure S4). Meanwhile, R is defined

based on the sensitivity of the parameters.

Under the same observational increment, the EAKF adjusts

parameters differently due to their sensitivities to the observational

state variable. After scaling the observational increment based on

sensitivity information, parameters with lower sensitivity will have

larger adjustments. If parameters of all grids are smoothed with

equal weights, the sensitivity information will also be penalized by

the smoothing term. By introducing sensitivity information into the

O   matrix, the smoothing term can account for the scaling

adjustments. Given the infeasibility of accurately estimating the

sensitivity of geographic-dependent parameters, we assume that

these parameters are independent to each other. Meanwhile, the

time-varying characteristics of parameter sensitivity are ignored. As

a result, R is represented as a static and diagonal matrix. For the full-

grid bathymetry estimation of BYM, we assume that the BYM using

the ETOPO5 data, without perturbation, is the unbiased model. The

parameter sensitivity is approximately determined by the

following scheme.

First, generate the perturbated bathymetry ensemble member:
Frontiers in Marine Science 05
1. Independent points are selected every 10 grid points in the

east and north directions. Each selected point is assigned a

Gaussian random number with a mean of 0 and a standard

deviation of 10% of the local bathymetry to generate a

spatially coarsened perturbation.

2. Using the coarsened perturbation, the full-grid bathymetry

perturbat ion distr ibut ion is obtained through

bilinear interpolation.

3. Combine the perturbation distribution with the ETOPO5

bathymetry data to genera te the per turbated

bathymetry member.
The approach above guarantees significant state differences

while preventing the occurrence of dry cells. 50 bathymetry

members are generated, each forecasting for 35 days. The first 5

days are for spin-up, the subsequent 30 days of the forecast water

level are saved to estimate the sensitivity. The root mean square

error (RMSE) of the water level between the ensemble members and

the unbiased model is calculated to quantify parameter sensitivity,

for the tth hour, the RMSE of the grid point (i, j) is:

RMSE(i, j, t) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oM

k=1(zk(i, j) − zunbiased(i, j))2

M

s
, (12)

where M is the number of the ensemble members; zk and

zunbiased are the water level of the kth ensemble member and the

unbiased model, respectively.

Then, to filter out the temporal variation in parameter

sensitivity and for better quantification of parameter sensitivity in

the cost function, the RMSE is time-averaged and normalized:

TRMSE(i, j) = o
N
t=1RMSE(i, j, t)

N
(13)

NRMSE(i, j) =
TRMSE(i, j) − TRMSEmin

TRMSEmax − TRMSEmin
, (14)

where TRMSE and NRMSE are the time-averaged RMSE and

normalized TRMSE, respectively; N is the total number of

integrated hours; TRMSEmax and TRMSEmin represent the

maximum and minimum of TRMSE values among all grid

points, respectively.

Here, the static confidence matrix R   can be generated with

the NRMSE, for the bathymetry estimation of BYM, the

confidence of single parameter on the grid point (i, j) can be

calculated as follows:

R(i, j) = 0:05� (H(i, j) − 5)� (1 − NRMSE(i, j)) + 0:5, (15)

where the coefficient 5 is the minimum bathymetry; the

coefficient 0.5 guarantees that R(i, j) is greater than 0.5 and does

not reach 0; the coefficient 0.05 is a manually defined factor to adjust

the magnitudes of (P − Pb)TO−1(P − Pb) and PTSP, aiming to make

them comparable in scale.

The spatial distribution of R displays in Supplementary Figure

S2. For a parameter with low sensitivity, the NRMSE is smaller. The
frontiersin.org
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observational increment is relatively amplified by the sensitivity

information. Hence, a larger uncertainty should be assigned to the

smoothing term. Additionally, the value of the RMSE is

proportional to the given parameter error. Therefore, in areas

with greater bathymetry, the value of NRMSE is also larger. To

remove the impact of bathymetry, the H(i, j) is considered in the

Equation 14.

As can be seen from Equations 12–15, the R matrix proposed in

this paper is only a very rough estimate. Yet, there are still

significant improvements in the experiments described in

Section 5.1.

The limited-memory quasi-Newton method (L-BFGS) is

employed to calculate the minimization of Equation 10, the

gradient with respect to P is expressed as:

∇J = (S +O−1)P −O−1Pb, (16)

Figure 2 shows the brief procedure of the EAKF-S scheme from

time t of observation to the next time step t + 1. During the linear

projection of the observational increments, the EAKF adjusts both

state variables and parameters based on their correlation with the

observed state variables. As shown in Figure 2, after applying the

smoothing term, the model forecasting restarts based on the

smoothed parameters. The correlation between parameters and

state variables can still be accurately estimated by the ensemble

distribution. Therefore, the smoothing term can be well embedded

into the EAKF algorithm.
3.3 Settings of bathymetry
estimation experiments

Following the scheme in Han et al. (2006), we perform the GPO

experiments on the bathymetry increment parameters (BIP). For

the nth ensemble member, the total bathymetry on the grid point

(i, j) is calculated as follows:

Hn(i, j) = HETOPO5(i, j) + DHn(i, j), (17)
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where the DHn denotes the BIP; HETOPO5 is the bathymetry

obtained from the ETOPO5 dataset.

By introducing the BIP, the details of the ETOPO5 dataset can

be well preserved during the smoothing of parameters. The BIPs

that are on the grid points where the bathymetry of ETOPO5

greater than 5m were chosen. In the following GPO experiments, a

total of 38440 BIPs, representing the number of parameters at the

chosen grid points, were adjusted. We set 50 ensemble members for

the BIPs. The perturbation of the bathymetry ensemble is generated

using Gaussian random numbers, following the scheme of

generating the perturbated bathymetry in Section 3.2.

Furthermore, after generating the BIP ensemble, the smoothing

term was applied to the ensemble members before forecasting. As

demonstrated in the experiments detailed in Section 5.1, smoothing

the initial BIP ensemble significantly accelerates the convergence of

GPO and improves the stability of the EAKF-S. Based on a series of

tests with impact radius ranging from 5 to 20 grids, state and BIP

inflation factors from 1.0 to 1.1, by comparing the state RMSE, we

set the impact radius a (Equation 7) to Equation 15 grids, and both

the state and BIP inflation factors were chosen as 1.05 in

all experiments.

As an unconstrained method, EAKF can’t handle cases where

parameters must stay within a reasonable range. For example, the BIP

in this study must satisfy the condition D > 0. Such problem can be

resolved by manually adjust ensemble mean, when D(i, j) < 0, the

BIP ensemble will be adjusted according to:

DH(i, j) = DHa(i, j) −min (DHa(i, j)) − 1:5, (18)

where DHa(i, j) represents the BIP ensemble on grid point (i, j)

after EAKF-S. Here, the members of DH(i, j) are greater or equal to

-1.5 m. Because of HETOPO5(i, j) > 5m, the minimum bathymetry

among ensemble members was constrained to be greater than 3.5

m, while the original distribution features of the ensemble are

well preserved.

Due to the smoothing term, grid points are more likely to dry

out within certain small areas. The overall tide pattern was not

significantly impacted. Moreover, the parameter ensemble at the
FIGURE 2

The flowchart of EAKF-S from time t of observation to the next forecast time step.
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adjusted grid points still conforms to the characteristics of the

original BIP distribution. The spin-up process of assimilation

remains steady. After the spin-up phase, the EAKF forms a

more accurate parameter-state correlation. Hence, the

parameters deviating from the reasonable range should have

disappeared or become very few. Using Equation 18 to adjust

the remaining few parameters won’t significantly affect the

accuracy of the GPO.

Note that the data assimilation scheme for enhancive parameter

correction (DAEPC) has been applied to facilitate the performance

of EAKF on GPO (Zhang et al., 2012). DAEPC starts parameter

optimization after adjusting the state variables only (called state

estimation only, SEO) until the data assimilation reaches a “quasi-

equilibrium” stage. As the state error is relatively small, the

parameter error, or the covariance between parameter and

observation becomes the dominant signal. The effect of parameter

optimization will be enhanced compared to performing state

estimation and parameter optimization simultaneously.

In addition, the leap-frog time-stepping schemes in the POMgcs

model generate the state of next time step by both current and the last

time step. It will introduce significant inconsistency between the two

steps if only the state of current time step is adjusted by the EAKF.

Via project the observational increment on both time steps of the

state variables, EAKF naturally allows for the matching between the 2

time steps (Zhang et al., 2004). This adjustment scheme was used for

both water level and current during the experiments.
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The steps for GPO experiments of EAKF-S are described below

in Figure 3, followed by detailed explanations:

Step 1: Generate the coarsened BIP ensemble by the Gaussian

random numbers.

Step 2: Interpolate the coarsened BIPs to obtain the full-grid

BIP ensemble.

Step 3: Smooth the BIP members to get the initial BIP ensemble

for the GPO experiments.

Step 4: Spin-up the BYM for 5 days to stabilize the

model integration.

Step 5: When reached an observation time, the EAKF-S is

applied to adjust the prior state variables and parameters based

on DAEPC.

Step 6: After the EAKF-S, continue the model integration with

the posterior state and BIPs.

Step 7: Repeat the Step 5 and Step 6 until the last time step.
4 The twin experiment

4.1 Experiment settings

In this section, the twin experiment of bathymetry estimation is

conducted to evaluate the performance of EAKF-S. The 8 main tidal

constituents of Bohai Sea and Yellow Sea are included in the BYM.

The simulated water level, based on the ETOPO5 dataset as
FIGURE 3

Flow chart of GPO experiments based on EAKF-S.
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bathymetry, is considered as the “true” water level. The hourly, 1/

10° observations are directly sampled from the “true” water level

data. According to the accuracy of bathymetry datasets, we assume

an error of approximately 10% of the local bathymetry. 0.1 times the

model bathymetry was smoothed using Equation 10, with a l of 1

and the elements of R setting to 0.01 times the model bathymetry.

Then, add the smoothed 0.1 times bathymetry to the ETOPO5

bathymetry (HETOPO5) to create the biased BYM.

As the “true” water level is assimilated in the twin experiment,

the standard deviation of observational error was set to a small

constant of 0.05 m. Notably, the R is set differently in Section 3.2

compared to when generating the biased BYM. As shown in

Supplementary Figure S2, the range of elements in R is

approximately 0 to 4.5, while the range of 0.01 times model

bathymetry is about 0 to 1. Since the S in Equation 10 is static, in

order to ensure that the smoothing term during assimilation and

when generating the prior error are roughly consistent, l is set to

0.2 when generating the biased model and performing EAKF-S.
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Based on the period of BYM and the computation time, the twin

experiment was set to last 15.6 days. During the first 14 hours, only

state estimation is performed, followed by jointly state and BIP

estimation for the next 15 days.
4.2 Results

The time series of spatially averaged water level RMSE of the

prior ensemble is displayed in Figure 4. The blue line represents the

SEO while the red line is the GPO. According to the RMSE time

series of SEO, we consider that the water level has reached the

“quasi-equilibrium” state after the 14th hour. Therefore, in

subsequent experiments, we set the duration of state estimation to

14 h. As shown in the figure, when state estimation was performed,

the RMSE decreased from 0.1 m to 0.04 m. After the 14th hour,

when the GPO started, the RMSE of water level rapidly decreased to

0.01 m within 12 h. The time series of RMSE then stabilized in the
FIGURE 5

The bathymetry of (A) the biased BYM, (B) the ETOPO5 bathymetry and (C) the ensemble mean of BIPs after GPO.
FIGURE 4

Time series of spatially averaged RMSE of prior water level, the red line is the GPO, the blue line is SEO, and the red dashed line represents the start
time of GPO.
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next 14.5 days, demonstrating the significant effectiveness of EAKF-

S on the improvement of state error.

To evaluate the feasibility of EAKF-S in bathymetry inversion,

the spatial distribution of Mean Absolute Error (MAE) of BIP

members is calculated. Figure 5 shows the prior, “true”, and the

posterior bathymetry, respectively. As shown in the figure,

Figure 5C, which shows the ensemble mean of the posterior

bathymetry, is significantly closer to the “true” bathymetry

compared to the prior (Figure 5A). Figure 6 displays the spatial

distribution of the prior BIP error (the smoothed 0.1-times-model

bathymetry), and the − DHn of the posterior ensemble. The

ensemble mean, The best member (with the minimum MAE) and

the worst member (with the maximum MAE) are shown in

Figures 6B–D, respectively. When − DHn and the prior error are

consistent, it indicates that the posterior bathymetry is exactly the

“true” bathymetry. We can see Figure 6B closely resembles

Figure 6A. The spatial and time averaged RMSE of the forecast

water level based on Figure 6B is 1.28 cm. An ensemble size of 50

suffices to capture the uncertainty of the prior bathymetry error.

This can also be attributed to the well-chosen l, which

approximately aligns the smoothness of the prior error with the

posterior BIPs. The initial knowledge of the parameter enables a

better representation of the finer spatial features of the prior error.
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Conversely, even if the smoothing term is not set very precisely,

EAKF-S can still achieve good results, demonstrating the robustness

of the method. Figuress 6C, D illustrate the maximum differences

among the BIP members. The MAE between Figure 6C and the

prior error is 0.83 m, which is slightly larger than Figure 6A.

Meanwhile, although Figure 6D has a relatively higher MAE of

2.03 m, its spatial and time-averaged RMSE remains a small value of

3.50 cm. On one hand, it indicates that diverse shapes of BIPs may

all generate results close to the “true” water level. On the other hand,

it also implies that the correlation between bathymetry and water

level operates on a relatively large spatial scale.

Conduct model integration using the BIPs ensemble after

assimilation, and perform harmonic analysis based on the water

levels from the ensemble mean to further evaluate the effects of

bathymetry estimation. Table 1 lists the spatially averaged MAE and

bias of harmonic constants. The bold font represents the smaller

MAE or smaller absolute value of bias. It is easy to notice that all

constituents improved except for the bias of Q1 constituent. The

prior spatially averaged bias of Q1 is smaller than 0.001, which is

due to the discrepancy of amphidromic points. The spatial

averaging causes the large deviations near the amphidromic

points. Coincidentally, the deviations canceled out the difference

in other areas. As a result, the averaged bias becomes close to 0.
FIGURE 6

(A) The spatial distribution of prior bathymetry error (m), (B) the ensemble mean of − DHn, (C, D) are the ensemble member with the minimum MAE
and the maximum MAE between- − DHn and prior bathymetry error, respectively.
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5 Practical experiments based
on NAO.99Jb

5.1 Experiments based on M2 tide model

5.1.1 Experiment settings
In this section, the BYM is simplified to consider only the M2

constituent. The performance of EAKF-S in practical GPO

experiments is discussed. The influence of the smoothing term

and the confidence matrix (R) are explained through 5 experiments,

which are listed in Table 2. Note that the l is set to 1 based on the

results of a series of experiments. EXP1 — EXP5 are divided based

on whether the initial BIPs are smoothed, whether EAKF-S or

standard EAKF is applied, and whether a constant elements

confidence matrix (R) is used. Note that the values of constant

elements are all equal to the average of the spatially varying R.

Following the duration of the experiment with the longest spin-

up time (EXP4), the GPO experiments mentioned above are set to

last 8 days. Since NAO.99Jb (1/12° of spatial resolution) can
Frontiers in Marine Science 10
generate water level data for any time and location within the

coverage area, to ensure consistency between the twin experiment

and practical experiments, the observation resolution was set to

hourly and 1/10°. The NAO.99Jb data of the M2 constituent was

used in this section. Due to the minimum bathymetry being set to 5

m, the BYM does not accurately represent the bathymetry in

shallow regions. The simulation accuracy in these areas is
TABLE 1 Spatially averaged MAE and bias of amplitude (A) and phase lag (g) for each constituents CTL compared with “true” state.

Constituents

CTL-TRUE GPO-TRUE

MAE Bias MAE Bias

A(m) g(°) A (m) g (°) A (m) g (°) A (m) g (°)

M2 0.063 13.68 0.043 -12.80 0.000 0.23 0.000 0.20

N2 0.012 14.07 0.009 -13.17 0.000 1.04 0.000 0.30

S2 0.027 15.44 0.002 -14.06 0.000 0.32 0.000 0.06

K2 0.007 9.84 0.002 -1.52 0.000 0.89 0.000 0.29

K1 0.043 13.48 0.042 -12.25 0.000 0.12 0.000 -0.02

O1 0.012 18.79 0.007 -18.05 0.001 0.68 -0.001 -0.61

P1 0.039 23.74 0.039 -22.15 0.000 1.33 0.000 1.27

Q1 0.002 3.99 0.002 0.000 0.000 2.61 0.000 2.54
Note that MAE or bias absolute values smaller than 0.001 are recorded as 0. Bold font represents the MAE or Bias with smaller absolute value among the 8 tidal constituents between CTL
and GPO.
FIGURE 7

Time series of prior water level spatially averaged RMSE of EXP1—EXP5, the red dashed line represents the start time of GPO.
TABLE 2 Experiment settings of EXP1 — EXP5.

Smoothed
initial BIPs

EAKF-S EAKF
Constant
elements R

EXP1 √ √

EXP2 √ √

EXP3 √

EXP4 √

EXP5 √ √ √
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expected to be relatively worse. Therefore, a standard deviation of

observational error so strictly determined by the observational error

leads to a high tendency of EAKF to prioritize optimizing these

shallow areas with larger errors. Hence, to achieve a better and

reasonable result, the so of the NAO.99Jb observations are specified

regionally. For the nth observation, the so is given by the Equation

19 below:

s o(n) = 0:4m, 5m ≤ HETOPO5(n) ≤ 20m

s o(n) = 0:1m, HETOPO5(n) > 20m

s o(n) = 0:8m,  125:4°E < lon(n) < 127:0°E, 36:8°N < lat(n) < 38:0°N

8>><>>: (19)

where HETOPO5(n) is the ETOPO5 bathymetry of the

observation; lon and lat represent the longitude and latitude of

the observation, respectively. The region defined by lon and lat in

the equation above is Ganghwa Bay, characterized by its extensive

tidal flats. The resolution of the BYM (1/30°) makes it challenging

to accurately represent the complex bathymetry of Ganghwa Bay.

The accuracy of forecasting water levels is poor and difficult to

optimize. With relatively small s o, the EAKF may become overly

focused on optimizing water levels specifically within Ganghwa

Bay, potentially leading to negative impacts on the overall

optimization outcomes.
5.1.2 Results
Figure 7 shows the time series of spatially averaged prior

water level RMSE for EXP1— EXP5. Before the GPO started, the

RMSE values for all experiments were very close. Whether the

initial BIPs were smoothed or not didn’t significantly affect the

overall precision of state estimation. Thus, all experiments had a

relatively “fair” start for the GPO process. After the jointly state

and parameter optimization was activated, the spin-up periods
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of GPO varied between EXP4 and the other experiments.

Compared with EXP2, which shares the same GPO scheme,

the spin-up time of EXP4 is notably longer. This indicates that

the smoothed, continuous BIPs allow the EAKF to better capture

the patterns of the spatial distribution. The accuracy of the

observational increment projection to the parameter was then

enhanced. However, as the EAKF progresses, the lack of spatial

smoothing leads to the accumulation of small-scale errors in the

ensemble. Consequently, the RMSE converges to a level similar

to that of the unsmoothed initial BIPs. By comparison, with the

EAKF-S, the RMSEs of EXP1 and EXP3 are significantly smaller

than EXP2 and EXP4. The smoothing term substantially

enhances the performance of the EAKF on GPO. It can be

noticed that the RMSE of EXP1 is only slightly smaller than

EXP3. After the GPO started, the BIP ensemble of EXP3 was

smoothed during the first implementation of EAKF-S. In the

end, there is little difference between EXP1 and EXP3. However,

applying the smoothing term to the initial BIP ensemble carries

only benefits and poses no harm. It helps prevent inaccurate

estimation in the first GPO step and enhances the robustness of

GPO based on EAKF.

Compared to EXP1, the water level RMSE is only slightly

worse in EXP5, yet the difference remains pronounced. Figure 8

shows a filled plot of the time series of water level MAE ensemble

distribution, with the cyan shaded area representing EXP1 and

the magenta shaded area the EXP5. Besides the larger RMSE,

there is also marked variability in the distribution of the

ensemble. During the spin-up phase, the ensemble spread of

EXP5 was ranging from 9×10-3 m to 0.09 m, which implies a

mismatch between EAKF and the constant elements R. As

mentioned above, the BIPs near the coast are much more

sensitive than those in the central sea areas of Bohai Sea and
FIGURE 8

Time series of ensemble distribution of prior water level MAE for EXP1 (cyan) and EXP5 (magenta).
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Yellow Sea. Many of the BIPs were adjusted excessively by the

smoothing term. The distribution of posterior BIPs was altered

and deviated from the pattern formed by EAKF. With the

continuous adjustment, due to the constraints of Pb, EAKF-S is

still able to approximate the optimal BIPs that correspond to the

water level errors. However, the mismatch between the

covariance matrix covpx,y and the constant elements R still

results in weaker performance compared to EXP1. In other

words, the EAKF is searching for the optimal BIP that satisfies

both the smoothing term and the model correlations.

Figure 9 shows the differences in amplitudes and phase lags of

the model before data assimilation (or the control model, CTL)

and EXP1 compared to those of NAO.99Jb. As shown in the

figure, EAKF-S notably improved the model harmonic constants.

Compared to NAO.99Jb, the spatially averaged amplitude and

phase lag errors of CTL are 0.25 m and 23.93°, respectively. For
Frontiers in Marine Science 12
EXP1, these errors are 0.05 m and 3.59°, respectively. It can be

observed that the amplitude and phase lag errors of CTL are

significantly higher in coastal area. Additionally, there is a great

discrepancy in the locations of the amphidromic points between

CTL and NAO.99Jb. The spatial distribution of amplitude errors

in Figure 9A exhibits a spreading pattern around the

amphidromic points. Correspondingly, there is a great phase lag

difference between CTL and NAO.99Jb in Figure 9C. Conversely,

in Figures 9B, D, both the errors in harmonic constants and the

locations of the amphidromic points are significantly improved.

There is only slight displacement observed of the amphidromic

points in the northern Bohai Sea. Although the Ganghwa Bay area

shows some improvement after GPO, significant deviations still

exist. This is attributed to the inherent limitations of the model in

accurately representing the complex bathymetry of Ganghwa Bay.

It can’t be solved solely by adjusting the bathymetry.
FIGURE 9

(A, C) are the differences of amplitudes (m) and phase lags (°) between CTL and NAO.99Jb, respectively. (B, D) are similar with (A, C) but for the
differences between EXP1 and NAO.99Jb.
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5.2 Practical experiment based on 8
constituents tide model

5.2.1 Experiment settings
In this section, the BYM, which incorporates 8 tidal constituents

as introduced in Section 4 is employed. The hourly tide height of 8

tidal constituents NAO.99Jb is used as observations. Considering

both the tide period of 8 constituents and computational cost, we set

the GPO period as 30 days.

The BYM model with 8 tidal constituents closely represents the

complete ocean model in terms of complexity. By testing the

performance on the BYM with 8 constituents, the effectiveness of

EAKF-S is further evaluated in strongly nonlinear, long-period

ocean model. In this experiment, we still used the spatially

varying R and set l to 0.5.
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5.2.2 Results
Figure 10 presents the time series of the prior water level

RMSE for the CTL, SEO, and GPO. As shown in the figure, the

GPO performs significantly better than the others. The time-

averaged RMSEs for the CTL, SEO, and GPO experiments are 0.31

m, 0.23 m, and 0.15 m, respectively. Furthermore, the RMSE

curves for SEO and GPO differ in amplitude and period compared

to CTL. On semi-diurnal and diurnal scales, the RMSE amplitude

for GPO is also notably smaller than that of CTL and SEO. That

indicates the EAKF can capture the overall tidal patterns.

Generally, EAKF-S demonstrates a considerable improvement in

model accuracy.

To assess the improvement of harmonic constants, we define

the vectorial error d (Fang et al., 2004) between the NAO.99Jb and

GPO or CTL for each constituent. The amplitude is represented as

the magnitude and the phase lag as the angle:

d =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 + A2

NAO − 2AANAO cos (ɡ − ɡNAO)
q

, (20)

where A and ɡ are the amplitude and phase lag from CTL or

GPO, respectively; ANAO and ɡNAO are the amplitude and phase lag

from NAO.99Jb.

Table 3 lists the spatially averaged d of CTL and GPO. For all 8

constituents, the d for GPO are smaller than CTL, demonstrating

the comprehensive improvement of water level after assimilation.

As shown in Figures 11, 12, there are great improvements in

the amplitude and phase lag at the coastal area compared to CTL.

Two main factors can be attributed. First, the amplitude near the

coast is larger, resulting in greater error between the model and

observations. Greater weights are given to those grid points in

EAKF-S. Second, the BIPs are more sensitive in shallow areas. The

EAKF favors optimizing these highly sensitive parameters due to
frontiersin.or
FIGURE 10

Time series of prior water level RMSE of CTL (green line), SEO (blue line) and GPO (red line).
TABLE 3 Vectorial errors (d) of harmonic constants from CTL and GPO
compared with NAO.99Jb.

Constituents CTL (m) GPO (m)

M2 0.41 0.26

N2 0.07 0.04

S2 0.11 0.07

K2 3.82×10-2 3.41×10-2

K1 0.09 0.05

O1 0.05 0.02

P1 0.03 0.01

Q1 1.19×10-2 1.86×10-7
g
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the larger covariance values. For example, the region with the

largest amplitude within the computational domain is Ganghwa

Bay. Despite being assigned a large observation error, the EAKF

still recognizes that improving Ganghwa Bay can efficiently

enhance the overall model accuracy. The harmonic constants for

all constituents in this region have improved after assimilation.

Additionally, the Q1 constituent shows the poorest spatial pattern

of amplitude and phase lag errors. This is because NAO.99Jb has

two amphidromic points in the Bohai Sea, while CTL has only

one. The distinct tidal patterns between the BYM and NAO.99Jb

result in a great difficulty of tuning the Q1 constituent.

Furthermore, the Q1 constituent contributes minimally to water

level deviations, with the maximum amplitude of the Q1

constituent being only 0.05 m in NAO.99Jb. Thus, EAKF-S is
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unable to effectively improve the location and number of the

amphidromic points of Q1 constituent.
6 Conclusions and discussion

A full-grid parameter optimization scheme based on the EAKF,

referred to as the EAKF-S, was proposed. By smoothing the ensemble

members after the standard EAKF process, the correlation between

parameters and state variables are simplified, enabling optimization

with a limited ensemble size. A numerical tide model for the Bohai

and Yellow Seas (BYM) was constructed using POMgcs. The

feasibility of EAKF-S was discussed through twin experiment for
FIGURE 11

he amplitude differences (m) of M2 (A, B), N2 (C, D), S2 (E, F), K2 (G, H), K1 (I, J), O1 (K, L), P1 (M, N), Q1 (O, P) constituents of CTL and GPO compared
with NAO.99Jb, respectively.
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bathymetry estimation of the 8 tide constituents’ model. Practical

experiments using the NAO.99Jb data were also performed to

examine the effectiveness and reliability of EAKF-S.

Twin experiment for full-grid bathymetry estimation were

conducted under a “perfect model” scenario — the “true” model

can be fully achieved by adjusting the parameters to be estimated.

Results show that EAKF-S not only effectively reduces model state

errors but also accurately inverts the true bathymetry. The plausible

optimized parameter distribution thoroughly demonstrates the

effectiveness of the scheme.

Further practical GPO experiments revealed that the smoothing

term implicitly introduces spatial correlation of parameters while

filtering out small-scale error signals. Under a comparable error
Frontiers in Marine Science 15
level, using the EAKF-S scheme improved the accuracy of the GPO

and reduced the spin-up time of the EAKF. The experiments also

indicate that the current smoothing term still introduces inaccurate

correlations between parameters and state. The confidence matrix R

based on sensitivity performs better than the constant elements.

However, the R used in this study remains overly simplified,

warranting further exploration of this issue.

The EAKF-S scheme was applied to the BYM with 8 tide

constituents and still effective in improving forecasting

performance. Despite promising results, challenges remain. In this

study, only single-parameter GPO was conducted. To achieve global

optimization results and eliminate the issue of pseudo-correlations

caused by adjusting bathymetry only, it is necessary to consider
FIGURE 12

The phase lag differences (°) of M2 (A, B), N2 (C, D), S2 (E, F), K2 (G, H), K1 (I, J), O1 (K, L), P1 (M, N), Q1 (O, P) constituents of CTL and GPO compared
with NAO.99Jb, respectively.
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open boundary conditions and bottom friction coefficient to

conduct multi-parameter optimization. On the other hand, the

NAO.99Jb data used in this study consist of tide heights with

globally consistent spatial scale and accuracy. Exploring the

optimization performance of EAKF-S under multi-source and

discrete observations will be a focus of future research.
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