
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

David Alberto Salas Salas De León,
National Autonomous University of Mexico,
Mexico

REVIEWED BY

Yunli Nie,
Shandong University of Science and
Technology, China
Lei Cai,
Henan Institute of Science and Technology,
China
Dayong Ning,
Dalian Maritime University, China

*CORRESPONDENCE

Wei Gao

gaowei@ouc.edu.cn

RECEIVED 19 August 2024
ACCEPTED 16 December 2024

PUBLISHED 09 January 2025

CITATION

Mu X and Gao W (2025) Coverage path
planning for multi-AUV considering ocean
currents and sonar performance.
Front. Mar. Sci. 11:1483122.
doi: 10.3389/fmars.2024.1483122

COPYRIGHT

© 2025 Mu and Gao. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Hypothesis and Theory

PUBLISHED 09 January 2025

DOI 10.3389/fmars.2024.1483122
Coverage path planning for
multi-AUV considering ocean
currents and sonar performance
Xukai Mu and Wei Gao*

The Department of Marine Technology, Ocean University of China, Qingdao, China
Coverage path planning (CPP) for target search by autonomous unmanned

vehicle (AUV) involves two crucial aspects: (1) the sonar performance of the

AUV is sensitive to ocean environment, such as changes in terrain; and (2) the

ocean currents significantly influence AUV dynamics AUV dynamics. To address

the CPP of multiple AUVs (multi-AUV) considering both sonar performance and

ocean currents, we propose a new integrated algorithm based on the improved

Dijkstra algorithm, Particle Swarm Optimization (PSO), and the ELKAI Solve. First,

the necessary sampling points for the area coverage are identified based on the

sonar detection range at different locations, which is calculated by combining the

ocean acoustics model with the sonar equation. Second, an improved Dijkstra

algorithm is presented to solve the adjacency matrix of the graph formed by all

sampling points under the influence of ocean currents. Third, the PSO algorithm

is utilized for task allocation, and the ELKAI solver determines the optimal path for

each AUV. Finally, multi-AUV path planning is achieved through iterations of the

PSO algorithm and the ELKAI solver. Simulation results demonstrate the

outstanding performance and robustness of our integrated algorithm.
KEYWORDS

ELKAI solver, improved Dijkstra, multi-AUV path planning, particle swarm optimization,
sonar performance
1 Introduction

Autonomous underwater vehicle (AUV) is an important tool in marine engineering,

encompassing target coverage search (Yao et al., 2021a), man overboard search (Mou et al.,

2021), ship oil spill detection (Vinoth Kumar et al., 2020), underwater topography scanning

(Cai et al., 2023), and so on. A typical task scenario involves the utilization of sensors for

target search, requiring the AUV to achieve complete coverage to minimize the probability

of mission failure. Presently, the acoustic sensors on AUV enable static target search (e.g.,

sunken ships, relics) and dynamic target search (e.g., distressed individuals). This paper

focuses on the coverage path planning problem for static target search using multi-AUV

equipped with omnidirectional active sonar. Coverage path planning involves three main

steps: firstly, determining the sampling points associated with the sonar detection range,
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traversing all the sampling points means achieving the coverage

search of the whole area; secondly, calculating the shortest travel

time between all sampling points, which involves solving the

adjacency matrix of the graph formed by all sampling points in

ocean currents; and finally, task allocation among multi-AUV and

finding the optimal path for each AUV.

Firstly, the determination of sampling points is influenced by

the performance of sonar sensors. Sonar sensors possess two key

features: they have a greater underwater detection range because

sound waves can travel great distances underwater; they are easily

affected by the terrain environment (Jensen et al., 2011). On a flat

seafloor, omnidirectional active sonar has a circular detection range;

however, on a sloping or irregular seafloor, the detection range may

become elliptical or more complex in shape. Traditional AUV path

planning typically assumes two specific forms for the sonar model:

fan-shaped (Sun et al., 2019; Ai et al., 2021) and circular (Huang

et al., 2023), both presuming a constant detection radius, i.e.,

assuming a stable and unchanging marine environment.

However, the seafloor topography is often uneven. In such cases,

AUV coverage path planning must consider the coupling effect

between terrain undulations and the sonar model. One innovation

of this paper is the combination of the acoustic simulation software

RAM and the sonar equation to forecast the sonar detection range

at different positions and in different directions at the same position

when determining the sampling points for the task. The minimum

detection range across all directions at a certain position is

considered the final detection range for that position, acting as a

constraint for path planning. This approach ensures comprehensive

consideration of the coupling performance between sonar and the

environment while minimizing the sampling points of the task area

in complex terrain environments.

Secondly, calculating the adjacency matrix of the graph formed

by all sampling points requires careful consideration of the

influence of ocean currents. Currently, path planning for AUV in

ocean currents is a prominent topic in marine engineering (Cao

et al., 2019; Yao et al., 2021b). Numerous methods have been

proposed and applied for shortest time path planning problem

under currents. Traditional algorithms encompass the A* algorithm

(Singh et al., 2018), Dijkstra’s algorithm (Wang et al., 2019),

heuristic algorithms involve the Glasius Bio-Inspired Neural

Network (GBNN) (Yao et al., 2020), improved particle swarm

optimization (Chen et al., 2023; Li and Yu, 2023), Improved

Artificial Jellyfish Search Algorithm (Guo et al., 2023), and

genetic algorithms (Niu et al., 2020). However, these methods are

primarily designed for the shortest time path planning between two

given points. When directly applied to the problem presented in this

paper, which involves a graph with numerous and unevenly

distributed sampling points, they encounter the drawback of high

computational complexity. An improved algorithm based on the

traditional Dijkstra algorithm (Dijkstra, 1959) is proposed to

increase the efficiency of solving the adjacency matrix. Unlike

Dijkstra, which extracts the point with the smallest path distance

from the starting point among the unprocessed grids each time, the

improved Dijkstra algorithm updates all points adjacent to the

already updated points simultaneously, significantly accelerating

the search for the shortest path. However, updating the values of
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vast points simultaneously compromises the accuracy of the results.

To address this issue, the concept of iteration is integrated into the

update process, ensuring result accuracy through continuous

iteration. Ultimately, the improved Dijkstra algorithm can

calculate the adjacency matrix of the graph more rapidly than the

traditional Dijkstra algorithm.

Ultimately, the core of multi-AUV path planning is addressing

task allocation and determining the optimal path for each AUV.

Multi-AUV path planning algorithms can be classified into two

categories: centralized and distributed (Zhang et al., 2023). Due to

the significant impact of the marine environment on

communication among different AUVs, this paper focuses on

distributed multi-AUV path planning. For small-scale tasks,

heuristic algorithms like Ant Colony Optimization (ACO)

(Pendharkar, 2015; Chen et al., 2022a), Genetic Algorithm (GA)

(Patel et al., 2020; Dong et al., 2021), Particle Swarm Optimization

(PSO) (Geng et al., 2021), and market-based auction algorithms

(Zhang et al., 2017) can be used. In the case of large-scale task

allocation, clustering methods (Tang et al., 2020) and allocation

methods with custom constraint functions (DARP) (Kapoutsis

et al., 2017) can be employed. In this study, the number of task

points typically ranges in the hundreds. Heuristic algorithms and

auction algorithms are slow and have poor convergence. Clustering

methods and DARP methods can quickly process these problems,

but they are mainly designed for Euclidean planes and perform

poorly in non-Euclidean planes with ocean currents. To address

this, the paper proposes a combination of the PSO (Kennedy and

Eberhart, 1995) algorithm and the ELKAI solver to handle the task

allocation problem. In the PSO algorithm, each particle represents a

strategy for task allocation. Ensuring the accuracy of the particle

fitness values is crucial to achieving optimal task allocation in the

PSO algorithm, which requires precise determination of the optimal

path for each AUV after task allocation. Determining the optimal

path for a single AUV within a given subarea is a NP-hard

(Trummel and Weisinger, 1986) problem. To accurately

determine the fitness values for each particle, the paper

introduces the ELKAI solver, a third-party Python library

specifically designed for solving TSP problems. It is known to be

capable of finding optimal solutions for problems with up to 315

points, which, considering the limited endurance of AUV, meets the

task requirements in most scenarios.

In summary, this paper aims to achieve complete coverage of

the task area in the shortest time and proposes a collaborative path

planning method for multi-AUV. Building upon previous studies

regarding the impact of ocean currents on AUV dynamics, this

paper innovatively incorporates spatial heterogeneity of the sonar

model into the coverage path planning for multi-AUV. The key

benefit is the ability to achieve a more equitable task distribution

among multi-AUV and decrease mission time. The main

contributions of this paper are as follows:

1) In the coverage path planning for multi-AUV, the sonar

model is no longer assumed to be circular or fan-shaped. Instead,

this paper thoroughly considers the effects of the marine

environment, especially the impact of terrain undulations on

sonar detection range. The first step in determining sampling

points for coverage path planning involves calculating the
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https://doi.org/10.3389/fmars.2024.1483122
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Mu and Gao 10.3389/fmars.2024.1483122
detection range at different positions by integrating the acoustic

simulation software with the sonar equation. Finally, sampling

points are determined based on the varying detection ranges at

different positions.

2) An improved Dijkstra algorithm is proposed for calculating

the adjacency matrix of numerous sampling points affected by

ocean currents. Accurately determining the shortest path between

any two sampling points and storing them as an adjacency matrix is

essential to facilitate subsequent task allocation and optimal path

planning. This paper modifies the search strategy of the Dijkstra

algorithm, which exhibits high time complexity, to expedite the

solution process and integrates the concept of iteration into it.

While ensuring result accuracy, the improved Dijkstra algorithm is

faster than the original algorithm and is better suited for solving

problems based on the grid modeling approach.

3) The combination of the PSO algorithm and the ELKAI solver

achieves task allocation for multi-AUV and path planning for

single-AUV. In the PSO algorithm, each particle represents a task

allocation strategy, and the ELKAI solver is utilized to determine the

optimal paths for each AUV based on the given task allocation

strategy. The solutions from the PSO algorithm are input into the

ELKAI solver, which then returns the fitness values of the path

solutions to the PSO algorithm. Ultimately, the multi-AUV path

planning method, which integrates the PSO algorithm with the

ELKAI solver, not only ensures an equitable distribution of tasks

among multi-AUV but also minimizes the task time for each AUV.

The remainder of the paper is organized as follows: Section II

describes the target search problem, including the basic

assumptions, map model, sensor model, and problem formation.

Section III introduces the consideration of sonar performance and

ocean currents in path planning and the proposed method for
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multi-AUV path planning. Section IV shows the simulation results.

We draw the conclusion in Section V.
2 Problem description

This section provides a detailed exposition of the critical issues

in coverage path planning for multi-AUV, encompassing

fundamental assumptions, map model, sensor model, and the

problem formulation.
2.1 Basic assumptions

Figure 2A shows a three-dimensional (3-D) Cartesian

workspace. Given that the dynamics of AUV are affected by

ocean currents and the sonar detection range is linked to terrain

undulation, this paper considers the combined effects of ocean

currents and terrain on path planning. To simplify the problem of

multi-AUV coverage path planning, this paper makes the

following assumptions:

1) Considering the temporal variation of the currents at the

same location, the currents for task area is randomly selected from

global currents data.

2) When the AUV moves between two adjacent grids, the

magnitude and direction of the currents are assumed to be constant.

3) All AUVs have the same fixed output power.

4) All AUVs are equipped with identical acoustic sensors, with

detection performance solely affected by seafloor terrain.

5) The sonar detection range at a given location is represented

by a square area, with its radius being the minimum detection

distance in all directions at that location.
2.2 Map model

The data of seafloor terrain are sourced from the ETOPO2022

dataset provided by the National Oceanic and Atmospheric

Administration, and the data of ocean currents are derived from

the Global Combined Currents Sample dataset provided by

Tidetech. Given that many algorithms addressing coverage path

planning problems are based on grid modeling (Zhu and Yang,

2022), for example, Tang (Tang, 2023) applied grid modeling to

address the coverage problem of unmanned surface vehicles

(USVs), and Shen (Shen et al., 2021) determined the optimal path

by partitioning the task area into grids and using the grid

information map as input to a neural network. This paper also

adopts grid modeling, as depicted by the black dashed lines in

Figure 2B, where each grid contains depth information d(x, y) and

currents information~v(x, y). More information about the impact of

ocean currents on AUV dynamics can be found in article (Franchi

et al., 2020). In the case where the ocean current’s speed and

direction are known, we can determine the AUV’s velocity in any

direction at a specific position in space using the formulas provided

in the article (Franchi et al., 2020).
FIGURE 1

Flowchart of multi-AUV path planning.
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2.3 Sensor model

This paper considers the AUV equipped with omnidirectional

active sonar. The detection range at any given location can be

represented as r(q, x, y),  q ∈  ½0, 2p �,  x ∈  ½0, x0�, y ∈  ½y, y0�, where
(x, y) represents the position, q represents the angle in the horizontal

direction, x0 represents the length of the horizontal axis of the task area,

and y0 represents the length of the vertical axis of the task area. Many

papers do not consider the variations in terrain, assuming r(q , x, y)   =
  r0, where r0 is a constant (Diniz and Calazan, 2023). However, in

practice, terrain undulations are inevitable, leading to varying detection

ranges at different locations. Particularly when the AUV is located on a

sloping seafloor, the detection ranges in different directions are also

different (Northrop et al., 1968; Rousseau et al., 1985), hence both (x, y)

and q variables cannot be ignored. The sonar detection range,

considering the three variables x, y, q might be depicted by the blue

curve in Figure 2B.
2.4 Problem formation

This paper aims to consider the sonar performance and currents

in multi-AUV coverage path planning. Firstly, the sampling points

determined based on the sonar detection range are shown in

Figure 3A. All the sampling points Pj, j =  1, 2, · · ·, k in Figure 3A

should satisfy the following requirements:

P1 ∪
  P2 ∪

  ⋯ ∪  Pk = P (1)

min (P1 ∩
  P2 ∩

  ⋯ ∩  Pk) (2)

Equation 1 ensures that all sampling points completely cover

the target area, while Equation 2 aims to minimize the overlap

between sampling points. These two equations collectively guide the

determination of sampling points based on sonar performance.

Once the sampling points are determined based on Equations 1

and 2, they need to be allocated to different AUVs, and the optimal

paths for each AUV need to be identified. This requires a reasonable

distribution of task points among all AUVs and ensuring that each

AUV can find the shortest path within the designated sampling
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points. In Figure 3B, arrows of different colors represent the task

points and corresponding paths for an AUV. Assuming the path

corresponding to the ith robot is represented by Li,  i =  1, 2, · · ·, n.

The final path for all AUVs should satisfy:

L1j j ≈ L2j j ≈ … ≈ Lnj j (3)

min (max ( L1j j, L2j j,…, Lnj j) (4)

∀Lk ∩
  Lm = ∅, k,m = 1, 2,…, n, k ≠ m (5)

L1 ∪
  L2 ∪

  … ∪  Ln = L (6)

Equation 3 ensures an equitable distribution of workload

among multi-AUV, enabling effective participation of all AUVs in

the task; Equation 4 minimizes the workload of the AUV with the

largest task, as the completion time depends on the AUV finishing

last; Equation 5 prevents task area overlap for AUVs, reducing

collision risk; Equation 6 guarantees complete coverage of the task

area by ensuring the union of all AUV task areas covers the entire

task area.

This paper aims to determine sampling points based on

Equations 1 and 2 in conjunction with sonar performance, and

then seeks to allocating sampling points to each AUV based on

Equations 3–6 uniformly in ocean currents, ultimately achieving

complete area coverage.
3 Proposed algorithm

This section provides a detailed introduction to solve the sonar

performance, ocean currents, and multi-AUV path planning.
3.1 Sonar performance

Many papers overlook the fluctuation of sonar performance in

different environments and assume a constant sonar detection

radius. However, in reality, seafloor terrain is diverse and

complex, significantly affecting the sonar performance. This
FIGURE 2

Basic Assumptions: (A) Coordinate systems, (B) Relationship between sonar detection range and variables x, y, q.
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section addresses the determination of sonar detection range and

the selection of sampling points.

3.1.1 Determination of detection range
In the field of underwater acoustics, the sonar equation

comprehensively incorporates the unique phenomena and effects

related to sound propagation, as well as the influence of the target’s

acoustic performance on the design and application of sonar

equipment. This paper focuses on omnidirectional active sonar,

encompassing parameters like the radiated sound source level (SL),

receiving directivity index (DI), transmission loss from the sound

source to the target (TL), target strength (TS), detection threshold of

the temporal-spatial processor (DT), and background interference

from environmental noise, characterized by a sound level of (TS).

The active sonar equation is denoted as:

SL − 2TL + TS − (NL − DI) = DT (7)

In reality, the parameters SL, DI, TS, DT, and NL are generally

assumed to be constant. The sonar equation enables the estimation

of the detection range by determining the transmission loss from

the source to the target. This paper employs the acoustic software

RAM (Collins, 2020) to calculate the transmission loss across

different terrains. However, in ocean waveguides, fluctuations in

transmission loss complicate the determination of the efficient

detection range. So determining a unique propagation loss

requires fitting the actual transmission loss, and an empirical

formula for transmission loss in the ocean is:

TL = a lg r + ar (8)

The first term represents the spreading transmission loss, and

the second term represents the absorption transmission loss, with a

and a being constant coefficients related to the environment. Paper

(Honghan et al., 2020) uses a Table lookup method to determine the

coefficients, but this approach may lead to errors compared to

actual values. As a result, in this paper, the method of fitting the
Frontiers in Marine Science 05
simulation data by empirical formula is adopted, which can better

adapt to the real ocean environment.

3.1.2 Determination of sampling points
After determining the sonar detection range, the next step is to

identify sampling points in task area. This section demonstrates the

process using the sea area defined by the coordinates N29.9979°

N30.2062°, E124.0396°-E124.2479°, as shown in Figure 4A. Initially,

a stratification of the seafloor is conducted. Figure 4A shows that the

seafloor can be roughly categorized into two types: flat, and sloping,

the stratified seafloor is shown in Figure 4B. The process of

stratification can speed up the calculation without significantly

affecting the accuracy of the results.

Following the presentation of the simplified seafloor in

Figure 4B, the subsequent step involves determining the sampling

points corresponding to the three types of seafloors. The sonar

detection ranges within these areas are calculated by combining the

acoustic software RAM and the sonar equation. Due to the roughly

uniform detection ranges within the same type of seafloor, we

evenly sample across the entire seafloor area, corresponding to each

type of detection range. Subsequently, the intersection of the first

two columns is taken to obtain the final sampling points for each

type of seafloor. Finally, the sampling points of the three types of

seafloor are merged into a single map to obtain the sampling points

based on sonar detection performance, as depicted on the right

in Figure 4C.
3.2 Calculation of adjacency matrix

Once the distribution of sampling points within the task area, as

shown in Figure 4C, is determined, furthermore, after the AUV’s

movement speed between any two adjacent grids in the grid model

is also determined, calculating the shortest time between any two

sampling points becomes essential. Considering the influence of
FIGURE 3

Illustration of coverage path planning based on grid modeling: (A) Complete coverage with different detection ranges (B) task allocation for multi-
AUV and shortest time path for single-AUV.
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currents, this paper proposes the improved Dijkstra algorithm. At

each step, the Dijkstra algorithm selects the node closest to the

starting node from those whose shortest paths have not been

determined, using this node as a hub to update the shortest path

distances of other nodes. Nevertheless, the computational

complexity of the Dijkstra algorithm is O(n2) (Verma et al.,

2021), resulting in slower computation when handling a large

number of sampling points. Therefore, this paper proposes an

improved Dijkstra algorithm with reduced computational

complexity to O(n3=2).

Figure 5 depicts the fundamental process of the improved

Dijkstra algorithm. The figure on the left represents the initial

state of the grid modeling after selecting the starting grid. The grid

values indicate the shortest time from the starting grid. Initially, the

value of the starting grid is set to 0, while the values of other grids

are set to a significantly larger value than the actual value. The

algorithm commences from the initial state, expanding one ring

outward in each step, and computing the values of the new grids, as

demonstrated by the green grids in the three figures on the right side

of Figure 5. The numbers on the green grids denote the sequence of

solution for all green grids in this step. The values of all grids in the

entire area are updated by continuous stepping.
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The arrows in the right figure of Figure 5 illustrate how single

grid values are updated. Each grid updates its value by using the

neighboring updated grids as bridges, as shown by the three colored

arrows. The minimum value among the three colored paths will

be selected.

The improved Dijkstra algorithm updates the values of numerous

grids with each step, greatly affecting the accuracy of the results.

Therefore, we choose to re-update the results of the last iteration, as

indicated by the leftward arrow in the lower part of Figure 5. Based on

the results of the last iteration, we re-step from the initial position

until the values of all grids are the same as in the last iteration. This

paper introduces the adjacency matrix, which represents the

connections between all vertices in a graph (Brede, 2012).

This study conducts simulation experiments to calculate the

adjacency matrix using both the Dijkstra algorithm and the

improved Dijkstra algorithm. The results indicate that the two

methods produce consistent results, and multiple simulations

demonstrate that the improved Dijkstra algorithm calculates the

adjacency matrix faster. For example, with the sampling points and

currents depicted in Figure 6C and Figure 6B, the improved Dijkstra

algorithm takes 85.190563s to calculate, whereas the Dijkstra

algorithm takes 2042.24464s.
FIGURE 4

Determination of sampling points. (A) The actual seafloor (B) The simplified seafloor, (C) The task points.
FIGURE 5

Improved Dijkstra algorithm.
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3.3 Task allocation and path planning for
multi-AUV

After determining the sampling points and the adjacency

matrix, the next step is the core of this paper,path planning for

multi-AUV. Multi-AUV path planning can be divided into two

parts: task allocation of multi-AUV and shortest time path solution

of single-AUV. This paper combines the Particle Swarm

Optimization (PSO) algorithm with the ELKAI solver to solve the

task allocation for multi-AUV and to find the shortest time paths

for single-AUV. Each particle in PSO is regarded as a task allocation

strategy; the ELKAI solver solves a particle for the shortest time

path corresponding to each AUV and feeds the path results back to

the PSO algorithm for updating until convergence.

3.3.1 PSO for target allocation
In the PSO algorithm, individuals are referred to as particles,

and each swarm consists of N particles randomly initialized in a D-

dimensional search space (Roshanzamir et al., 2020). During the

search process, Xt
id represents the velocity and position of the ith

particle in the d dimension at the t iteration. In this paper, it is

assumed that each dimension of a particle corresponds to a ray, and

any two adjacent rays form a sub-region, which corresponds to the

task area of an AUV, as shown in Figure 7. The three rays divide the

task area into three parts, each part corresponding to the task area of

one AUV. By continuously adjusting the angles of the three rays
Frontiers in Marine Science 07
through PSO, the task areas of the three AUVs are

evenly distributed.

To determine the best weighting factor, a set of randomly

distributed points will be generated for testing different weighting

factors. The range of values for the weighting factors is [0,4], ten sets

of random initial values will be generated for the simulation, and the

group with the best results will be selected as the weighting factor in

subsequent simulations.

3.3.2 ELKAI solver for Shortest time path
After determining the method of task allocation, as shown in

Figure 7, a key challenge is to find the shortest time path for the

AUV within the sub-region. To address this issue, this paper

introduces the ELKAI solver. The ELKAI solver is a traveling

salesman problem (TSP) problem solver based on the LKH

algorithm (Helsgaun, 2017), capable of solving TSP problems

with a scale up to N=315 to find the optimal path. In the context

of this paper, this refers to calculating the shortest time path that

traverses all specified points. Considering the limited endurance

and mobility of AUV, 315 points meet the requirements of the vast

majority of cases.

3.3.3 Multi-AUV path planning
Figure 1 depicts the flowchart of the proposed method in this

paper. Initially, the seafloor terrain is known and categorized into

flat seafloor or sloping seafloor. This categorization simplifies the
FIGURE 6

Environmental information for simulation 1: (A) Seafloor terrain, (B) Ocean currents, (C) Path for considering sonar performance, (D) Path for not
considering sonar performance.
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problem-solving process. Then, the acoustic software RAM is used

to calculate the acoustic transmission loss, and the sonar detection

range is determined based on transmission loss and the sonar

equation. The sampling points are determined based on the

different detection ranges at different locations. Subsequently, in

marine environment with ocean currents, all target points form a

directed and weighted graph. The improved Dijkstra algorithm is

used to calculate the adjacency matrix of the graph Finally, the PSO

algorithm is employed to conduct task allocation. The sub-

adjacency matrix is extracted from the adjacency matrix for each

divided sub-region and fed into the ELKAI solver to determine the

optimal traversal sequence. Ultimately, through iterations of the

PSO algorithm and the ELKAI solver, multi-AUV path planning

problem is solved.
4 Simulation results

In subsequent simulation experiments, the acoustic simulation

software and the improved Dijkstra algorithm run in the MATLAB

environment. Task allocation and path planning, which integrate

the Particle Swarm Optimization (PSO) algorithm with the ELKAI

solver, are conducted in the PyCharm environment. Although the

influence of currents on path planning has been extensively studied,

the integration of sonar performance into path planning research

remains relatively unexplored. Therefore, this section initially

validates the importance of considering sonar performance in

path planning and subsequently verifies the effectiveness of the

proposed multi-AUV path planning method.
4.1 The importance of considering
sonar performance

Currently, research on path planning that incorporates sonar

performance is relatively limited. This research often assumes that

the detection range of sonar is constant and neglects the

relationship between sound waves and the marine environment.
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To validate the importance of considering the sonar performance in

path planning, this section compares two scenarios: one that

considers the influence of sonar performance, and another that

does not. After determining the required sampling points for both

scenarios, the optimal path for a single AUV is calculated using the

ELKAI solver, and the path time is compared under the two

assumptions. The shorter the path time, the more important it is

to consider sonar performance.

The simulations were carried out using PyCharm and an Intel

(R) Xeon(R) Gold 6226R CPU running at 2.90 GHz and 2.89 GHz,

respectively, as well as 256 GB of RAM.

4.1.1 Simulation 1
In Simulation 1, the task area is N19.1646°-N19.4979° and

E112.0813°-E112.4146°. Figure 6A illustrates the seafloor terrain of

the task area, featuring a shallow sea area of 100-130m on the left

and a deep sea area of 160-200m on the right. The sea depth is

assumed to be 120m on the left and 180m on the right. Additionally,

Figure 6B displays the corresponding currents. According to

transmission loss at different depths, the sonar detection range is

estimated to be approximately 2.25km for the shallow sea and

1.35km for the deep sea. The final sampling points, determined by

the detection ranges, are depicted as blue dots in Figure 6C. The

improved Dijkstra algorithm is used to calculate the adjacency

matrix of the graph combining the Figures 6B, C. Figure 6D

illustrates the sampling points needed to cover the entire area

with a fixed detection range. The adjacency matrix is also

obtained using the improved Dijkstra algorithm.

To compare the paths based on the two kinds of sampling

points, this section employs the ELKAI solver to find the shortest

path for a single AUV to traverse all sampling points. The resulting

paths are depicted as red arrows in Figures 6C, D, with the final

times for the paths in Figures 6C, D being 80.275h and 97.4h,

respectively. Under the premise that both sampling points can cover

the task area, the path time for the sampling points determined

based on sonar performance is 21.3% less than that of equidistant

sampling points. These results indicate that considering the sonar

performance helps to reduce unnecessary sampling points and

decrease the workload.

4.1.2 Simulation 2
In simulation 2, the task area exhibits significant variations in

seafloor terrain, spanning geographic positions from N19.8729° to

N20.2062°, and from E113.8313° to E114.1646°, as shown in

Figure 8A, the depths of the task area range from 150m to 450m,

and the currents are depicted in Figure 8B. Within this area, the

seafloor was categorized into three types: shallower on the upper

side, deeper at the lower right corner, and medium depth at the

lower left corner. Similar to Simulation 1, the sampling points are

represented as blue dots in Figure 8C, while those sampling points

determined based on a constant sonar detection range are shown in

Figure 8D. Employing a processing flow akin to Simulation 1, the

resulting paths are depicted as red arrows in Figures 8C, D,

displaying path times of 104.2h and 147.3h. The path time,

considering sonar performance, was reduced by 29.3% compared

to paths without considering sonar performance.
FIGURE 7

Region division by PSO.
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A comparative analysis of the two simulations reveals that a

lower number of sampling points based on sonar performance can

significantly decrease task times, especially in areas with substantial

seafloor terrain changes. This analysis highlights the crucial role of

considering sonar performance in enhancing the quality of path

planning solutions and indicates that there is significant practical

significance of incorporating sonar performance into AUV

path planning.
4.2 Method proposed for multi-AUV
path planning

Section 4.1 demonstrates the significance of integrating sonar

performance into path planning. To validate the effectiveness of

the multi-AUV path planning method proposed in this paper, it

is compared with the hybrid genetic algorithm with variable

neighborhood search from the literature (Cai et al., 2023) and

the clustering method from the literature (Chen et al., 2022b).

The effectiveness of these three methods is evaluated by

comparing the path times planned for all AUVs within the

same task area. These three methods will be abbreviated as

PSO, GA and Clustering.
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4.2.1 Simulation 3
In Simulation 3, the task area spans N26.6646°-N27.0812°,

E123.1687°-E123.5854°, the seafloor terrain is shown in

Figure 9A, and the currents are shown in Figure 9B. In

Figure 9A, the color map of the seabed depth can be roughly

categorized into red, green, and blue. The simulation revealed that

the sonar detection ranges in the green and blue depth regions are

relatively similar. The sea depth within the area is categorized into

two scenarios: shallower waters with a depth of 115m and deeper

waters with a depth of 150m. The sonar detection ranges under

these two conditions are determined, and all sampling points are

identified based on these distances, as denoted by the blue dots in

Figure 9C. By combining the sampling points with the currents in

Figure 9B, the adjacency matrix of all sampling points is calculated

using the improved Dijkstra algorithm. The resulting paths

obtained by the three methods are depicted in Figure 9A,

Figures 9B, C, where each color represents a path for an AUV

(Ai et al., 2021).

The detailed results of the path planning of the three methods

are shown in Table 1. In Table 1, the task allocation method

proposed in this paper has an average time of 27.5h, with the

longest task taking 28h, representing a 3.7% increase compared to

the shortest task time. The genetic algorithm has an average time
FIGURE 8

Environmental information for simulation 2: (A) Seafloor terrain, (B) Ocean currents, (C) Path for considering sonar performance, (D) Path for not
considering sonar performance.
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consumption of 32.4h for three paths, with the longest task taking

34.3h, a 14.3% increase compared to the shortest task time. The

clustering algorithm has an average time consumption of 31.3h for

three paths, with the longest task taking 34.1h, a 24.9% increase

compared to the shortest task time. The results in Table 1

demonstrate that the combination of the PSO and ELKAI solver

achieves better results in speeding up tasks and minimizing the

difference in tasks among different AUVs.

4.2.2 Simulation 4
In Simulation 4, the task area spans from N26.2479° to

N28.3313°, and from E122.4979° to E124.5813°. The seafloor

terrain is shown in Figure 10A, and the corresponding currents

are shown in Figure 10B. The water depth in this area can be divided

into three layers: shallow waters (<90m), deep waters (>140m), and

slope waters. Assuming average depths of 80m for shallow waters

and 150m for deep waters, with a fixed slope between them. The

sampling points are determined based on the detection range, as

indicated by the blue dots in Figure 10C.

For Simulation 4, the time of the paths corresponding to the

three methods is presented in Table 2. The task allocation method

proposed in this paper has an average time of 218.5h, with the

longest time consumption at 219.9h, reflecting a 1.2% increase

compared to the shortest time. The genetic algorithm has an

average time consumption of 289.0h for three paths, with the

longest time consumption being 293.4h, reflecting a 4.1% increase

compared to the shortest time. The clustering algorithm has an

average time consumption of 314.4h for three paths, with the
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longest time consumption at 332.3h, reflecting a 15.0% increase

compared to the shortest time. The results in Table 2 also

demonstrate that the combination of PSO and ELKAI achieves

better results in reducing task time and minimizing the difference in

tasks among different AUVs.

4.2.3 Simulation 5
The simulations 3 and 4 focus on the path planning problem of

three AUVs, while the simulation 5 focuses on the path planning

problem of four AUVs. Simulation 5 utilizes uses the same

environment as Simulation 4 but increases the number of AUVs.

The final paths of the AUV is shown in Figure 11.

Table 3 presents the paths time for the three methods employed

in Simulation 5. The task allocation method combining PSO and

ELKAI has an average time of 170.6h, with the longest time at

173.3h, reflecting a 2.2% increase compared to the shortest time.

The genetic algorithm has an average time of 213.4h, with the

longest time at 238.7h, reflecting a 40.2% increase compared to the

shortest time. The clustering algorithm has an average time of

212.7h, with the longest time at 265.1h, reflecting a 58.3% increase

compared to the shortest time. The results in Table 3 intuitively

demonstrate that the PSO-based optimization algorithm proposed

in this paper achieves better performance in reducing average time

consumption and minimizing the time difference between tasks of

different AUVs, particularly showing robustness as the number of

AUVs increases.

The aforementioned three groups of experimental simulations

indicate that task allocation and path planning based on the
FIGURE 9

Environmental information for simulation 3: (A) Seafloor terrain, (B) Ocean currents, (C) Path planning results of PSO, (D) Path planning results of GA,
(E) Path planning results of Clustering.
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combination of PSO and ELKAI ensures uniformity in allocation

when dealing with the task allocation of multi-AUV and large-scale

task points. This method also achieves the shortest path solution for

a single AUV. On the contrary, the genetic algorithm is less effective
Frontiers in Marine Science 11
than the proposed method due to poor convergence when dealing

with large-scale task allocation and path planning, and the

clustering algorithm is fails to guarantee the equal distribution of

tasks when dealing with non-Euclidean space with ocean currents.
TABLE 1 Results of simulation 3.

red path black path blue path

PSO 27.6h 27.0h 28.0h

GA 32.9h 34.2h 30.1h

Clustering 27.3h 32.6h 34.1h
Bold text represents the method presented in this paper.
FIGURE 10

Environmental information for simulation 4: (A) Seafloor terrain (B) Ocean currents, (C) Path planning results of PSO, (D) Path planning results of GA,
(E) Path planning results of Clustering.
TABLE 2 Results of simulation 4.

red path black path blue path

PSO 217.2h 218.4h 219.9h

GA 289.8h 283.7h 293.4h

Clustering 289.1h 332.3h 321.8h
Bold text represents the method presented in this paper.
FIGURE 11

Path planning for four AUVs of Simulation 5: (A) PSO (B) GA (C) Clustering.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1483122
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Mu and Gao 10.3389/fmars.2024.1483122
4.3 Statistical results in random scenarios

Simulations 3, 4, and 5, combined with actual seafloor terrain

and currents, have preliminary validated the effectiveness of the

proposed method. Further simulations are necessary to validate the

robustness of the combination of PSO and ELKAI. This paper

conducts two sets of random simulations to solve the multi-AUV

path planning problem, one set for three AUVs and one set for four

AUVs. The experimental process is roughly divided into two steps,

the first step involves randomly generating sampling points within a

given area, and the second step involves randomly extracting

currents from the Global Combined Currents Sample dataset to
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combine with the generated sampling points. All task areas are

assumed to be square regions with a width of 100km.

4.3.1 Simulation 6
Three AUVs were used to cover the task area, with the number

of sampling points determined by the formula n,  n =  130 + 5 ·

i, i =  0, 1,⋯, 29. Path planning was conducted using the three

methods mentioned above, and the statistical results are shown in

Figures 12A, B. Figure 12A displays the maximum AUV task time

for each method, reflecting the task completion time. Figure 12B

illustrates the difference between the maximum and minimum

task times, indicating the uniformity of task distribution. The

most crucial factor is the maximum AUV task time, as it

determines the overall task completion time when the last AUV

finishes. From Figure 12A, it is clear that the maximum task time

of the proposed method consistently outperforms the other two

methods, indicating that the paths planned by this method achieve

coverage earlier. Figure 12B shows that the difference between the

maximum and minimum task times for the proposed method is

the smallest, indicating a more balanced task distribution

compared to the clustering method, which exhibits the

largest discrepancy.
TABLE 3 Results of simulation 4.

red
path

black
path

blue
path

cyan
path

PSO 169.7h 169.6h 169.6h 173.3h

GA 168.4h 226.6h 238.7h 219.9h

Clustering 210.7h 167.5h 207.6h 265.1h
Bold text represents the method presented in this paper.
FIGURE 12

Statistical result of Simulation 6 and Simulation 7: (A) Maximum task time of Simulation 6, (B) The difference between the maximum task time and
the minimum task time of Simulation 6, (C) Maximum task time of Simulation 7, (D) The difference between the maximum task time and the
minimum task time of Simulation 7.
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4.3.2 Simulation 7
Simulation 7 focuses on path planning for four AUVs, with a

larger number of sampling points compared to simulation 6. It sets

n satisfies n =  180 + 5 · i, i =  0, 1⋯ 29. The final paths for the

four AUVs are carried out using the three methods mentioned

above, and the statistical results for task allocation are shown in

Figures 12C, D. Figure 12C shows that the method proposed in this

paper consistently outperforms the other two methods, with a more

pronounced advantage than in the scenario with four AUVs,

highlighting the stronger robustness of the method when dealing

with large sampling points. Figure 12D demonstrates that the task

allocation proposed in this paper remains stable for four AUVs,

whereas the clustering method exhibits more noticeable fluctuations

when facing large populations.

According to the simulation results from Tables 1–3, and the

statistical results from Figure 12, we draw the following conclusions:

(1) The combination of PSO and ELKAI achieves a more balanced

task distribution, ensuring efficient use of multi-AUV; (2) the

combination of PSO and ELKAI consistently ensures that the

maximum task time is less than that of other methods, allowing

the completion of multi-AUV coverage tasks to be ahead of the other

two methods; (3) the combination of PSO and ELKAI is more

pronounced when dealing with multi-AUV and a large number of

target points, indicating a wider range of applications for the method.
5 Conclusions

This paper proposes a multi-AUV path planning method that

takes into account sonar performance and ocean currents. The core

of this method involves using the PSO and ELKAI in combination

to realize multi-AUV task allocation and path solving. The detailed

solution steps of this method are as follows: Firstly, the sampling

points required for target search are determined based on the sonar

detection range. Secondly, the improved Dijkstra method is adopted

to solve the adjacency matrix of the graph formed by the sampling

points under the ocean currents. Finally, the PSO algorithm is used

for task allocation, and the ELKAI solver is used to solve the shortest

time path for each AUV, and multi-AUV path planning is realized

through continuous iteration of PSO and ELKAI. The following

conclusions can be drawn from the simulation results:

1) Incorporating sonar performance into the AUV path

planning makes the sampling points needed to be traversed closer

to reality, which is conducive to reducing the number of sampling

points and finally reduces the mission time compared to not

considering the sonar performance.

2) The improved Dijkstra algorithm updates a large number of

grids under ocean currents simultaneously and introduces the idea

of iterative updating to ensure the accuracy of the results,

significantly improving solving speed of calculating the adjacency

matrix compared to the traditional Dijkstra algorithm.

3) The method of combining PSO and ELKAI solver achieves a

more balanced task allocation and finds the shortest time path for

all AUVs, reducing the mission time compared to the hybrid genetic

algorithm with variable neighborhood search and the

clustering method.
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Despite the above advantages, the method proposed in this

paper has limitations, such as being inapplicable when the number

of sampling points is low or the number of AUVs is particularly

high. Expanding the applicability of our method to a broader range

is a future research direction for this paper.
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