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Adaptation of global primary
production model to the
Greenland Sea conditions:
parameterization and
monitoring for 1998-2022
Aleksandra Cherkasheva1*, Rustam Manurov1, Piotr Kowalczuk1,
Alexandra N. Loginova1, Monika Zabłocka1 and Astrid Bracher2,3

1Institute of Oceanology Polish Academy of Sciences, Sopot, Poland, 2Alfred Wegener Institute for
Polar and Marine Research, Bremerhaven, Germany, 3Institute of Environmental Physics, University of
Bremen, Bremen, Germany
Phytoplankton are responsible for releasing half of the world’s oxygen and for

removing large amounts of carbon dioxide from surface waters. Despite many

studies on the topic conducted in the past decades, we are still far from a good

understanding of ongoing rapid changes in the Arctic Ocean and how they will

affect phytoplankton and the whole ecosystem. An example is the difference in

net primary production modelling estimates, which differ twice globally and fifty

times when only the Arctic region is considered. Here, we aim to improve the

quality of Greenland Sea primary production estimates, by testing different

versions of primary production model against in situ data and then calculating

regional estimates and trends for 1998-2022 for those performing best. As a

baseline, we chose the commonly used global primary production model and

tested it with different combinations of empirical relationships and input data.

Local empirical relationships were taken from measurements by the literature

and derived from the unpublished data of Institute of Oceanology of Polish

Academy of Sciences across the Fram Strait. For validation, we took historical net

primary production 14C data from literature and added to it our own gross

primary production O2 measurements. Field data showed good agreement

between primary production measured with 14C and O2 evolution methods.

From all the model setups, those including local chlorophyll a profile and local

absorption spectrum best reproduced in situ data. Our modelled regional annual

primary production estimates are equal to 346 TgC/year for the Nordic Seas

region and 342 TgC/year for the Greenland Sea sector of the Arctic defined as

45°W-15°E, 66°33′N-90°N. These values are higher than those previously

reported. Monthly values show a seasonal cycle with less monthly variability

than previously reported. No significant increase or decrease in primary

production was observed when studying regionally averaged trends. The

accuracy of the selected here model setups to reproduce the field data in
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terms of Root Mean Square Difference is better than in the related Arctic studies.

The improved primary production estimates strengthen researchers’ ability to

assess carbon flux and understand biogeochemical processes in the

Greenland Sea.
KEYWORDS

primary production, ocean colour, remote sensing, regional model, model
development, Greenland Sea
1 Introduction

The Greenland Sea is one of the most productive regions of the

Arctic Ocean (Arrigo and van Dijken, 2011; Sakshaug, 2004), which

means that changes in its ecosystem are likely to affect the fisheries

of the Arctic region (Chassot et al., 2010; Steingrund and Gaard,

2005). In addition to that, here deep convective mixing takes place

(Bashmachnikov et al., 2021; Rey et al., 2000), and large amounts of

carbon are possibly transferred to the deep ocean, having a

profound effect on the global carbon cycle (Hansell et al., 2009).

Most of the atmospheric CO2 uptake occurs as the Atlantic water is

cooled on its way north along the Norwegian coast, and

consequently, the Atlantic water contains a high anthropogenic

CO2 content (e.g., Olsen et al., 2006; Sabine et al., 2004; Vázquez-

Rodrıǵuez et al., 2009). According to recent work by Chierici et al.

(2019), phytoplankton uptake of CO2 played by far the most

important role in the observed CO2 change throughout the study

area and explained up to 89% of the total CO2 change.

However, correct quantification of phytoplankton uptake of CO2

(where primary production plays a major part) is challenging in the

area due to several environmental factors. The first factor to consider is

the dynamic circulation, characterised by warm and saline Atlantic

waters in the eastern part, cold and fresh Arctic waters in the western

part, and the large frontal zone with eddies in between these two water

masses (Rudels and Quadfasel, 1991; Johannessen et al., 1987), as seen

in Figure 1. The second factor is the presence of sea ice that, by melting,

influences water stratification and circulation. Formation of sea ice

constrains light exposure and nutrient supply of phytoplankton, and its

melting enhances it, having a profound effect on phytoplankton

blooms (e.g., Cherkasheva et al., 2014; McLaughlin and Carmack,

2010; Skogen et al., 2007; Slagstad et al., 2011; Von Appen et al., 2021).

This effect is especially pronounced in the marginal ice zone, which is

known to be the localisation of the large phytoplankton blooms in the

area (Alexander and Neinauer, 1981; Cherkasheva et al., 2014; Perrette

et al., 2011). Recently, it was found that such blooms can even be

widespread under the ice, making up a large percentage of total

biomass, which cannot be tracked with satellite data (Ardyna and

Arrigo, 2020; Ardyna et al., 2020). Such under-ice blooms were

documented, for example, in the area along the north coast of

Svalbard and two degrees north of it (Assmy et al., 2017).
02
Another feature to be accounted for in the Arctic Ocean is often

occurring deep subsurface chlorophyll maxima (SCMs) that

significantly contribute to primary production (PP), but are

mostly not detected by ocean colour sensors. In the context of

current sea-ice loss in the Arctic, the role of SCM layer on

biogeochemical fluxes will potentially increase, and this remains

to be quantified (Ardyna and Arrigo, 2020). Commonly used

models usually assume either uniform chlorophyll a (CHL)

profile or global relationships between surface CHL and its profile

(Antoine and Morel, 1996; Behrenfeld and Falkowski, 1997) with

some exceptions (Ardyna et al., 2013; Cherkasheva et al., 2013).

Ocean colour PPmodels are also challenged in the Arctic Ocean by

the limited availability of satellite and field data. The satellite data used

as input to the models has large uncertainties and poor spatial coverage

in the region due to specific conditions, such as low solar elevation,

presence of sea ice (IOCCG, 2015), and extensive presence of clouds in
FIGURE 1

Schematic image of circulation patterns in the European Arctic.
EGC, East Greenland Current; WSC, West Spitsbergen Current;
NwAC, Norwegian Atlantic Current; RAC, Return Atlantic Current.
Modified from Kraft (2013). Brown and red arrows denote warm
water currents, and blue arrows denote cold water currents. The red
arrow shows the warmest current in the area.
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summer (Eastman and Warren, 2010; Intrieri et al., 2002). The

coverage of field data that could be used for validation is also

limited. We have checked the availability of PP data for the satellite

era with continuous ocean colour time series (1998-2022, after the

SeaWiFS launch) in the largest field primary production database for

the Arctic region ARCSS-PP (Matrai et al., 2013). The percentage of

primary production data for the Greenland Sea sector of the Arctic in

the ARCSS-PP database is only 0.3% compared to the data from the

whole Arctic region. While in terms of area (with land), the Greenland

Sea Sector takes up 9% of the Arctic Ocean.

As a result of the above-mentioned factors, the quality of

primary production modelling in the Arctic in general and in the

Greenland Sea in particular still needs improvement. The most

extensive assessment of the performance of primary production

models is the series of studies called the Primary Production

Algorithm Round Robin (PPARR), which uses a set of activities

to compare PP models. According to one of the most cited PPARR

studies, models estimating marine primary production range by a

factor of two globally (Carr et al., 2006). If only the Arctic region is

considered, the factor of difference increases to fifty (Carr et al.,

2006). The most recent Arctic PPARR by Lee et al. (2015) showed

that PP models need to be carefully tuned for the Arctic Ocean

because most of the models that performed relatively well were

those that used Arctic-relevant parameters (e.g. Belanger et al.,

2013; Hirawake et al., 2012).

Taking into account these challenges, we have formulated the

goals of the current article: 1) develop a model setup adapted for the

Greenland Sea based on the global primary production model, 2)

obtain more accurate regional primary production estimates, and 3)

monitor the primary production variability for the period when

ocean colour data are stably available (1998-2022).
2 Method and data

The overview of the procedure to choose the best-performing

model setup and then calculate basin estimates is presented in Figure 2.

The global primary production model equation was taken as a base

(Morel, 1991), and then the different setups with the variations of the

input parameters (from different satellites and climatologies) and the

variations of the local parameterizations (from field data) were

calculated. The resulting different setups of a model were then

validated against the in situ data to choose the best-performing

model setup. Finally, for the best-performing model setup, the basin

estimates and temporal trends were calculated.
2.1 Region

The spatial limits for the region of study were set at 45°W-15°E,

65°N-84°N for the results to be comparable with the studies of Hill

et al. (2013) and Arrigo and van Dijken (2011) who calculated the

basin primary production estimates for this part of the Arctic. All

the data used were limited to the period of April-September

1998-2022.
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2.2 Choice of a PP model

The choice of a PP model is not a straightforward task, as it was

shown that no best model exists for all conditions (Saba et al., 2011).

However, during one of the latest PPARR studies the Antoine and

Morel (1996) model performed among the best models (in terms of

lowest Root Mean Square Difference (RMSD) between in situ and

modelled data) in eight out of ten regions that were studied (Saba

et al., 2011). The conclusive recommendation of Saba et al. (2011)

was that ‘in deeper waters, Antoine and Morel (1996) model might

be an excellent choice’ and this encouraged our decision to use the

Morel (1991) equation, which is in the base of Antoine and Morel

(1996) model. We are aware that when the PPARR was conducted

for the Arctic region, the Antoine and Morel (1996) model did not

perform best, as opposed to the models with Arctic-specific

coefficients (Lee et al., 2015). However, it is a model of depth-

resolved type, which correlated more with in situ primary

production than other model types (Lee et al., 2015) and has high

potential globally. We were not able to use Antoine and Morel

(1996) model as its components, i.e. look-up tables are not available

online; therefore, here we applied a simplified version of Morel

(1991) model adding to it the Arctic-specific coefficients.

The main equation of the Morel (1991) simplified case model,

which is a wavelength-integrated depth-resolved primary

production model is the following:

P =
12
4:6

� �
CHLtotPAR(0

+)a*jm (1)

For the baseline, we took values of spectrally-averaged constant

CHL-specific absorption coefficient (a*), and average quantum yield
FIGURE 2

Scheme of the procedure applied to calculate Greenland Sea
primary production basin estimates and trends.
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valid for the euphotic layer (jm) from Morel (1991). CHLtot , which

is a total CHL integrated over the euphotic layer, was calculated

from the surface CHL based on Morel and Berthon (1989) method.

Following Morel and Berthon (1989), the model of Morel (1988)

was used for the estimation of both Zeu (euphotic layer depth) and

CHLtot . 12 is the coefficient that transforms the net amount of

carbon fixed from molC into mass by using the carbon molar

weight (12 g/mol) and 4.6 is the coefficient accounting for the light

attenuation with depth [for more details see Appendix 2 in

Morel (1991)].
2.3 Input data

2.3.1 Satellite and reanalysis data
To calculate outputs for different model versions, seasonal basin

estimates, and temporal trends, we have used the satellite data

described in this section. For all satellite data, we’ve taken monthly

composites, as for the daily or 8-day averages the coverage was

much poorer. For example, for the whole Arctic, Lee et al. (2015)

found only 85 match-ups between satellite and in-situ daily data,

only two of which are in the Greenland Sea sector (visual analysis of

Figure 1 in Lee et al. (2015)). Recognizing that phytoplankton

concentrations can vary significantly within a month, we’ve tested

the 8-day satellite data collocation with our primary production

field dataset (see details in section 2.3.3 below) and got 13 match-

ups for a dataset of 45 points, which was not sufficient from our

point of view and supported our decision to perform the analysis on

monthly data. The decision to test different satellite data products

was also mainly based on the spatial availability of data for the test

month of August 2022, since we faced the issue of most of the ocean

colour data not being available for the latitudes higher than 78°N in

our region of study. The test month of August 2022 was chosen

based on the most recent expedition with available field data.

For satellite CHL we have used Copernicus-GlobColour Level 4

CHL (SeaWiFS, MODIS, MERIS, VIIRS-SNPP & JPSS1, OLCI-S3A

& S3B) monthly and interpolated data (resolution: 4 km) and

Globcolour Level 3 CHL (MERIS, MODIS, VIIRSN) for monthly

data from Case1 waters (resolution: 4 km). Copernicus-GlobColour

CHL for the test month showed 83% coverage, while Globcolour

CHL showed 69% coverage.

For Photosynthetically Available Radiation (PAR) we have used

Eumetsat OLCI Level 2 PAR daily data, which we combined into

monthly composites (resolution: 1200 m at nadir) and Globcolour

Level 3 MODIS/VIIRSN merged PAR monthly product (resolution: 4

km). Eumetsat PAR for the test month showed 87% coverage, while

Globcolour PAR showed 81% coverage. For OLCI Level 2 PAR data for

all the months fromApril until September were available only for 2022,

thus we took 2022 data and regarded it as climatology for further

calculations. As an alternative for the satellite PAR data, we used

reanalysis climatological estimates. Reanalysis estimates that

incorporate observations and numerical simulations with data

assimilation of monthly average downward solar radiation flux at

~1.9° resolution were obtained from NOAA/National Centers for
Frontiers in Marine Science 04
Environmental Prediction and converted to PAR by multiplying by

C=0.43, PAR to the shortwave radiation fraction (Olofsson et al., 2007).

As for the accuracy of the mentioned satellite data, though the

Arctic Region is challenging for optical remote sensing

measurements, the global CHL remote sensing algorithms were

adjusted for Arctic Ocean waters (Cota et al., 2004) with an

acceptable result. For example, the OC4L algorithm applied to

Western Arctic Ocean shelf waters characterized by strong

CDOM absorption, retrieved CHL with the requisite accuracy for

this parameter (RMSD < 35%) (Matsuoka et al., 2007). Satellite-

derived PAR data validation in the Arctic also previously showed a

generally good agreement between satellite-derived estimates and

ship-based data and between methods (Laliberté et al., 2016).

2.3.2 Field data used for local coefficients
For the local dependency between satellite CHL and vertical

CHL profi le we ’ve used already existing vertical CHL

parameterization for the Greenland Sea based on analysis of 1199

profiles from Cherkasheva et al. (2013). The dataset used in

Cherkasheva et al. (2013) covers months from April to September

for 1957-2010 for the region north of the Arctic circle at 66°33′39′′
N and between 45° W and 20° E. The mathematical approximations

of CHL profiles were obtained by Cherkasheva et al. (2013) by

applying a Gaussian fit to the median monthly resolved chlorophyll

profiles for the several categories defined by surface CHL. For the

calculation of local a* made in the current paper we’ve used

particulate absorption data and CHL data further described in the

sections 2.3.2.1 and 2.3.2.2.

2.3.2.1 Particulate absorption data

For the particulate absorption database, we combined the

measurements obtained during the cruise to the Fram Strait

onboard of RV ‘Kronprinz Haakon’ in 2021 and data from

Kowalczuk et al. (2019) for 2014-2016 from the same area.

Samples for particulate absorption analyses were taken from

three depths at selected stations (5, 15, and 25 m) and filtered onto

0.7 μm glass fibre filters (Whatman, GF/F). The filters were stored at

-80°C freezer and analysed at the home laboratory of the Institute of

Oceanology of Polish Academy of Sciences (IOPAN). The

absorbance of the particles deposited on the filter paper was

measured with Lambda 850 (Perkin Elmer, USA) in the spectral

range 300 - 850 nm with 1 nm resolution, equipped with the

integration sphere using the transmission-reflection method

described by Tassan and Ferrari (2002), and Tassan and Ferrari

(1995). The phytoplankton pigment absorption coefficient, aph(l),
was calculated using the standard procedure described in

Kowalczuk et al. (2019). The CHL-specific phytoplankton

pigments absorption coefficient at 443 nm, a*ph(443), was

calculated for a given sample as the ratio of aph(443) to CHL

concentration (Bricaud et al., 1995).

2.3.2.2 Chlorophyll a data

The pigments contained in the suspended particles retained on

filter pads were extracted in 96% ethanol at room temperature for
frontiersin.org
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24 hours (Wintermans and De Mots, 1965; Marker et al., 1980).

CHL concentration was determined using a spectrophotometric

method (Lorenzen, 1967) using a Perkin Elmer Lambda 650

spectrophotometer. The optical density OD(l) of the pigment

extract in ethanol was measured in a 2 cm cuvette. The raw OD

readings at 665 nm were corrected for the background signal in the

near-infrared region (750 nm): DOD = OD(665nm) - OD(750nm);

and the resulting OD was converted to CHL concentration using an

equation involving the volumes of filtered water (Vw) and the

ethanol extract (VEtOH), the path length (l), and the specific

absorption coefficient of CHL in 96% ethanol at 665 nm

(Strickland and Parsons, 1972; Stramska et al., 2003):

CHL = (103DOD*VEtOH)=(83Vw*l) (2)
2.3.3 Field data used for validation
Due to the limited availability of publicly available field primary

production data in the region (Section 1), for validation, we have

used data obtained with two different methods: net primary

production data obtained with the 14C method (Steemann

Nielsen, 1952) (NPP_C14) (see Section 2.3.3.1), and gross

primary production obtained with optode O2 measurements

(GPP_O2) (see Section 2.3.3.2).

2.3.3.1 Net primary production data with
14C measurements

For our region of study for 1998-2022, five points were available

from the Matrai et al. (2013) database, and 19 points from RV Dana

and RV Triton cruises (Richardson et al., 2005). We have also added

nine data points from the two Spitsbergen fjords (Iversen and

Seuthe, 2011; Piwosz et al., 2009). As a result, we got a total of 33

data points for the period of April-September 1999-2006. The data

by Richardson et al. (2005) were taken from two depths: the surface

and the SCM (varying depth), samples were incubated in the

incubator for 24 hours at a temperature +1˚C. Fjords data by

Iversen and Seuthe (2011) were collected for the six depths down to

50 m, the samples were incubated overboard for 24 hours. Another

fjords dataset by Piwosz et al. (2009) also has the data incubated in

the sea for the six depths down to 50 m, with incubations lasting 6-9

hours at midday and then extrapolated to daily measurements, For

the Matrai et al. (2013) dataset, data were collected from four to

seven depths down to 50m. No information on the incubation

procedure was found in the metadata files. For all the datasets, in

case the data contained only vertically integrated values we used

them without processing, in the cases when depth-resolved data was

available, we integrated the values till the last available depth
2.3.3.2 Gross primary production with optode
O2 measurements

These are data obtained and measured specially for this study

during RV ‘Kronprinz Haakon’ 2021 Fram Strait cruise and RV

‘Maria S Merian’ 2022 Greenland Fjords cruise. This dataset has 13

points for August 2021-2022.

The estimation of gross primary production from the optode

O2 measurements was derived with the method adapted from
Frontiers in Marine Science 05
Campbell et al. (2016) and also described in Section 6 of the Balch

et al. (2022). The incubation bottles were overfilled with the

seawater sample to prevent the formation of a headspace during

the closure of the glass stopper and placed into containers with

seawater under continuous illumination with an artificial lamp

and mixing. The incubation temperature in the cold room was set

at 4°C, which was representative of the average conditions of the

seawater in situ in the area for the sampling layer (ranging from

-2°C to 7°C). The determination of the gross primary production

by oxygen modification was carried out with the help of oxygen

measurements obtained using a Fixbox4 optical sensor (PreSens

HMbH, Germany), which non-invasively utilises optical oxygen

sensor spots installed in the 250 ml white glass bottles. Oxygen

respiration was determined in foil-wrapped bottles of the same

volume with the same optical sensor. The bottles were incubated

in a thermostabilised luminostate at light levels representing

surface, 15 m and 25 m PAR in the case of a 2021 cruise and

surface, 40 m and 60 m in the case of a 2022 cruise (Figure 3). The

depths were defined by the historical Fram Strait transect of the

Norwegian Polar Institute which was not subjected to change in

case of 2021 cruise and mutual agreement between the

participating scientific groups in case of 2022 cruise. Each of the

bottles had a duplicate in case of the 2021 cruise and a triplicate in

case of the 2022 cruise. The light level reproducing surface light

conditions was selected at the beginning of the cruise by choosing

the light intensity of the lamp and the appropriate level of the

neutral density film. The selection was made by visually

comparing the measurement of downwelling irradiance spectra

on deck with the hyperspectral irradiance sensor RAMSES ACC

(TriOS, Germany), and the measurements of the different

combinations of light intensity and neutral density film with the

same downwelling irradiance spectra sensor in the cold room

inside the incubation box. The light levels were assumed to be

constant throughout the day, as both of the cruises took place in

the beginning of August above 70°N in the period of the midnight

sun at these latitudes. The oxygen concentration dynamics was

determined every 6 hours for 24, 48, or 72 hours depending on the

initial CHL concentration. The observed CHL concentrations

were quite low (0.27 mgCHL/m3 on average for the surface

samples), causing a longer incubation period from 48 to 72

hours than the standard 24 hours used for higher CHL

concentrations. Samples of the same Niskin bottles were filtered

for CHL measurements in parallel with oxygen incubations.

Optode sensors were calibrated for bottles in use prior to the

cruise using 0% and 100% dissolved oxygen standards of nitrogen-

saturated water and oxygen-saturated water, respectively.

After measurements were done, the values were averaged for

duplicates in the case of the 2021 cruise and triplicates in the case of

the 2022 cruise. Then, the rates of change of oxygen in dark bottles

(an estimate of community respiration, CR, which is a sum of

autotrophic respiration (AR) and heterotrophic respiration (HR))

and that in clear bottles (an estimate of net community production,

NCP) were calculated by subtracting initial dissolved oxygen

concentrations from the dissolved oxygen concentrations

measured after incubation under dark and light conditions,

respectively (Carritt and Carpenter, 1966; Carpenter, 1995). GPP
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was derived by summing NCP and CR (Carritt and Carpenter,

1966; Duarte et al., 2011). The relation between GPP, NCP, NPP,

AR, and HR is summarised in the following equation (Li and

Cassar, 2016):

CO2 +H2O  NCP
��!

 HR
 �|fflfflfflfflffl{zfflfflfflfflffl}

NPP

 AR
 �zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{GPP

���������!
 Organic Matter + O2 (3)

This equation defines GPP as a sum of NCP, AR, and HR, and

NPP as a sum of NCP and HR.

In case the measurements were taken for 48 or 72 hours, they

were weighted by the incubation time to achieve a value of 24 hours.

Then, to convert the O2 production rates into 14C incorporation

rates, the specific photosynthetic quotient (PQ) value was used.

Although no PQ value has been derived for the Arctic Ocean, a

value of 1.25, proposed by Williams et al. (1979), has been widely

applied in this region to convert O2 molar stoichiometry units into

C (i.e., Duarte and Agustı,́ 1998, Sanz-Martin et al., 2019, Vaquer-

Sunyer et al., 2013). Therefore, we have used a PQ value of 1.25 and

then integrated the data for the 2021 and 2022 cruises till the

deepest depth available in 2021, which is 25m. To be informed on

the effect of choosing a certain PQ value, we’ve additionally tested

PQ values of 1.0 and 1.4 as the minimum and maximum values used

for the ocean (e.g. Sanz-Martin et al., 2019; Balch et al. (2022) on the

model performance.
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2.4 Versions of primary production
model setup

After the baseline equation (1) was set, there were several

variations of the components of the model that we have tested

when validating the model output against field PP data (Table 1).

The groups tested were:

a. Source of CHL data (see Section 2.3.1 above):
1. Hermes ACRI Globcolour Level 3 CHL (CHL_L3)

2. Copernicus-GlobColour Level 4 CHL (CHL_L4)
b. Source of photosynthetically active radiation data (see Section

2.3.1 above):
1. NOAA/NCEP Reanalysis PAR (PAR_R)

2. EUMETSAT Level 2 OLCI PAR (PAR_L2)

3. Hermes ACRI Globcolour Level 3 MODIS/VIIRSN merged

PAR (PAR_L3)
c. Shape of CHL vertical profile calculated using:
1. Global relationship between surface CHL and CHL profile

used in Antoine and Morel (1996) model which is the

satellite data adapted version of Morel (1991) model. Either
TABLE 1 Summary of the model components tested.

Type of CHL Type of PAR CHL vertical profile PAR/PUR Integration depth

[3] - GlobColour Level
3 CHL [1] - NOAA/NCEP Reanalysis PAR

[0] - Global CHL profile following
Morel and Berthon (1988)

[0] - no coefficient
applied to PAR

[0] - profiles integrated till
euphotic layer depth

[4] - Copernicus-
GlobColour Level 4 CHL;

[2] - EUMETSAT Level 2
OLCI PAR

[1] - Local CHL profile following
Cherkasheva et al. (2013)

[1] - PAR converted
to local PUR

[1] - profiles integrated till
productive layer depth

[3] - GlobColour Level 3 MODIS/
VIIRSN merged PAR

[2] - PAR converted
to global PUR
Switching those components resulted in 72 model combinations. Number in brackets indicates the number used to denote this component further on in the paper.
FIGURE 3

Gross Primary Production Measurements Setup during the Kronprinz Haakon Fram Strait 2021 and Maria S Merian 2022 cruises. Three of such boxes
were installed, one for each depth.
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Fron
uniform or Morel and Berthon (1989) shape of the profile

was assumed; the distinction between the two cases was

made based on latitude (for high latitudes >70°N the profile

is assumed to be uniform) or on the mixed layer depth

position. If the mixed layer depth was larger than 100 m or

exceeded the euphotic depth, the profile was also assumed

to be uniform (Antoine et al., 1996). The mixed layer depth

values were taken from Boyer et al. (2018) climatology data.

Previously Morel and Berthon (1989) was shown to capture

only the early months of the Greenland Sea season (April-

June, Cherkasheva et al., 2013), suggesting the need to use

the monthly resolved relationship for the region as one in

the next point (PROFILE_GLOB)

2. Local Greenland Sea relationship between surface CHL and

CHL profile developed based on the analysis of 1199

profiles (Cherkasheva et al., 2013) (PROFILE_LOC)
d. The fraction of light spectrum. We have tested:
1. Photosynthetically Available Radiation (PAR) used in the

majority of primary production models (e.g., Lee et al., 2015)

and Morel (1991) simplified model version (SPECTR_PAR)

2. Photosynthetically Usable Radiation (PUR) used in Antoine

and Morel (1996), which is a fraction of PAR absorbed by

phytoplankton (Morel, 1978), is used instead of PAR in the

equation (1). In this case the term “PAR” is substituted by the

term “PUR”. To obtain PUR we multiplied PAR by a mean

CHL-specific absorption spectrum computed from

measurements for 14 phytoplankton species, grown in

culture, and normalised with respect to a maximum value

(Morel, 1991) (SPECTR_PUR_GLOB)

3. PUR accounted for the Greenland Sea species of

phytoplankton. To obtain this version of PUR, the PAR

values were multiplied by the climatology of the mean

CHL-specific absorption calculated from the unpublished

data from RV ‘Kronprinz Haakon’ 2021 Fram Strait cruise

and data from Kowalczuk et al. (2019) for 2014-2016 (see

Section 2.3.2.1). The mean CHL-specific absorption value

was computed as the spectrally averaged percentage of

absorption related to maximum value, which was

assumed to be 100%. As the measurements did not cover

all the area, for each point of the grid the closest available

value was taken. (SPECTR_PUR_LOC)
e. Integration depth. We have compared integration of CHL

data for two depths:
1. Euphotic layer depth (Zeu) calculated using the Morel

(1988) model following Morel and Berthon (1989), which

was later confirmed by Morel and Maritorena

(2001) (DEPTH_ZEU)

2. Depth of the ‘extended’ productive layer (D) which is

defined by Zeu multiplied by 1.5. D was introduced by

Morel (1991) as in some cases Zeu does not cover the

subsurface CHL maximum, thus giving false estimates of

the integrated CHL profile (DEPTH_D).
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For comparison, we have also added to the further analysis 1)

publicly available PP output of Global Ocean Colour (Copernicus-

GlobColour), Bio-Geo-Chemical, L4 (monthly and interpolated)

from Satellite Observations (1997-ongoing) based on Antoine and

Morel (1996) algorithm, and 2) Behrenfeld et al. (1998) PP model

based on Globcolour Level 3 CHL.
2.5 Statistical analysis for model
performance assessment

Field PP data were matched with modelled PP data using two

methods: 1) commonly used method of matching field data location

with satellite cell, i.e. the matchup was considered valid if daily field

data coordinates fell into corresponding 4 km x 4 km monthly

satellite data cell. Cells with missing modelled PP data were excluded.

2) method to increase the number of collocations further on named

as «interpolated»: field data location was matched with a satellite cell

using the same criteria as described in point 1; if the modelled PP data

was missing, it was interpolated using the scipy.interpolate.griddata

linear interpolation in Python developed for unstructured scientific

data withmore than one dimension The interpolant is constructed by

triangulating the input data, and on each triangle performing linear

barycentric interpolation.

Model performance was assessed using RMSD for each

participating model version, where N is the number of observations:

RMSD =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N
i=1(logNPPm(i) − logNPPd(i))

2

r
(4)

, where NPPm(i) is modeled NPP and NPPd(i) represents in situ

data for each sample i. Generally, the smaller a RMSD value

becomes, the better a model performs. The RMSD consists of two

components: 1) bias representing the difference between the means

of in-situ and model data (BIAS), providing the measure of how well

the mean is modelled;

BIAS = logNPPm − logNPPd (5)

and 2) unbiased RMSD (uRMSD), providing the measure of

how well variability is modelled.

uRMSD =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N
i=1((logNPPm(i) − logNPPm) − (logNPPd(i) − logNPPd))

2

r

(6)

The target diagram (Jolliff et al., 2009) was used to visualise BI

AS (y-axis), uRMSD (x-axis) and RMSD (distance from a center) on

a single plot. To plot a Target diagram, BIAS and uRMSD are

normalized by the standard deviation of logNPPd . Normalized bias

(BIAS*) is thus defined as:

BIAS* = BIAS=sd (7)

Normalized uRMSD (uRMSD*) is defined as:

uRMSD* =
uRMSD

sd
  (if  sm > sd) = −

uRMSD
sd

  (if    sm < sd) (8)

, where sd is the standard deviation of logNPPd and model is the

standard deviation of logNPPm.
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As an additional characteristic to assess the skill of the model,

the Pearson correlation coefficient (r) was calculated. The closer r is

to 1, the better a model version performs.

Skill statistics for all versions of the model normalized by the

standard deviation are visually presented in the Target diagrams.

The closer a model symbol is to the origin, the better a

model performs.

As in Lee et al. (2015), model versions performing relatively

better than the others were selected for further analysis using the

two criteria: (1) bias was close to 0 (-0.1<bias<0.1), and (2)

Pearson’s correlation coefficient (r) was greater than the model

average (0.25).
2.6 Calculation of trends and
basin estimates

To compare our estimates to previous studies, we calculated

basin primary production for two regions (Figure 4). The first

region was set according to Hill et al. (2013) and covered the Nordic

Seas region of the EASE grid representation of the Arctic Ocean

starting at 65°N. Each cell in the grid was 100 x 100 km. As in the

versions of the EASE grid available online now the Nordic Seas

region borders have changed compared to Hill et al. (2013) version,

we have digitized the map from Hill et al. (2013) using

WebPlotDigitizer v4.6. Hill et al. (2013) paper includes Nordic

Seas annual PP basin estimates accounting for SCM, and pan-Arctic

monthly estimates accounting for SCM. However, monthly

estimates for the Nordic Seas do not include SCM influence, thus

we similarly to the method used in the paper assumed an

underestimation of 75% for the calculations without SCM and
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corrected for that. The second region was set as in Arrigo and

van Dijken (2011) and Arrigo and van Dijken (2015) at 45°W-15°E,

65°N-84°N. Trends were calculated using least squares linear fit.

Mind that for these calculations PP was not log-transformed as

opposed to the previous section.
3 Results

3.1 Field primary production data

Field primary production data were available for the period

1999-2006 for NPP_C14 and for the years 2021-2022 for GPP_O2.

Looking at the spatial distribution of the field data in Figure 5, one

can see the slightly larger values on the eastern Atlantic waters side

as opposed to lower values on the polar waters side to the west.

In between the polar waters and the Atlantic Waters lies a

frontal zone. The location of the frontal zone can clearly be seen in

the temperature and salinity cross section across the Fram Strait at

79°N in 2014 (Figure 5, right side). The location of this frontal zone

is quite stable through the years, also confirmed, for example, by

Granskog et al. (2012) and Gonçalves-Araujo et al. (2016). At the

frontal zone (see area 76°N-80°N, 2°W-6°W on the map in Figure 5)

both the NPP and GPP are larger, with maximum values observed

in the area for both measurement methods.

These general patterns are in good agreement for both

methods of data collection, although they were collected in

different years and the type of measured primary production is

different. The mean values of the data are 1.5 times higher for

GPP_O2 - 884 mgC/m2/day for GPP_O2 and 589 mgC/m2/day
FIGURE 4

Two regions selected for the calculation of basin estimates for comparison with the of the PP model results from Hill et al. (2013) and Arrigo and van
Dijken (2015).
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for NPP_C14. The two-tailed hypothesis Student’s test gives a t-

value of 1.53 and p-value of 0.06, showing the two datasets to be

partially similar. The range of values is similar for both methods,

being just slightly higher for the GPP_O2 values (Figure 6). In

general, GPP_O2 is supposed to have higher values than

NPP_C14 (e.g., Robinson et al. (2009), Balch et al. (2022)). In

the literature comparisons between the GPP_O2 and NPP_C14

show on average a twofold difference between these two estimates

in the Arctic, 21-70 mgC/m3/d for the surface 14C-NPP, and 55-

168 mgC/m3/d for the surface GPP_O2 (Matrai et al., 2013; Sanz-

Martin et al., 2019; Vaquer-Sunyer et al., 2013).

The fact that our GPP_O2 values in general are not as high as

expected could come from the difference in the integration depth

between the two methods. All the GPP_O2 data were integrated up

to 25 m, while the NPP_C14 data have different integration depths,

varying from 30 m to 60 m. Unfortunately, it was not possible to

have the same integration depths for both methods, as the majority

of the 14C data from the literature had only integrated values. To

sum up, the results show that similar spatial patterns for PP are

obtained for the two datasets accomplished with different PP

methods, collected in different years and seasons. The standard

deviation of the triplicate measurements that were then converted

to GPP was 38 mgC/m3/day for the difference between the first and

last light bottle measurements, and 50 mgC/m3/day for the

difference between the first and last dark bottle measurements.
3.2 Sensitivity study

To test satellite-based PP model sensitivity to changes in

different model configurations, we have assessed which parameter

affected the model output most. For this, we have calculated the
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RMSD difference between matchups of field PP and modelled PP

within each of the groups of tested parameters as listed in Section

2.4. For groups assessing the source and the vertical distribution of

CHL data, the difference was the least. The minimum was observed

for group 1, the source of CHL data, with a difference in RMSD of

0.001, and for group 3, difference in the shape of a CHL profile, the

difference in RMSD was also low 0.011. Group 5, the difference in

integration depth, showed also quite a low RMSD difference of

0.032. The largest RMSD difference was observed for the groups

assessing the light field - group 2, source of PAR data, showed a

0.254 difference, and group 4, choice of PAR or PUR spectra,

showed a 0.195 difference.

This result is contradictory to most of the PP model sensitivity

studies, where differences in CHL data generally have more

influence on the final output than PAR data (e.g. Carr et al.,

2006; Lee et al., 2015; Saba et al., 2011). This could be explained

by the fact that in this study the CHL data differ only in processing

algorithms, while the PAR data differ in both processing algorithms

and sensors. Here, as for our current knowledge, take for the first

time Level 2 PAR data from Eumetsat for PP modelling, which has

larger values than Glocolour PAR Level 3 data. The difference

within group 4, i.e. choosing the PAR spectrum, as in the simplified

version of Morel (1991), or the PUR spectrum, as in the full version

of Antoine and Morel (1996), is basically a choice between two

physically different models, which explains a large difference.
3.3 Choice of the best-performing
model setup

We have analysed the matchups for six different versions of in

situ data set: three non-interpolated versions, 1) NPP_C14 dataset,
FIGURE 5

Left: Locations of field primary production data for 1999-2022 used for model validation. Circles indicate net primary production obtained with the
14C method for 1999-2006. Triangles indicate the gross primary production obtained with the dissolved O2 method and converted to mgC/m2/day
for 2021-2022. The red line shows the location of cross sections to the right. Right: Cross sections of temperature and salinity CTD measurements
from the 2014 Fram Strait cruise across 79°N.
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2) GPP_O2 dataset, and 3) NPP_C14 together with GPP_O2 data

set. To get the same number of collocations for all the models, we

have alternatively spatially interpolated primary production model

setups with CHL L3 fields in them to have the same valid data

points as in model setups with CHL L4 fields (if the modelled PP

data was missing, it was interpolated using the method described in

the first paragraph of Section 2.5). This resulted in three other cases:

4) interpolated NPP_C14 dataset, 5) interpolated GPP_O2 dataset,

and 6) interpolated NPP_C14 together with GPP_O2 dataset.

For a general overview of the differences in model setups we first

show the single bar plot with all the model versions for just one of the

datasets that has maximum number of field points for all the

combinations (41 points) interpolated NPP_C14+GPP_O2 dataset

(Figure 7; Table 2). In Table 2 it is clear that the interpolated datasets

do not always reach the maximum number of available data points,

for example, 45 available points for NPP_C14+GPP_O2 dataset give

only 41 matchups in its interpolated version. In the interpolated

dataset, our goal was to obtain an equal number of collocations for all

the model setups. Points that were not interpolated as they were

outlying the area with available data were excluded. Points that were

not present in Copernicus-GlobColour L4 PP data based on Antoine

and Morel (1996) were also excluded.

Models selected as a result of this chapter passed the two criteria

performance test: (1) bias was close to 0 (-0.1<bias<0.1), and (2)

Pearson’s correlation coefficient (r) was greater than the model

average (0.25), and are highlighted in blue; details will follow below.

Now we present all six versions of the field dataset, and how they

passed the performance test described in the last paragraph in Section

2.5. In the case of the NPP_C14 datasets, many models passed the

performance test and were able to reproduce the field data. These

were ten combinations in the case of an interpolated dataset, and

eleven combinations in the case of the noninterpolated dataset. In the

case of the GPP_O2 data set with 12 points, no model combinations

passed the performance test for the bias criteria (it was larger than

+/-0.1), while correlation coefficients passed the criteria (larger than

0.25). This could be either due to a small number of points or because

of the larger values of PP in this dataset. For the NPP_C14+GPP_O2
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dataset, five combinations performed well for both interpolated and

noninterpolated cases (see Table 2).

For NPP_C14 datasets, model setups with L4 CHL performed

better than those with L3 CHL. For NPP_C14+GPP_O2 datasets,

the best performing versions always had L2 PAR and local

absorption spectrum.

For further calculations we’ve chosen the model versions that

passed the performance test to reproduce both the NPP_C14

dataset and the NPP_C14+GPP_O2 dataset. These were the two

versions: [4,2,1,1,1] and [3,2,1,1,0], see the blue highlight in

Figure 7. P-value of correlation was significant for both model

versions (p<0.05). Both of the versions contain Level 2 PAR, local

CHL-a profile, and local absorption spectrum. In terms of values,

one can see that both of these models have a range of values similar

to field data in combination with several high outliers (Figure 7).

Similar patterns are clear in the target diagrams, which have

slightly different metrics and thus give results that are not identical to

a performance test (Figure 8). The target diagram uses uRMSD and

relative bias, as opposed to a performance test that uses the

correlation coefficient and bias. The closer the model is to the

target, the better the model performs. One can see that for

NPP_C14+GPP_O2 interpolated dataset (41 points), the same five

models as previously mentioned are performing best, and three more

models with CHL L4, PAR L2, and local CHL profile were added to

them. For NPP_C14 interpolated dataset (32 points) the patterns are

also similar to performance test, with the majority of well-performing

models using CHL L4. It is also worth noting that the global Antoine

and Morel model also performs quite well according to these metrics,

but not reaching the inner part of the circle as other model setups.

The choice of different PQ values did not significantly affect the

results, no changes in the selected best-performing models were

made when using 1.4 instead of 1.25, and one additional model

[4,3,0,0,1] with a higher range of values passed the performance test

when using the PQ value of 1.0 instead of 1.25.

As a result of this section, for further calculations we’ve chosen

the two model versions that passed the performance test best. These

two versions are also close to the target in Figure 8: [4,2,1,1,1] - blue
FIGURE 6

Comparison of values range for field NPP measured with 14C method (left bar, historical data, see Section 2.3.3.1 for details) and our GPP measured
with dissolved O2 evolution (right bar, see Section 2.3.2 for details). The red lines indicate the median values.
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east-oriented triangle on right images, and [3,2,1,1,0] - blue north-

oriented triangle on left images, giving similar results of choosing

the best model using different methods. Figure 8 denotes four

groups instead of five groups the fifth group it is differentiated

using the left and right sides of the Figure not to overload each of

the separate diagrams with symbols. Model setup [4,2,1,1,1] uses

Copernicus-GlobColour Level 4 CHL, EUMETSAT Level 2 OLCI

PAR, the local CHL profile following Cherkasheva et al. (2013),

PAR converted to local PUR, and profiles integrated till productive

layer depth. The setup [3,2,1,1,0] uses Globcolour Level 3 CHL,

EUMETSAT Level 2 OLCI PAR, local CHL profile following

Cherkasheva et al. (2013); PAR converted to local PUR and

profiles integrated till euphotic layer.
3.4 Basin estimates and trends

For the two models selected in the previous section, we

calculated the basin primary production estimates for the two

regions plotted in Figure 4 for our results to be comparable with

Hill et al. (2013) estimates (red region) and Arrigo and van Dijken

(2015) estimates (blue region).
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The monthly basin estimates were present only in Hill et al.

(2013) paper, and are shown corrected by us for the SCM presence

using the method applied by Hill et al. (2013). Annual Hill et al.

(2013) estimates account for SCM and did not have to be corrected.

The results of the basin estimates for the two models selected in

our study are presented in Table 3. We have tested calculations with

both interpolating the missing pixels of data and not, but there was

only a 0.5 TgC/year (less than 1%) difference between the two

models selected in our study. Thus, here we show the

noninterpolated values. The difference between the estimates of

the two models on average was minor, about 1-4% of the annual

estimates for 1998-2022 depending on the choice of the region. The

annual average was 342-347 TgC/year. The results are slightly

higher than Hill et al. (2013) results, which give 308 TgC/year.

This difference could be attributed to the principal differences

between the models used. Hill et al. (2013) calculations are based

on a model developed for the Chukchi Sea, which uses SeaWiFS

CHL data only, without accounting for PAR data (Hill and

Zimmerman, 2010). In our case, CHL data are an integrated

product of several sensors, PAR data is used, and the model

includes Greenland Sea parameterizations derived from

particulate absorption and CHL data. Our model results
FIGURE 7

Bar plots illustrating the range of PP values for each model setup for 41 field points of both NPP_C14 and GPP_O2 with spatially interpolated
chlorophyll data. Red line: median, bubbles: outliers, box: interquartile range. Top: model versions integrated to the euphotic layer depth, bottom:
model versions integrated to the productive layer depth. Model versions have identification number [a,b,c,d,e]; [a]: 3 - Level 3 CHL, 4 - Level 4 CHL;
[b]: 1 - Reanalysis PAR, 2 - Level 2 PAR, 3 - Level 3 PAR; [c]: 0 - Global CHL profile, 1 - Local CHL profile; [d]: 0 - no coefficient applied to PAR, 1 -
PAR converted to local PUR, 2 - PAR converted to global PUR; [e]: 0 - profiles integrated till euphotic layer depth, 1 - profiles integrated till
productive layer depth. Model versions reproducing field data best in terms of bias and correlation coefficient are highlighted (see Section 2.5), two
models selected for further calculations are additionally outlined in blue. ‘A&M’ refers to Copernicus-GlobColour L4 PP data based on Antoine and
Morel (1996). ‘PP Behrenfeld’ refers to our own calculations of PP based on Behrenfeld(1998) and Globcolour L3 CHL. The last bar corresponds to in
situ primary production.
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calculated for the basin grid used in Arrigo and van Dijken (2015),

were with an annual average of 340 TgC/year annual average

significantly higher than the 136.3 TgC/year reported in that

study. These results are difficult to compare as Arrigo and van
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Dijken (2015) did not yet account for the SCM, which has a

potentially increasing impact on integrated primary production in

the Arctic with time (Ardyna and Arrigo, 2020). Previously we have

estimated that the omission of SCM in Antoine and Morel (1996)
TABLE 2 Name of field datasets with the selection of best performing models in terms of bias and correlation coefficient (see Section 2.5).

Field
dataset name

Number
of collocations Best performing models

NPP 19-33
[4,2,1,1,0], [4,2,0,1,0], [4,2,1,2,0], [4,2,0,2,0], [3,2,1,1,0], [4,2,1,1,1], [4,2,1,2,1], [4,3,1,0,1], [4,3,0,0,1],
[4,1,1,0,1], [4,1,0,0,1]

NPP_interpolated 32
[4,2,1,1,0], [4,2,0,1,0], [4,2,1,2,0], [4,2,0,2,0], [4,2,1,1,1], [4,2,1,2,1], [4,3,1,0,1], [4,3,0,0,1],
[4,1,1,0,1], [4,1,0,0,1]

NPP+GPP 25-45 [4,2,1,1,1], [4,2,0,1,1], [3,3,1,1,1], [3,2,1,1,0], [3,3,0,1,0]

NPP+GPP_interpolated 41 [4,2,1,1,1], [4,2,0,1,1], [3,2,1,1,1], [3,2,1,1,0], [3,2,0,1,0]

GPP 6-12 –

GPP_interpolated 9 –
FIGURE 8

Target diagrams illustrating relative model performance in reproducing field PP data. Right half of the diagrams is cut due to a lack of data in that
area. The red circle is the normalized standard deviation of the in situ PP data. Top: NPP_C14+GPP_O2 interpolated dataset; bottom: NPP_C14
interpolated dataset; left: vertical profiles integrated to the depth of the euphotic layer; right: vertical profiles integrated to the depth of the
productive layer. Legend has model identification number [a,b,c,d]; [a]: 3 - Level 3 CHL, 4 - Level 4 CHL; [b]: 1 - Reanalysis PAR, 2 - Level 2 PAR, 3 -
Level 3 PAR; [c]: 0 - Global CHL profile, 1 - Local CHL profile;[d]: 0 - no coefficient applied to PAR, 1 - PAR converted to local PUR, 2 - PAR
converted to global PUR; ‘A&M’ refers to Copernicus-GlobColour L4 PP data based on Antoine and Morel (1996). ‘PP Behrenfeld’ refers to our own
calculations of PP based on Behrenfeld (1998) and Globcolour L3 CHL. This Figure has four groups instead of five used previously as here the fifth
group is differentiated using left and right sides of the Figure not to overload each of the diagrams with symbols.
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primary production model resulted on average in 10%

underestimation of the PP for the Greenland Sea (Cherkasheva

et al., 2013), while studies for different models suggest a larger

impact (Ardyna et al., 2013; Hill et al., 2013). In terms of a seasonal

evolution, our results are more uniform throughout the year,

ranging between 33 TgC/month to 78 TgC/month, while Hill

et al. (2013) estimates show a wider range of 13-123 TgC/month.

This seasonal dynamics that we have observed is in line with the

pattern that we have previously seen when analysing CHL data in

the area (Nöthig et al., 2015). In our models, the peak of the bloom

is observed in May for the Nordic Seas region similar to Hill et al.

(2013). For the larger and further north region of Arrigo and van

Dijken (2015), the peak value shifts to June, though the values in

May are close as well. The spatial distribution of this bloom is seen

in the monthly maps (Figure 9). When compared to Ardyna et al.

(2013) 228-230 TgC/year estimates, our results as in all other cases

give higher regional PP estimates of 333 TgC/year. This could be

due to the fact that ten validation points for the region used in

Ardyna et al. (2013) are distributed in the Western part of the

Greenland Sea which is less productive than the Eastern part. The

data set on which we based the selection of the model setup is, on

the other hand, distributed in both the western and eastern parts of

the Greenland Sea (Figure 5). The other reason could be the

different parametrizations of the CHL vertical profile. In general,

our larger estimates than those previously reported could have been

explained by our additional use of GPP field data which has higher

values than NPP. However, as we have tested, the selected models

are best at reproducing NPP data without GPP data as well (Section

3.3). Another point worth noting is that although mentioned studies
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(Ardyna et al. (2013); Arrigo and van Dijken (2011); Hill et al.

(2013)) accurately use local data from the Greenland Sea, in

principle they are pan-Arctic studies and have less Greenland Sea

parametrization parameters than used here.

When looking at the trends for the selected regions, no

significant increase or decrease in primary production was found

in the period 1998-2022 (see Figure 10). Spatial standard deviation

for the monthly values on Figure 10 ranged from 18 to 92 mgC/

m2/day.
4 Discussion

4.1 Field estimates

Although GPP measurements with oxygen sensors are not

traditional, in our case they gave estimates comparable to

historical NPP values derived with the 14C method for the

Greenland Sea in terms of spatial patterns and 1.5 higher

estimates in terms of average values. Range of GPP values was

higher than for NPP, as GPP does not account for AR (Eq. 3).

The method should be applied with care, as the sensors are

very sensitive to temperature changes and the way sampling

bottles are filled, so an error could easily be introduced. We also

recommend having triplicate samples for each measurement to

minimise errors. The average standard deviation of triplicate

measurements was 38-50 mgC/m3/day for the difference

between the initial and the last measurements. Unfortunately,

we did not have simultaneous measurements of primary
TABLE 3 Primary production basin estimates in the European Arctic from literature and calculated in this study using two models selected via
performance tests in Section 3.3.

Source Region Period
Annual
(TgC/year)

Month (TgC/month)

Apr May Jun Jul Aug Sep

1 Hill et al. (2013) with SCM Nordic Seas region in
EASE Grid

1998-2007 308 33.4 122.5 42.3 27.5 13.4 44.5

2 Arrigo and van
Dijken (2015)

45°W-15°E, 66°33′N-90°N 1998-2012 136.3 ND ND ND ND ND ND

3 Ardyna et al. (2013) Greenland-Norwegian Seas
1998 227.9 ND ND ND ND ND ND

2007 230.8 ND ND ND ND ND ND

4 This study (related to #1)
Nordic Seas region in
EASE Grid

1998-2007
344.1 (5.4) 45.3 77.9 73.7 60.3 54.1 32.7

5 This study (related to #2) 45°W-15°E, 66°33′N-90°N 1998-2012 340.0 (10.6)

6 This study (related to #3) 45°W-15°E, 66°33′N-90°N
1998 333.1 (29.8)

2007 333.7 (1.5)

7 This study (own estimates)
Nordic Seas region in
EASE Grid 1998-2022 346.6 (2.4) 44.4 77.1 76.0 60.6 55.2 33.2

8 This study (own estimates) 45°W-15°E, 66°33′N-90°N 1998-2022 342.1 (9.6) 42.8 69.7 74.1 62.3 58.3 35.0
frontier
The average between the two setups of models [4,2,1,1,1] and [3,2,1,1,0] is given, the standard deviation is the number in the brackets. Monthly values from Hill et al. (2013) are in italics as we
have calculated them ourselves from Hill et al. (2013) averages without SCM using a method given in the source. ND, no data found in the source.
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production with the other methods to be able to perform a direct

intercomparison. In summary, we would recommend using

oxygen sensors in a setup presented here to get a rough estimate

of GPP, especially as an alternative in case of absence of 14C and
13C measurements of NPP, which are accordingly legally and

logistically challenging.
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4.2 Choice and performance of the model

According to the study by Lee et al. (2015) of the Arctic PP

models, depth-resolved CHL models agreed better with in-situ data

than any other type. This was a decisive factor for us in choosing a

depth-resolved CHL model to work with. However, Lee et al. (2015)
FIGURE 9

Monthly primary production for 1998-2022 for one of the selected model setups [4,2,1,1,1], which uses Copernicus-GlobColour Level 4 CHL,
EUMETSAT Level 2 OLCI PAR, local CHL profile following Cherkasheva et al. (2013), PAR converted to local PUR and profiles integrated till
productive layer depth.
FIGURE 10

Time series and trend line for one of the two selected primary production model setups and the Nordic Seas region in the EASE grid for 1998-2022.
Orange line: model setup [3,2,1,1,0], blue line: model setup [4,2,1,1,1]. The trends are significant (p<0.01).
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also mention that absorption-based models as well do have

potential, since they exhibit lowest bias associated with weaker

correlation when compared to field PP. Antoine et al. (2013) give a

similar point of view recommending to use either locally tuned CHL

algorithms for the Arctic, or not-CHL based algorithms (e.g.,

Hirawake et al., 2012; Mouw and Yoder, 2005). According to

Antoine et al. (2013), combining the retrieval of nonwater

absorption with locally tuned models for CDOM absorption

(Matsuoka et al., 2013), might improve absorption-based models.

Thus, the next step to achieve a goal of more accurate Greenland Sea

PP estimates could be to test the absorption models focused

precisely on the Greenland Sea and not on the Arctic as a whole,

as previously done in Lee et al. (2015).

Our result clearly and expectedly showed that model setups

with local CHL profile and local absorption spectrum perform

better than global relationships. The fact that level 2 PAR is

performing better than level 3 PAR is more challenging to

explain. This could just be a mathematical feature of level 2 PAR

having larger values, and thus these models follow closer the range

of in-situ data. For the Arctic study by Lee et al. (2015), the best-

performing cases were the models that used in situ CHL and

satellite PAR, but they did not test PAR data from different

sensors, and no conclusions could be made between the

performance of L2 and L3 PAR.

The accuracy of the model ability here to reproduce the field

data in terms of RMSD is poorer than reported for the global

studies: the average RMSD for our selected model setups is 0.4 as

opposed to RMSD=0.3 reported as an average for 21 models by Saba

et al. (2011) tested in ten marine regions across the world. For the

Arctic, however, the performance of our selected model setups is

much better than the average shown in the Arctic intercomparison

study by Lee et al. (2015), where the RMSD range is 0.61-0.67 for 32

models, and averages 0.65 for the depth resolved models as those

used in this study.
5 Conclusion

We have collected an integrated field dataset of net primary

production data obtained with the 14C method (NPP_C14), and

gross primary production obtained with optode O2 measurements

(GPP_O2). Various setups of a commonly used primary production

model were tested incorporating n both local and global empirical

relationships and input data from diverse sources. The model

versions that performed best when validated against the

NPP_C14 and GPP_O2 data included the local CHL profile and

local absorption spectrum in their setup and used the Level 2 PAR

data as input. In terms of the choice of CHL input data and

integration depth, there was no dependency.

Our basin-wide estimates for the Nordic Seas exceed those of

previous studies, averaging 347 TgC/year for 1998–2022 — 11%

higher than one prior estimate and 150% higher than another. The

seasonal cycle in our case has less monthly variation of 33-78 TgC/

month than 13-123 TgC/month previously reported with the peak
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production similarly observed in May, and no significant trends in

primary production was observed when studying regionally

averaged estimates.

The accuracy of the selected model setups to reproduce the field

data in terms of RMSD is poorer than in the related global studies,

but better than in the related Arctic studies. Using absorption-based

models, especially in CDOM-dominated areas such as western part

of the Greenland Sea may improve the quality of primary

production estimates and could be a next step toward improving

primary production estimates in the Greenland Sea.

The primary production estimates obtained here, along with the

algorithm, are valuable for biogeochemical studies in the area,

particularly in assessing carbon dioxide uptake by phytoplankton

and carbon flux. The insights gained from the algorithm’s

development, including the factors that improved its

performance, offer useful guidance for enhancing other regional

primary production models.
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