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1 Introduction

The crown-of-thorns starfish (COTS, Acanthaster planci) is a highly fecund predator of

reef-building corals throughout the Indo-Pacific region (Hall et al., 2017). COTS population

outbreaks cause significant damage to coral reefs, the living environment for more than 30%

of marine animals and plants (Zhu et al., 2022), leading to a loss of coral cover and

biodiversity. Scientists have sequenced the COTS genome (Hall et al., 2017), which provides a

wealth of information on the genetic basis of COTS biology. By identifying specific genes and

proteins involved in these behaviors, scientists are able to gain a deeper understanding of their

reproductive strategies and the factors contributing to outbreaks, so as to develop targeted

biocontrol methods such as peptide mimetics to disrupt COTS aggregation. However, the

function annotation of COTS proteome turns out to be incomplete, with over 20% of proteins

being annotated as “uncharacterized”. Traditional sequence-based annotation methods may

be insufficient for fully resolving genomes, particularly for non-model organisms. It is

commonly recognized that “sequence determines structure, and structure determines

function.” If proteome structuring, by which sequences can be transformed into accurate

structures in a high-throughput way, is as feasible as genome and transcriptome sequencing,

it is believed that such approach could not only substantially aid researchers in

complementing and correcting protein annotations, but also pave a new dimension for

protein data mining (Tunyasuvunakool et al., 2021).

This vision is going to be realized with the help of the booming artificial intelligence (AI)

technology. AI-based protein structure prediction systems represented by RoseTTAFold

(Baek et al., 2021) and AlphaFold2 (Jumper et al., 2021) have brought the dawn of the high-

throughput era of structural proteomics. With accuracy not inferior to traditional methods

such as x-ray crystallography and cryo-electron microscopy (Baek et al., 2021), they have

overwhelming advantages in cost, efficiency and ease of operation. As of July 2022, the

AlphaFold Protein Structure Database (AFDB) boasts open access to a staggering collection

of over 200 million protein structures (Varadi et al., 2024), marking a 1000-fold increase

compared to the 50-year accumulation of the PDB. Furthermore, owing to collaborative

efforts within the open-source community, many optimized versions of AlphaFold2, which

are collectively referred to as AlphaFold-like systems have been developed, with ColabFold

(Mirdita et al., 2022) standing out as a notable example. It significantly reduces the resource

demands for protein folding, empowering more researchers to engage in personalized
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structure predictions and expanding the overall data scale. Up to now,

AlphaFold-like systems present to be the most robust tools for high-

throughput proteome structuring (Callaway, 2023), facilitating a

diverse array of research endeavors. Notable examples include

ColabFold proteome CP-8382 from Southeast University (Zhu

et al., 2022), structural proteome of Sphagnum divinum from Oak

Ridge National Laboratory (Davidson et al., 2023), AlphaFold

proteome of Mnemiopsis leidyi from National Institutes of Health

(Moreland et al., 2024), etc. These explorations are progressively

expanding the protein structure universe and enabling new insights

into protein function and biology.

Here we present the proteome structuring of COTS. Deploying

ColabFold in the Big Data Computing Center at Southeast

University, we predicted 31,743 protein structures. The resulting

dataset covers 60.4% of residues with a confident prediction and

35.5% with very high confidence. We also performed a preliminary

structural bioinformatics analysis using several post-AlphaFold

methods, including fast structure clustering, ligand transplanting

and structure-based Gene Ontology (GO) annotation.
2 Materials and methods

2.1 Proteome structuring

The NCBI RefSeq of Acanthaster planci (GCF_001949145.1)

was used as sequence source. Protein sequences were downloaded

and filtered, discarding those exceeding 2,550 aa to accommodate

the upper limit of GPU memory. Multiple sequence alignments

(MSA) generation were conducted locally (colabfold_search), then

MSAs in A3M format were uploaded to ColabFold 1.5.2 on the

NVIDIA Tesla V100 cluster at the Big Data Computing Center of

Southeast University. The parameters of ColabFold were set to –

amber, –num-recycle 3, –use-gpu-relax, –zip, –num-relax 1. During

the structure prediction process, the MineProt (Zhu et al., 2023)

toolkit (colabfold/import.sh –name-mode 1 –zip –relax) was

periodically executed to process predicted proteins. This included

selection of best structure models with highest predicted local

distance difference test (pLDDT) scores, generation of CIF files,

and storage of model scores in JSON format.
2.2 Structure alignment and clustering

Foldseek (van Kempen et al., 2024) was employed for high-

throughput structure alignment clustering. Predicted structures were

aligned to the AlphaFold Clusters (Barrio-Hernandez et al., 2023)

using easy-search -e 0.01 -s 7.5, and were clustered using easy-cluster

-c 0.9 -e 0.01 –min-seq-id 0.5. Uncharacterized proteins clustered with

annotated COTS proteins were selected, then their similarities to the

annotated proteins were calculated by US-align (Zhang et al., 2022).
2.3 Structure-based function annotation

The representative protein structures identified by Foldseek

clustering got function annotation. AlphaFill (Hekkelman et al.,
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2023) 2.0.0 with PDB-REDO databank (van Beusekom et al., 2018)

was used to enrich them with ligands and cofactors, and DeepFRI

(Gligorijević et al., 2021) was used for GO annotation.

Uncharacterized proteins with average cluster pLDDT > 70

were selected for GO enrichment analysis by the aid of

clusterProfiler (Wu et al., 2021), where GO annotations with

DeepFRI score lower than 0.5 were pre-filtered. The parameters

were pvalueCutoff = 0.05, pAdjustMethod = ‘fdr’, qvalueCutoff = 0.2.
3 Results

The resulting dataset contains 31,743 protein structures, of

which 6,338 were tagged with “uncharacterized” in RefSeq non-

redundant proteins (NR) database (O'Leary et al., 2016) previously.

The model confidence distribution is demonstrated in Figure 1A.

60.4% of residues have a pLDDT larger than 70, and 35.5% have a

very high pLDDT over 90. A total of 20,419 protein structures attain

an average pLDDT greater than 70, the commonly recognized

benchmark of confident model (Tunyasuvunakool et al., 2021).

Structure alignment was made between COTS structural

proteome and AlphaFold Clusters, the Foldseek clustered AFDB. It

should be mentioned that Foldseek hold a comparable position in

structural bioinformatics to that of BLAST in sequential

bioinformatics, for they both enable the feasibility of large-scale

searches in their fields. With its help, scientists have successfully

clustered all of the structures in the AFDB into 2.3 million clusters,

rendering localized operations of AFDB practicable. As illustrated in

Figure 1B, the overall protein structural similarity between COTS and

known species within the AFDB is found to be moderate to low, with

more than half of alignments exhibiting TM-scores (qtmscore in

Supplementary Table S1) below 0.5 (Zhang and Skolnick, 2004). The

majority of sequence identities (fident in Supplementary Table S1)

between these alignments are even lower, aligning with the notion

that protein structure is more conserved than sequence. The

phenomenon of low similarity may be attributed to AFDB’s limited

inclusion ofAcanthaster planci as well as its closely related species, for

the number of Acanthaster protein structures does not surpass 100 in

the database. Therefore, the predicted COTS structural proteome

from this work can currently serve as a starfish-specific extension of

AFDB in view of its generally confident model scores.

Foldseek clustering of the COTS dataset was performed

with reference to the construction process of AlphaFold

Clusters, and 16,896 structural clusters were generated

(Supplementary Table S2). 192 uncharacterized proteins were

found to have high structural similarity with annotated proteins,

as listed in Supplementary Table S3. The sequence identity

between the majority of them and their annotated counterparts

seems to be not low, suggesting that the “uncharacterized” labels

for most of them may result from previous annotation omissions.

At the time of the COTS genome release, sequencing data from its

closely related species were not abundant in the NCBI databases,

thus NCBI’s automated annotation pipeline based on non-COTS

sequences was inevitably to miss several proteins. Structure

clustering could potentially contribute to capturing such

omissions and refining annotations. Furthermore, there are
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totally 3,836 clusters that consist solely of uncharacterized

proteins, which can be designated as uncharacterized clusters

(Supplementary Table S4). Only 1,045 of them are non-

singleton clusters (Barrio-Hernandez et al., 2023), and 1,138 of

them have average pLDDT > 70.

Representative protein of each cluster got structure-based

function annotation, including ligand transplanting by AlphaFill

(Supplementary Table S5) and GO annotation by DeepFRI

(Supplementary Table S6). Several annotation results are

visualized in Figure 2.

The AlphaFill algorithm identifies experimentally determined

protein structures similar to input structure models through

sequence alignment, followed by structural comparison to

ascertain the positions of ligands and cofactors. Subsequently,

these entities are transplanted into structure models, thereby

enriching their information content. 10,171 proteins got the

“filled” models, and Figure 2A shows the statistics of top-20
Frontiers in Marine Science 03
compounds with largest number of transplants. Except for

cholesterol hemisuccinate (Y01), 19 of them are also present

within the top-50 ranked compounds of the entire AlphaFill

databank (alphafill.eu). Given that numerous experimentally

determined protein structures derive from drug experiments,

AlphaFill models may confer additional benefits in supporting the

development of marine drugs against COTS outbreaks, particularly

in the discovery of small molecule targets.

In the pre-AlphaFold era, DeepFRI is one of the few neural

network models for GO annotation that accepts protein structure

input. This feature has distinguished it in this era of high-

throughput structural proteomics. 13,311 proteins got GO

annotation with DeepFRI scores above 0.5, the benchmark of

significant prediction (Gligorijević et al., 2021). 701 representative

proteins of uncharacterized clusters with average pLDDT > 70 were

selected for GO enrichment analysis, results of which are

demonstrated in Figure 2B; Supplementary Table S7. Three
FIGURE 1

Statistics of COTS proteome structuring. (A) Distribution of model confidence against protein length. Horizontal axis is protein length and vertical
axis is protein number. Model confidence calculated by pLDDT is color-coded. Very high: pLDDT > 90; confident: 90 > pLDDT > 70; low: 70 >
pLDDT > 50; very low: pLDDT < 50. (B) Violin plot of structure alignment between COTS structural proteome and AlphaFold Clusters. Horizontal axis
is alignment type, for Foldseek performs structure alignment while also calculating sequence alignment. Vertical axis is alignment score, with identity
corresponding to sequence alignment and TM-score to structure alignment.
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groups of proteins were significantly enriched: one group might be

involved in interactions between organisms (GO:0044419), another

group is localized to the extracellular region (GO:0005576), and a

third group probably have methyltransferase-like activity

(GO:0016741 and GO:0008168). These three groups appear to

have little overlap, with only XP_022108099.1, XP_022096454.1,

and XP_022097466.1 (Supplementary Figure S1) being present in

both GO:0044419 and GO:0005576 groups. It should be noted that

these three proteins possess signal peptides detectable using SignalP

(Teufel et al., 2022) but no obvious transmembrane domains, which

is the feature of secreted proteins (Morin et al., 2023). Pheromone-

like signals are acknowledged as pivotal in the biology of COTS,

enabling the regulation of reproductive aggregations, synchronized

spawning events (Jönsson et al., 2022) (Morin et al., 2024), foraging

behaviors, and escape responses from predators (Hall et al., 2017).

Hence, it might be important for subsequent experimental research
Frontiers in Marine Science 04
as well as meta-analysis to ascertain the presence of these proteins

within the COTS exoproteome and to elucidate their potential

involvement in conspecific or interspecies communication.
4 Discussion

We succeeded to generate a predicted structural proteome of

COTS with acceptable confidence. The application of post-

AlphaFold structure-centric methodology not only provides

evidence for our dataset’s capability of complementing AFDB, but

also enhances existing COTS protein annotation. It is expected for

the COTS structural proteome to deepen our understanding of

COTS biology and facilitating biocontrol method development, not

to mention that these protein structures can be directly used as raw

inputs in various computational biology tasks, obviating the need
FIGURE 2

Structure-based function annotation of COTS structural proteome. (A) Statistics of the top-20 compounds with largest number of transplants. The
horizontal axis is the number of entries and transplants, and the vertical axis is PDBe ligand code. CA, Calcium(2+) ion; NA, Sodium(1+) ion; MG,
Magnesium(2+) ion; ZN, Zinc(2+) ion; NO3, Nitrate ion; K, Potassium(1+) ion; CLR, Cholesterol; ATP, Adenosine triphosphate; OLB, 1-Oleoyl-sn-
glycerol; ADP, Adenosine diphosphate; MN, Manganese(2+) ion; NI, Nickel(2+) ion; CO, Cobalt(2+) ion; Y01, Cholesterol hemisuccinate; GDP,
Guanosine diphosphate; AMP, Adenosine monophosphate; TAR, d-Tartaric acid; GTP, Guanosine triphosphate; NAD, Nicotinamide adenine
dinucleotide; B3P, Bis-Tris propane. (B) Bar plot of GO enrichment analysis of 701 representative uncharacterized proteins.
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for researchers to engage in time-consuming AlphaFold2

deployment and de novo structure modelling.

There is no denying that this work has several limitations. First,

the report lacks a thorough interpretation of the ligand transplanting

results. The software ecosystem of cheminformatics is less developed

than that of bioinformatics, with even the most fundamental ID

conversion tools lacking support for PDB ligand codes utilized by

AlphaFill. Chemical information mining from these models will

continue to pose a challenge unless there is an improvement in the

productivity of cheminformatics programmers. Second, the proteome

structuring failed to cover proteins too large for our GPU devices to

process, a prevalent issue encountered in almost all proteome

structuring efforts. It is proposed that reducing computational costs

be recognized as another significant direction for the development of

AlphaFold-like systems, following the improvement of accuracy and

throughput. Last but not least, our COTS structural proteome is

entirely a “dry lab” product, necessitating further utilization and

assessment by experienced marine biologists. In summary, joint

efforts should be made to apply our dataset to the control of COTS

and the protection of coral reefs.
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