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The complex convergence of cold and warm ocean currents in the Nordic Seas

provides suitable conditions for the formation and development of eddies. In the

Marginal Ice Zones (MIZs), ice eddies contribute to the accelerated melting of

surface sea ice by facilitating vertical heat transfer, which influences the evolution

of the marginal ice zone and plays an indirect role in regulating global climate. In

this paper, we employed high-resolution synthetic aperture radar (SAR) satellite

imagery and proposed an oriented ice eddy detection network (OIEDNet)

framework to conduct automated detection and spatiotemporal analysis of ice

eddies in the Nordic Seas. Firstly, a high-quality RGB false-color imaging method

was developed based on Sentinel-1 dual-polarization (HH+HV) Extra-Wide

Swath (EW) mode products, effectively integrating denoising algorithms and

image processing techniques. Secondly, an automatic ice eddy detection

method based on oriented bounding boxes (OBB) was constructed to identify

the ice eddy and output features such as horizontal scales, eddy centers and

rotation angles. Finally, the characteristics of the detected ice eddies in the

Nordic Seas during 2022-2023 were systematically analyzed. The results

demonstrate that the proposed OIEDNet exhibits significant performance in

ice eddy detection.
KEYWORDS

synthetic aperture radar, dual-polarization, ice eddy, oriented object detection,
deep learning
1 Introduction

Ocean eddies are a pervasive oceanic phenomenon that plays a significant role in the

transport and distribution of material, energy, heat, and freshwater in the global ocean

(Chelton et al., 2011; Zhang et al., 2020). The observational advantages of SAR satellites,

which operate in all weather conditions and at all times of the day, and offer high spatial
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resolution, make them an important data source for the refined

study of oceanic eddies. SAR satellites are essential for the study of

submesoscale eddies that remain unobservable by altimeter

satellites. The remote sensing imaging mechanism of SAR ocean

eddies is mainly influenced by two mechanisms (ZHENG et al.,

2018; Fu and Holt, 1983; Karimova et al., 2012): the wave-current

interaction mechanism and the sea surface floating tracer

mechanism, such as bio-oil films and ice floes. In the MIZs,

surface sea ice is driven by ocean eddies, exhibiting spiral motion

and eddy characteristics (Manucharyan and Thompson, 2017). This

paper refers to the ice-water mixing pattern formed by surface sea

ice and ocean eddies as an ice eddy (Johannessen et al., 1987;

Dumont et al., 2011). The melting of surface ice is facilitated by ice

eddies through the vertical transfer of heat, which affects the

development of MIZs and indirectly influences global

climate regulation.

Data acquisition for ice eddies relies on both in situ instruments

and satellite sensors. In general, in situ observations are

characterized by their high quality and reliability and include

moorings (Cassianides et al., 2021; von Appen et al., 2018), ice-

tethered profilers (Toole et al., 2011), and under-ice gliders.

However, due to the high cost of observations and poor weather

conditions, the amount and coverage of in situ observational data

may not adequately support experimental demands. Satellite

sensors theoretically possess the capability to acquire vast

amounts of data , supporting ice eddy detect ion and

characterization tasks with high spatial resolution and wide-area

global observation. In the Arctic Ocean, the detection of

submesoscale and small-scale eddies using satellite altimetry data

is challenging due to the limited spatial and temporal coverage of
Frontiers in Marine Science 02
both altimetry and in situ data. The Rossby radius of deformation in

the Arctic Ocean is significantly smaller than in mid- and low-

latitude seas (Bashmachnikov et al., 2020; Nurser and Bacon, 2013).

Due to the presence of sea ice, the complexity of using altimeter data

in the Arctic Ocean renders it nearly unsuitable for detecting ice

eddies. Observational costs and adverse weather limit the quantity

and coverage of in situ data, which may be insufficient to meet

experimental demands. In contrast, SAR satellites with high spatial

resolution, full-time, and all-weather capability are better suited for

detecting mesoscale and submesoscale oceanic phenomena in the

Arctic Ocean (Kozlov et al., 2019). SAR satellites have become

essential in in-depth studies of oceanic eddies, particularly

submesoscale eddies challenging to detect with altimeter satellites.

The unique advantages of SAR satellites are illustrated in Figure 1.

The detection of eddies using SAR imagery has been the focus of

numerous studies (Cassianides et al., 2021; Kozlov and

Atadzhanova, 2021; Manucharyan and Thompson, 2017).

However, most studies rely on manual visual interpretation

methods for the detection of eddies from SAR images (Toole

et al., 2011; Gupta and Thompson, 2022). The accumulation of

massive SAR images has rendered it time-consuming and laborious

to recognize ocean eddies solely through manual visual

interpretation, highlighting the growing importance of automated

ocean eddy detection. In recent years, several researchers have

applied deep learning methods to ocean eddy detection on

synthetic aperture radar (SAR) images (Zhang et al., 2023; Xia

et al., 2022; Huang et al., 2017; Du et al., 2019b; Zhang et al., 2020).

Du et al. (2019a) attempted to fuse a variety of features to

automatically identify ocean eddies and proposed an eddy

identification method based on adaptive weighted multi-feature
FIGURE 1

S1 EW HH-polarized SAR image, 6 August 2022,07:47 UTC.
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fusion for SAR images. Considering the different importance of

different features for eddy recognition, an adaptive weighted feature

fusion method based on multiple kernel learning (MKL) is also

proposed. Although MKL demonstrates excellent performance in

addressing heterogeneous data, the method exhibits low detection

efficiency. Du et al. (2019b) proposed DeepEddy, a deep learning-

based ocean eddy detection method consisting of a hierarchical

feature learning model and a simple Support Vector Machine

(SVM) classifier. Eddy features are learned using two principal

component analysis convolutional layers. Additionally, DeepEddy

employs Spatial Pyramid Pooling (SPP), which addresses the

complex structure and morphology of ocean eddies by fusing

multi-scale features. However, this method fails to localize eddies

on SAR images. Zhang et al. (2023) proposed EddyDet, a deep

framework based on the Mask RCNN framework utilizing

Convolutional Neural Networks for eddy detection on SAR

images. Khachatrian et al. (2023) applied the YOLOv5 network to

SAR ocean eddy detection and realized the automatic detection of

ice eddies in the MIZs. Zi et al. (2024) proposed an EOLO network

to enhance the feature fusion method by introducing a channel

attention mechanism and employing an upsampling operator with

a larger receptive field. Xia et al. (2022) constructed a context and

edge association network (CEA-Net) based on the YOLOv3

backbone network for identifying ocean eddies in S1

interferometric wide (IW) swath mode data. While the automatic

detection of eddies in SAR images using deep learning has shown

promising results, current research emphasizes the detection of

eddies in ice-free areas within mid- and low-latitude waters through

the use of co-polarization SAR images. HH-polarized images make

small-scale features more visible, while HV-polarization provided

more stable large-scale features related to sea-ice morphology

(Korosov and Rampal, 2017). The HV-polarized images were less

sensitive to surface scattering from open water but were very

sensitive to body scattering from sea ice. As a result, the contrast

between sea ice and open water is higher in HV-polarized images,

making ice eddy features more visible (Qiu and Li, 2022). The

advantages of HH-polarized images in detecting ice eddies are due

to its high sensitivity to surface scattering, its strong contrast with

open water, and its high signal-to-noise ratio, particularly under low

wind speed or rough surface conditions, where HH polarization can

offer precise and reliable ice eddy detection results. Combining HH-

polarization and HV-polarization features for ice eddy detection,

compared to using a single polarization, is beneficial for reducing

detection errors and improving accuracy.

Although the aforementioned methods have achieved

superior results in eddy detection in SAR images, they all

utilize the conventional horizontal bounding box (HBB) and

still exhibit notable limitations. HBBs are not optimal for

representing oceanic ice eddies with arbitrary orientations and
Frontiers in Marine Science 03
large aspect ratios, as they provide only a rough location without

accurate directional and scale information. Additionally, the HBB

representation often includes excessive background or nearby

object interference, which can lead to misidentification of ice

eddies. Unlike HBBs, OBBs are capable of flexibly adjusting the

orientation of detection boxes, allowing for the accurate

enclosure of inclined or rotated ice eddies. This capability

addresses issues related to redundant and overlapping detection

boxes, thereby significantly reducing detection errors. The field of

target detection has made remarkable progress over the past

decade. Directional target detection, as an extended branch of

target detection, has attracted significant attention due to its wide

range of applications (Li et al., 2020; Liu et al., 2020; Han et al.,

2021; Xia et al., 2018; Ma et al., 2018; Ding et al., 2019; Yang et al.,

2019). Ice eddies have distinct rotational characteristics and

directionality, and directional target detection can not only

detect the position of eddies but also accurately estimate their

rotational direction, which is highly significant for ocean

dynamics research, marine environment monitoring, and

marine resource development.

To address the above challenge, in this paper, we proposed

OIEDNet, which is a oriented ice eddy detection network based on

the Sentinel-1 dual-polarization data. The remainder of this paper is

structured as follows. Section 2 provides an overview of the dataset.

Section 3 describes the methodology employed in this study. Section

4 presents the experimental results and discussion. Finally,

conclusions are outlined in Section 5.
2 Materials

We utilize Sentinel-1A Level-1 EW mode Ground Range

Detected (GRD) product. The swath width for the EW Mode is

approximately 400 km, with an incidence angle ranging from 18.9°

to 47° and a pixel spacing of 40 m × 40 m.We selected 702 Sentinel-

1 SAR images containing ice eddies in the marginal ice area of the

Nordic Seas during January 2022-December 2023 as shown in

Table 1 and Figure 2.

The bathymetric product is the 200m resolution version 4.0 of

the International Bathymetric Chart of the Arctic Ocean

(IBCAOv4.0) (Jakobsson et al., 2020). The relationship between

the intensity of ice eddy production and the background wind

velocity was analyzed using 10m u and v hourly means from the

ERA-Interim reanalysis. The validation was conducted using the

Level 3 (L3) products from the Surface Water and Ocean

Topography (SWOT) mission, the Mesoscale Eddy Trajectory

Atlas Product (META3.1exp DT), the situ data collected from

OpenMetBuoys-v2021 (OMBs) deployed in the marginal ice zone

(Rabault et al., 2024) and drifters 15m drogue.
TABLE 1 SAR data statistics for Nordic ice eddy detection (S1).

Year Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

2022 18 13 12 28 39 41 48 35 33 46 45 28

2023 23 9 6 20 29 28 45 30 23 46 30 27
fro
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3 Methods

The pipeline of the proposed OIEDNet framework is depicted

in Figure 3. From this figure, it is evident that the proposed

framework consists of three components: the Polarization

Combination Enhancement Module, the Neural Network Module,

and the Feature Statistical Analysis Module.

Firstly, the Sentinel-1 satellite’s HH and HV dual-polarized ice

eddy SAR images undergo data preprocessing, HH-polarized

incidence angle correction (IAC), HV-polarized thermal noise

removal (TNR), and dual-polarized false-color image synthesis to

generate dual-polarized SAR false-color ice eddy images. Secondly,

the ice eddy sample library is created using the data expansion
Frontiers in Marine Science 04
method. Finally, based on the dual-polarized SAR false-color ice

eddy images, a rotating frame ice eddy auto-detection model is

developed and trained to achieve the automatic detection of ice

eddies in the Nordic Seas MIZs.
3.1 Polarization combination
enhancement method

The polarization combination enhancement method includes

(1) data preprocessing; (2) HH-polarized IAC; (3) HV-polarized

TNR; (4) polarized data enhancement, and (5) RGB false-color

composite. Figure 4 illustrates the flowchart of the polarization
FIGURE 3

The structure of the proposed OIEDNet framework.
FIGURE 2

The distribution of experimental SAR images collected in the marginal ice zone of the Nordic Seas from January 2022 to December 2023. (A) Spatial
coverage of SAR images. (B) The number of SAR images is represented by color intensity. The gray lines indicate the 200 m and 2000 m isobaths,
derived from IBCAOv4.0.
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combination enhancement process. Data preprocessing mainly

involves orbit correction, radiometric calibration, filtering,

conversion to dB values, and geocoding processing.

In the process of ice eddy detection, the variation in the

backward scattering coefficient caused by changes in the incidence

angle may introduce significant errors, necessitating the correction

of the incidence angle for HH-polarized data. In this study, the IAC

algorithm (Qiu and Li, 2022; Li et al., 2020) is utilized, and the

calculation formula is presented in Equation 1.

s = s0 + 0:200� (q − q0), (1)

where s is the corrected backward scattering coefficient (in dB),

s 0 is the backward scattering coefficient before correction, q is the

incidence angle of the pixel, and q0 is the corrected standard

incidence angle, which is taken as 34.5°. Figure 5D illustrates the

effects following the correction of the HH polarization

incidence angle.
Frontiers in Marine Science 05
In Sentinel-1 EW-mode SAR images that are strongly affected

by scallop stripe noise in the azimuth direction and by noise

gradients in the distance direction, especially in HV-polarized

images, thermal noise is particularly prominent as displayed in

Figures 5A, B. Although ESA provides a standard method of noise

vector correction, the effect of residual noise cannot be ignored due

to the narrow distribution of HV polarization backscatter.

The denoising algorithm (Park et al., 2017; Sun and Li, 2020)

was improved for the removal of thermal noise. The average noise

power was added to the denoised results. This adjustment enabled

the conversion of noise power from a linear scale to a logarithmic

scale (dB) sigma zero conversion, ensuring that these pixels did not

become invalid values. By appropriately scaling and balancing the

noise vectors given by ESA, the algorithm can approximate the

actual noise values as much as possible by using the azimuthal

antenna element pattern in the azimuthal direction, so that the

effects of the scallop stripe and the noise gradient in the distance
FIGURE 4

Flowchart of the polarization combination enhancement method.
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direction can be effectively eliminated. The specific processing steps

are as follows.

To eliminate the noise step phenomenon between sub-bands, it

can be assumed that the denoising process model satisfies a linear

relationship. It is calculated using Equation 2.

s(k) = s 0
SN − (Kns,n · G •s 0

N + K0
pb,n), (2)

where s(k) is the denoised s0 value. s 0
SN is the uncorrected

original s 0 value. s 0
N is the s 0 calculated by bilinear interpolation

using the thermal noise vector provided by ESA. Kns,n is the optimal

noise scaling factor. K0
pb,n is the interstrip noise power balance

factor. n is the number of sub-bands, n = 1, 2, 3, 4, 5. Kns,n can be

obtained by least squares solution using a large amount of HV

polarized data. K0
pb,n can be calculated using Equation 3.

K0
pb,n = (an−1i + bn−1) − (ani + bn), (3)
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where an and bn are the slopes and intercepts, respectively, of

the linear models for the different sub-strips. i is the number of

image elements in the range direction at the boundary between the

strips n = 2, 3, 4, 5. Since there are only four interstrip boundaries.

K0
pb,1 is set to 0.

When the original image is subtracted from the thermal noise

acquired using the described method, some image element points

become negative. To eliminate the effect of negative noise power,

noise compensation is required. By appropriately scaling and

balancing the noise vectors provided by ESA, the algorithm can

closely approximate the actual noise values using the azimuthal

antenna element pattern, effectively eliminating the effects of scallop

stripes and noise gradients in the range direction.

First, the Signal-Noise Ratio (SNR) is defined as the ratio of the

s0 value (s0g) after Gaussian filtering to the noise equivalent sigma

zero (NESZ). The SNR is calculated using Equation 4.
FIGURE 5

Effect of HV TNR and HH IAC. (A) Original HV polarized image. (B)The thermal noise in HV polarized images. (C) HV polarized image after TNR, (D)
HH polarized image after IAC (S1 EW image taken on 1 November 2023 at 08:21:44 UTC).
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SNR =
s0g

NESZ
: (4)

Subsequently, further calculations were conducted to obtain the

power compensated using Equation 5.

s0o =
weight �   s0g +   SNR �   s0

weight  +  SNR
+ s0offset, (5)

where s0o is the residual noise power compensated s 0. s0offset is

the noise field compensation value, which can be taken as the

average value of the reconstructed noise field.

Finally, the HV polarization grayscale image with thermal noise

removed can be obtained. Figure 5C illustrates the effects after the

removal of thermal noise from the HV polarization.

In this paper, a high-quality dual-polarization SAR RGB false-

color ice eddy image production method is proposed, compositing

HH and HV polarizations into a single false-color image. Since the

ice eddy information in the Sentinel-1 EW model is primarily

contained in the HH-polarized data, the HH-polarized image is

used for the blue channel and the HV-polarized image for the red

channel. To optimize the visual quality, the square root is applied to

the HH and HV channels, with a slight offset added to mitigate the

effect of grain noise on the data. The calculation formula is

presented in Equation 6 and Equation 7.

HHB =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

HH + 0:002
p

: (6)

HVR =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

HV + 0:002
p

: (7)

The green channel image is produced by combining the offset-

processed HH and HV polarization data, as shown Equation 8.

G = HVR � (2�HHB +HVR � (1 − 2�HHB)) : (8)

Finally, the SAR image was enhanced using SAR image

stretching and contrast-limited adaptive histogram equalization

(CLAHE). Figure 6 illustrates a comparison the RGB false color

images before and after denoising.

The data expansion of 702 dual-polarized false-color ice eddy

images was achieved through noise perturbation transformations,

rotations (90°, 180°, 270°), and up-down flip transformations,

resulting in dual-polarized ice eddy samples. Eddies that rotate

clockwise in the northern hemisphere are referred to as anticyclonic

eddies, while those that rotate counterclockwise are referred to as

cyclonic eddies. Figure 7 illustrates examples of anticyclonic and

cyclonic ice eddies.
3.2 Neural network

In this paper, we propose the neural network component of

OIEDNet, a multiscale rotating frame model designed for the

automatic detection of ice eddies. The model structure is

illustrated in Figure 8. Traditional target detection algorithms

typically utilize HBB, assuming that object positions in the image

are calculated relative to the image center. However, this

assumption is not always accurate, particularly for objects with
Frontiers in Marine Science 07
distinct directional features, as the HBB often fails to accurately

locate the true position of such objects. OIEDNet addresses this

limitation by introducing OBB, which allow bounding boxes to be

positioned at any arbitrary angle, making it more adaptable for

detecting target objects with various orientations.

3.2.1 Feature spatial pyramid module
The backbone of OIEDNet consists of the CSPDarknet53

feature extractor, which is followed by a C2f module. The C2f

module is succeeded by two segmentation heads designed to predict

the semantic segmentation masks of the input images.

Submesoscale ice eddies (approximately 0.1 to 10 km) and

mesoscale ice eddies (approximately 10 to 100 km) can be

detected by SAR satellites. To address the wide range of ice eddy

target scales in SAR images, a feature fusion module is integrated

into CSPDarknet53 to fuse feature maps of varying scales,

enhancing the detection of ice eddies of different sizes. OIEDNet

incorporates the Spatial Pyramid Pooling Faster (SPPF) module in

the feature-enhanced Neck layer, which is optimized from the

original SPP module structure. To obtain high-level semantic

information from multiscale features and further improve

detection accuracy and speed, The SPPF module is inserted

between the convolutional and fully connected layers. The SPPF

module integrates multiscale local feature information, providing

the network with a global perspective and facilitating the extraction

of rich multiscale feature representations, as illustrated in Figure 9.

The original SPP module generates a final feature map by

connecting three feature maps processed in parallel with 5 × 5,

9 × 9, and 13 × 13 max pooling kernels. However, this approach is

time-intensive. To improve operational efficiency and detection

speed, the SPPF module optimizes this process by merging the

feature map processed by a mixed layer (convolutional layer +

BatchNorm layer + SiLU layer) with three feature maps derived

from a single 5 × 5 max pooling operation. This concatenation

enables efficient extraction of the final feature map.

Traditional Feature Pyramid Networks (FPNs) enhance the

representation of low-level features by transferring high-level

features downwards through a top-down pathway (Lin et al.,

2017). Nonetheless, traditional FPNs face challenges in effectively

managing scale variations. To compensate for this deficiency,

OIEDNet introduces the Progressive Asymmetric Feature

Pyramid Network (PAFPN) structure (Liu et al., 2018), which

enhances the performance of the target detection task by fusing

features from neighboring levels and incorporating higher-level

features into the fusion process in an incremental manner,

enabling direct interaction between non-neighboring levels.

PAFPN is applied between a feature extraction network

(backbone) and a neck network (neck module). Specifically,

different levels of feature maps are first extracted by the backbone,

and then feature fusion is performed using PAFPN. The fused

feature maps are fed into OIEDNet’s head network (head module)

for object classification and bounding box regression. PAFPN

incorporates the Path Aggregation Network (PAN) into the

Feature Pyramid Network (FPN) by employing a bottom-to-top

fusion approach. OIEDNet replaces the Context Enhancement
frontiersin.org
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Module (C3) in PAN with a Context Enhancement Module with

feature fusion (C2f) and removes the 1×1 convolution prior to

upsampling. OIEDNet directly inputs the feature output from

various stages of the backbone into the upsampling operation.

The PAFPN network structure enables the construction of multi-

scale feature maps from a single image, ensuring that each layer of

the pyramid produces feature maps with robust semantic

information. This approach provides richer spatial detail and

high-level semantic features for detecting marine ice eddies,

which exhibit complex structures, varying scales, and rapid,

continuous changes.

3.2.2 Rotation bounding box
Five variables (cx, cy,w, h, q) are used to define the bounding

box with an arbitrary orientation. As shown in Figure 10, cx and cy
Frontiers in Marine Science 08
represent the coordinates of the center point, and the rotation angle

q indicates the angle between the horizontal axis and the first edge

of the rectangle after counterclockwise rotation. Here, the first edge

defines the width of the bounding box, while the other edge defines

its height, with the angle ranging from -90° to 0°.
3.3 Feature statistical analysis module

Based on the obtained location information, the center and

diameter of the ice eddy in the predicted box can be determined,

laying the foundation for subsequent ice eddy studies. The center of

the tangent ellipse inside the rotating frame was used as the eddy

center, and the average distance from the center of the ice eddy to all

points on the fitted ellipse is used as the radius of the ice eddy.
FIGURE 6

Comparison of the RGB false-color images before and after denoising. A comparison of the RGB false-color images before and after denoising is
presented. (A, C) represent the RGB images prior to denoising, while (B, D) represent the RGB images following denoising. (A, B) correspond to the
S1 EW image acquired on 28th September 2023 at 08:03:22 UTC, while Figures (C, D) correspond to the data acquired on 1st November 2023 at
08:21:44 UTC.
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According to the ice eddy automatic detection model, the rotating

frame parameters (cx, cy,w, h, q) of the ice eddy are obtained. Using
the eddy center (cx, cy) as the starting point, the coordinate

positions of the four vertices A,B,C,D can be calculated.

During the data preprocessing stage, SAR images are geocoded

using the WGS1984 standard, transforming pixel coordinates (rows

and columns) into geographic coordinates (longitude and latitude).
Frontiers in Marine Science 09
Consequently, it becomes possible to calculate the location of the ice

eddy center and the eddy diameter. The Feature Statistical Analysis

Module primarily facilitates the extraction of ice eddy center and

diameter information, and performs statistical analyses to produce

thematic maps of ice eddies for any time period and any region.

These maps depict the spatial distribution of ice eddies and related

scale histograms (see Chapter 4.4). These analyses support
FIGURE 7

Examples of ice eddies photographed by S1. (A–C) are anticyclonic eddies and (D–F) are cyclonic eddies.
FIGURE 8

The detailed structure of the neural network part of OIEDNet.
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researchers in examining the generative mechanisms and

evolutionary processes of ice eddies.
4 Experimental results and discussion

4.1 Experimental environment

The experimental setup configuration is provided in Table 2.

Computation was performed on GPUs with 16 multithreads, and

the training data share was configured to 0.75. The RGB ice eddy

training set and S1 annotations were employed for training, and the

model’s parameters were fine-tuned based on experience and

experimental results to attain optimal performance.

YOLOX is an open-source high-performance detector that

builds upon YOLOv3 by introducing decoupled heads, data

augmentation, anchor-free detection, and the SimOTA sample

matching method, thus constructing an end-to-end anchor-free

object detection framework (Zheng et al., 2021). YOLOv8 is a real-

time object detection model that utilizes advanced techniques such

as anchor-free detection and multi-scale feature fusion within a

HBB framework (Varghese and Sambath, 2024). We conduct

comparative experiments on OIEDNet, YOLOX and YOLOv8. In
Frontiers in Marine Science 10
addition, we conduct multi-model comparison experiments to

evaluate performance before and after denoising, and between

single polarization and dual polarization.

The precision evaluation of the model is based on the validation

set, and the evaluation metrics include the precision rate (P), the

recall rate (R) and the F1-Score (F1), as shown in Equations 9–11.

P =
TP

TP + FP
: (9)

R =
TP

TP + FN
: (10)
FIGURE 9

The structure of the Spatial Pyramid Pooling Faster module.
FIGURE 10

Oriented bounding boxes(green solid lines).The red ellipse represents the eddy edge, while yellow arrows show the distance from the eddy center to
any point on the ellipse. A red dot marks the center of the ice eddy.
TABLE 2 Experimental setup configuration.

Server Configuration Operating
System

Bare
Metal (GPU)

GPU Card: NVIDIA TESLA-A-
1002
Single Card Memory Size: 32GB
per card
Memory: 1024GB
Single Memory Module: 128GB

Kunpeng kC1
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F1 = 2� P � R
P + R

: (11)

TP denotes the number of correctly detected ice eddies, FP

denotes the number of false positive detections of ice eddies, and FN

denotes the number of missed ice eddies.
4.2 Comparison

The results of OIEDNet,YOLOX and YOLOv8 were compared

using the same test set, as presented in Table 3. Both YOLOv8 and

YOLOX are traditional HBB detection models. The experimental

results indicate that the OIEDNet model exhibits a precision of

94.40% and a recall of 93.65%, while YOLOv8 and YOLOX exhibit

precisions of 93.50% and 87.90%, as well as recalls of 92.00% and

86.51%. In comparison to YOLOv8 and YOLOX, the OIEDNet

model demonstrates superior performance in detecting dense eddy

regions. The rotational detection of OIEDNet more accurately

detects eddies with irregular shapes and changing directions, and

the inspection frame fits the eddies more closely, significantly

reducing the redundancy of the horizontal inspection frame, as

shown in Figure 11. For eddies with large differences in scales and

similar locations, there is obvious overlapping of inspection frames

in horizontal detection, while rotational detection effectively avoids

overlapping of inspection frames (Figure 11B). The interaction

between ocean circulation and ocean currents is accompanied by

the splitting and fusion of ocean eddies, leading to the

multinucleated structure of ice eddies, which the rotational

detection method can detect more accurately (Figure 11D). The

IEDNet model reduces the leakage and false alarms of ice eddies to a

certain extent. The OIEDNet model has obvious advantages in the

precision and recall of ice eddy detection, and it can effectively

detect submesoscale and mesoscale ice eddies.

This study evaluates the enhancement effects of IAC, TNR, and

dual-polarization RGB false color synthesis in the OIEDNet model.

Comparison of four sets of ice eddy detection results for the same

OIEDNet model (Figure 12). Before and after the denoising of dual-

polarized false-color images, the detection accuracy increases from

88.71% to 94.40%, reflecting an improvement of 5.69%. In contrast,

the detection accuracy of ice eddies in HV-polarized images without

TNR is 85.04%, while the detection accuracy in HH-polarized

images without IAC is 89.06%. This indicates that thermal noise

significantly reduces the detection accuracy of ice eddies, whereas
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the incidence angle has a relatively minor effect on detection

accuracy. The detection performance of the proposed model

shows significant improvement with the adoption of the

Polarization Combination Enhancement, resulting in an

approximate 8.65% increase in the F1 score. This enhancement

effectively boosts detection accuracy in noise-heavy environments.
4.3 Validation

Altimeters and SWOT satellites rely on radar echo signals for

measuring sea surface height. However, sea ice leads to attenuation

and scattering of radar signals, rendering the echo signals unstable,

which makes it difficult to obtain accurate sea surface height data

and, therefore, makes it unable to accurately detect ice eddies, as

shown in Figures 13, 14. SAR, on the other hand, can clearly detect

ice eddies in this environment due to its high-resolution imaging

and penetration capabilities. Mesoscale eddies can be identified

from sea level height data using altimetry, but the daily mesoscale

eddy dataset is identified by measuring different time trajectories,

which results in low spatial and temporal resolution. Figures 13B,

14B shows a comparison of eddies identified by OIEDNet and

altimeters. It is clear that SAR is able to detect more submesoscale

ice eddies and that SAR is even more advantageous in detecting

high-latitude ice eddies.

The ice eddies detected by OIEDNet were compared and

validated against in situ data collected from OpenMetBuoys-

v2021 (OMBs) deployed in the marginal ice zone. Figure 15

illustrates the movement trajectories of two ice buoys in the

marginal ice zone around Svalbard from August 18, 2022, to

August 26, 2022. Red triangles are used to denote the starting

positions of the buoys, while pentagrams indicate the ending

positions of their trajectories. The ice buoy trajectories exhibit a

counterclockwise rotation consistent with the direction of the ice

eddy, indicating a cyclonic ice eddy.
4.4 Spatial and temporal distribution of
ice eddies

Using the OIEDNet ice eddy detection framework, ice eddy

identification and scale information extraction were performed on

702 SAR images containing ice eddies in the Nordic Seas from
TABLE 3 Accuracy evaluation of different models.

Model HH IAC HV TNR HH HV RGB P R F1

OIEDNet × × ✓ × × 0.8906 0.9048 0.8976

× × × ✓ × 0.8504 0.8571 0.8537

× × ✓ ✓ ✓ 0.8871 0.9167 0.9017

✓ ✓ × × ✓ 0.9440 0.9365 0.9402

YOLOv8 ✓ ✓ × × ✓ 0.9350 0.9200 0.9274

YOLOX ✓ ✓ × × ✓ 0.8790 0.8651 0.8720
"×" indicates that the corresponding data is not utilized by the model, whereas "✓" indicates that the data is utilized.
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January 2022 to December 2023. To ensure the accuracy of the

statistical feature information of the ice eddies, the detected ice eddy

types were annotated using a manual visual inspection method. A

total of 2283 ice eddies were identified, including 1724 cyclonic

eddies (CEs) and 559 anticyclonic eddies (AEs). The number of

cyclonic ice eddies is 3.08 times that of anticyclonic eddies, which

may be related to the mechanism of anticyclonic eddy generation

and the interaction between the two (McWilliams, 2016).

The spatial density distribution of ice eddies was calculated

using a 0.1° × 0.1° grid, as shown in Figure 16A, revealing that the

densest distribution of ice eddies is located in the north-central

Greenland Sea, which exhibits a high number of both cyclonic and

anticyclonic ice eddies. The monthly variation is shown in

Figure 16B, indicating that Nordic Seas ice eddies are present

throughout the year, with two peaks in the total number of ice

eddies in May and October, and a low in March. Overall, May to
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November is the period when ice eddies are most frequent. The

formation of ice eddies in the Nordic Seas results from a

combination of dynamical and thermal forces (Perovich and

Jones, 2014). Spatially, areas of high ice eddy occurrence are often

closely linked to the Arctic Current, with the East Greenland Cold

Current flowing along the east coast of Greenland. Temporally, with

the onset of the Arctic summer polar day, sea surface temperatures

(SSTs) rise, and glacier melting causes the expansion of marginal ice

areas, leading to high ice eddy occurrence. In contrast, the Nordic

Seas ice cover decreases rapidly to reach a minimum at the

beginning of October, after which the ice area starts to expand

rapidly. Thus, the thermodynamic factors in the Nordic Seas are

more complex in October, which is conducive to the formation of

ice eddies.

Figure 17A shows that the sizes of ice eddies in the Nordic Seas

are primarily concentrated in the mesoscale and submesoscale
FIGURE 11

The comparison of ice eddy detection results between OIEDNet and YOLOv8 is shown in (A–D) where the red HBB is used to represent YOLOv8
detection results, and the green OBB is used to represent OIEDNet detection results.
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intervals. The diameters of these eddies are mostly in the range of

10-100 km. The diameter of cyclonic ice eddies is mainly between

10-60 km, while the diameter of anticyclonic ice eddies is mostly

between 30-70 km, indicating that anticyclonic ice eddies tend to be

larger than cyclonic ice eddies. Large ice eddies are primarily located

in the north-central Greenland Sea.

From Figure 17B, we observe that the proposed model

maintains detection performance despite increasing wind velocity.

Although the number of ice eddy detections decreases with higher

wind speeds, this does not indicate a decline in model performance;

instead, it reflects the inherent difficulty of eddy formation in areas

with strong winds, resulting in a reduced number of eddies. The

lack of a sharp downward trend in detections further illustrates the

robustness of the proposed model across varying wind speeds.

Regarding wind velocity, 79.7% of the detected ice eddies formed

under low wind conditions of 1-4 m/s, while about 20.3% occurred
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under medium wind conditions. Similarly, from Figure 18, as ice

concentration increases, the number of ice eddies decreases. The

rate of detected ice eddies shows a gradual decline, which further

demonstrates the robustness of the proposed model under varying

ice concentrations.
5 Conclusions

To accurately detect MIZs ice eddies, denoising algorithms and

image processing techniques are combined to propose a high-

quality RGB false-color image production method and to create a

dual-polarization synthetic aperture radar false-color ice eddy

dataset. Simultaneously, the OIEDNet ice eddy detection model

was developed and trained, achieving a precision rate of 94.4% and a

recall rate of 93.65%, highlighting significant advantages in ice eddy
FIGURE 12

Comparison of four sets of ice eddy detection results using the OIEDNet model: (A) detection results without HH-polarized IAC, (B) detection results
without HV-polarized thermal noise reduction, (C) detection results of dual-polarized RGB images before denoising, and (D) detection results of
dual-polarized RGB images after denoising.
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detection. The OIEDNet effectively detects dual-polarized SAR ice

eddies with a small sample size, identifying Submesoscale and

mesoscale ice eddies in SAR images quickly and accurately. The

experimental results demonstrate that the ice eddies detected in

SAR images are not as large as previously indicated. The

experimental results show that the OIEDNet model excels at

detecting dense eddy regions in ice eddy detection. The rotating
Frontiers in Marine Science 14
detection frame of OIEDNet better fits the eddy, effectively avoiding

overlap. The interaction between ocean circulation and currents

involves the splitting and fusion of ocean eddies, leading to the

multinuclear structure of ice eddies, which can be more accurately

detected by the rotational detection method. The OIEDNet also

significantly reduces the leakage of ice eddies and false detections,

especially in dense eddy regions. The OIEDNet not only
FIGURE 13

Comparison of the ice eddy identification results from OIEDNet (green) with those obtained from SWOT, drifting buoys(yellow), and the mesoscale
eddy track atlas product META3.1exp DT (red). (A, B) data time are S1: 2023-10-15 08:13:37 UTC. SWOT: 2023-10-15 03:43:56 UTC, META3.1exp
DT: 2023-10-15 UTC. drifting buoys(5801987): from 2023-10-1 to 2023-10-15 UTC. The orange arrow in (B) indicates the trajectory of the
drifting buoy.
FIGURE 14

Comparison of the ice eddy identification results from OIEDNet (green) with those obtained from SWOT and the mesoscale eddy track atlas product
META3.1exp DT (red). (A, B) data time are S1: 2023-11-03 08:05:21 UTC. SWOT: 2023-11-03 16:46:19 UTC, META3.1exp DT: 2023-11-03 UTC.
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FIGURE 15

Comparison of the ice eddy identification results from OIEDNet (green) with those obtained from OMBs (red and yellow). The acquisition time for
Sentinel-1 occurred on August 23, 2022, at 07:53:58 UTC. OMBs data collection spanned from August 18, 2022, to August 26, 2022, between
07:53:58 and 07:55:02 UTC. Red triangles are used to denote the starting positions of the buoys, while pentagrams indicate the ending positions of
their trajectories.
FIGURE 16

Spatial distribution of ice eddies with histograms of months. (A) The spatial distribution of ice eddy frequency (gray lines represent the 200 m and
2000 m bathymetry lines of IBCAOv4.0). (B) Monthly variation in the number of ice eddies detected during 2022-2023.
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accurately detects ice eddies in the Arctic MIZs but also addresses

the traditional HBB’s limitations in identifying ice eddies of

different scales and forms. This work lays a solid foundation for

future research on the automatic detection and quantification of

ice eddies.

Despite the OIEDNet model’s high performance in ice eddy

detection, certain limitations persist. For instance, minor changes in

the rotation angle can lead to significant alterations in the detection
Frontiers in Marine Science 16
frame, increasing instability and difficulty in the detection and

regression process. Exploring new angle representations could

reduce ambiguity. Furthermore, we will incorporate multi-

polarization and multi-frequency SAR images for model training

to enhance the accuracy of ice eddy detection. The identification of

ice eddy drift using Synthetic Aperture Radar (SAR) images holds

significant potential for enhancing the understanding of sea ice

eddy dynamics.
FIGURE 18

Distribution of the number of ice eddies and their average diameter (km) across ice concentration (%) for cyclonic (blue) and anticyclonic (orange)
ice eddies.
FIGURE 17

Histogram distributions of ice eddy number, ice eddy diameter, and wind velocity. (A) Distributions of the number and diameter of ice eddies, with
cyclones shown in blue and anticyclones in orange. (B) Distributions of the number of ice eddies and wind velocity (m/s), based on data from the
ERA5 Interim Reanalysis.
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