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Understanding how sea turtle species move through the environment and

respond to environmental features is fundamental for sustainable ecosystem

management and effective conservation. This study investigates the habitat

suitability of the loggerhead sea turtle (Caretta caretta) in the Adriatic and

Northern Ionian Seas (Central-Eastern Mediterranean) by developing and

validating a multidisciplinary framework that leverages machine learning to

investigate movement patterns collected by satellite tags Argos satellite tags.

Satellite tracking data, enriched with sixteen environmental variables from the

Copernicus Marine Service and EMODnet-bathymetry, were analyzed using

Random Forest models, obtaining an accuracy of 80.9% when classifying

presence versus pseudo-absence of loggerhead sea turtles. As main findings,

sea bottom depth, surface chlorophyll (chl-a), and mixed layer depth (MLD) were

identified as the most influential features in the habitat suitability of these

specimens. Moreover, statistically significant differences, evaluated using t-test

statistics, were found between coastal and pelagic locations, for the different

seasons, in mixed layer depth, chl-a, 3D-clorophyll, salinity and phosphate.

Although based on a limited sample of tagged animals, this study

demonstrates that the distribution patterns of loggerhead sea turtles in
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Mediterranean coastal and pelagic areas are primarily influenced by sea water

features linked to productivity and, consequently, to potential prey abundance.

Additionally, this multidisciplinary framework presents a replicable approach that

can be adapted for various species and regions.
KEYWORDS

machine learning, random forest, satellite tag, Argos system, Copernicus marine service
(CMS), Caretta caretta
Despite the limited number of tagged animals, this study

confirms that the distribution pattern of loggerhead sea turtles in

the Mediterranean coastal and pelagic areas is influenced mainly by

sea water features and productivity, which are related to the

potential abundance of prey species. This multidisciplinary

framework offers a replicable approach applicable to different

species and geographical areas. Furthermore, it will be valuable

for analyzing data from a larger number of tagged animals in future

studies and establishes a solid foundation for such analyses.
1 Introduction

Understanding how endangered species move through the

environment and select the habitat in which to live is a pivotal

aspect for developing sustainable ecosystem management and

effective conservation measures (Mazor et al., 2016; Almpanidou

et al., 2021; O'Hara et al., 2019). In particular, sea turtles often travel

long distances (even hundreds of kilometers) between nesting and

foraging sites, and are thus exposed to several threats that can

negatively impact their populations (e.g., shipping, fishing, and

marine litter; (Luschi et al., 2003; Casale et al., 2018; Ashford et al.,

2022; Baruffaldi et al., 2023). Hence, to deepen the current

knowledge about sea turtle spatial ecology, it is crucial to

investigate the relationship between their movements and

physical environment (Lambardi et al., 2008; Luschi, 2013;

Chambault et al., 2016).

To date, the behavioral plasticity in the use of different habitats,

i.e., coastal within the continental shelf (<200 m; Ravaioli et al.,

2003) and pelagic (>200 m), has made it difficult to understand the

relationship between the environmental characterization of those

areas where sea turtles live. However, several studies have already

reported the effects of sea productivity on sea turtles’ overwintering

(Hochscheid et al., 2007; Hochscheid, 2014), nesting phenology

(Mazaris et al., 2004) (Mazaris et al., 2009), reproductive

performance (Mazaris et al., 2008), and general ecological niche

(Zampollo et al., 2022). Considering such evidence, it becomes

important to investigate the role that environmental variables have

on the movements of sea turtles, especially in a changing scenario

(McMahon and Hays, 2006) involving both climate and other

environment challenges (Azzola et al., 2024). To this end, satellite
02
tracking provides us with detailed information on sea turtles’

movement ecology, behavior and habitat use. Nowadays the

performance capabilities of satellite tags are well known, and a

good number of studies show their applicability to movement study,

both in terrestrial (Kays et al., 2015) and aquatic environments, with

a great effort in investigating sea turtle ecology (Timko and Kolz,

1982; Arnold and Dewar, 2001; Bentivegna, 2002; Bentivegna et al.,

2007; Revelles et al., 2007; Zbinden et al., 2011; Rees et al., 2013;

Hussey et al., 2015; Luschi et al., 2017; Abalo-Morla et al.,

2018, 2022).

Moreover, combining tracking data with environmental data

describing the habitat in which tagged animals move is an advanced

technological approach that can address the scientific needs for a

deeper understanding of such complex ecological aspects, as

discussed in the recent literature (Abalo-Morla et al., 2022;

Cavender-Bares et al., 2022). A study using satellite tracking,

environmental variables, and machine learning algorithms

examined the spatial distribution of two sea turtle species in

Chesapeake Bay (Atlantic Ocean) by selecting three key

environmental factors (bathymetry, sea surface temperature, and

salinity) to create habitat suitability models with boosted regression

trees (Di Matteo et al., 2022). Another study (Hazen et al., 2018)

applied a multispecies dynamic approach, utilizing daily satellite

data to track ocean features and align management scales with

species movement and fisheries. This research developed habitat

suitability models for three non-target species, including

Leatherback turtles, within the California Current domain, using

ten environmental variables such as bathymetry, chlorophyll a, and

sea surface temperature. To the best of our knowledge, the original

contribution presented in this paper is based on four key elements:

1) it offers a detailed description of environmental variables defining

loggerhead sea turtle (Caretta caretta, Linnaeus 1758) habitats,

surpassing prior work in modern literature; 2) it uses a novel

machine learning algorithm to integrate tracking data and

environmental factors in a statistically robust way; 3) although

loggerhead sea turtles have been studied quite extensively in the

Mediterranean Sea (Bentivegna, 2002; Mencacci et al., 2006;

Bentivegna et al., 2007; Casale et al., 2007, 2008; Lazar and

Gračan, 2011; Zbinden et al., 2011; Rees et al., 2013; Zampollo

et al., 2022; Abalo-Morla et al., 2022), no solid machine learning-

based habitat model has yet been developed for this area; 4) this
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study is the first to integrate tracking data, environmental variables,

and machine learning applying it to loggerhead sea turtles in the

Mediterranean Sea, highlighting the importance of using this

technology for habitat modeling in the region. The three

technological components have been applied to loggerhead sea

turtles in previous cited studies (Hazen et al., 2018; Di Matteo

et al., 2022) in a different geographic area and this is the first

attempt in the Mediterranean Sea.

Finally, this paper presents a multidisciplinary framework, based

on machine learning algorithms, devoted to the characterization of

loggerhead sea turtle movement through the analysis of satellite

tracking data enriched by environmental variables, extracted by the

Copernicus Marine Service (CMS) (https://marine.copernicus.eu/it)

and EMODnet-bathymetry dataset (https://www.emodnet-

bathymetry.eu/data-products). Specifically, the proposed

framework uses a Random Forest (RF) classifier to compare the

conditions of areas in which loggerhead sea turtles are present

(identified by the tag data) with the conditions of pseudo-absence

areas. RF is one of the most powerful and widely employed machine

learning algorithms (Breiman, 2001; Maglietta et al., 2016) (Inglese

et al., 2015; Maglietta et al., 2018) to have been successfully applied

to several ecological studies (Jeantet et al., 2018; Maglietta et al.,

2020, 2022), such as cetacean population modeling (Marini et al.,
Frontiers in Marine Science 03
2015; Carlucci et al., 2018; Maglietta et al., 2023). In this study,

seven loggerhead sea turtles, equipped with marine Argos satellite

transmitters, were released in the Adriatic Sea (Central-Eastern

Mediterranean Sea), and tracking data were collected from July

2020 to February 2022. According to recent studies, the loggerhead

sea turtle is considered the most abundant and widely distributed

species of sea turtle in the Mediterranean Sea (Pierantonio et al.,

2023). This species is globally considered Vulnerable by the IUCN

Red List, whereas the Mediterranean population has been recently

assessed as that of Least Concern (Casale and Tucker, 2017).

However, this status depends on the conservation strategies

applied within this area, thus, the loggerhead sea turtle

population needs to be continuously monitored to be preserved.

In addition, t-test statistics were used to assess the statistical

significance of the environmental variables using presence data.
2 Materials and methods

2.1 Study area

This study was conducted by examining data acquired, through

satellite tags, from seven specimens of loggerhead sea turtle along
FIGURE 1

Study area and loggerhead sea turtles’ routes. The colors reflect each of the seven satellite tags. The maps are displayed in geographical coordinates
(Ocean Data View software).
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different routes in the waters of the Adriatic and Northern Ionian

seas (Figure 1).

Loggerhead sea turtles have a high ecological plasticity, and

their life cycles are characterized by the shift in diet and habitat use

between oceanic and coastal/neritic waters (Hawkes et al., 2006;

McClellan and Read, 2007; Casale et al., 2008; Lazar and Gračan,

2011). Adriatic and Northern Ionian waters are widely considered

important habitats for the loggerhead sea turtle. In particular, the

Northern and Central Adriatic coastal waters host one of the most

important neritic feeding grounds for the loggerhead sea turtle

(Margaritoulis et al., 2003; Lazar et al., 2004; Mencacci et al., 2006;

Zbinden et al., 2007; Lazar et al., 2010; Lazar and Gračan, 2011),

while the Southern Adriatic is an oceanic developmental habitat for

this turtle species (Casale et al., 2007). Moreover, fishery by-catch

data showed relatively high abundances of this species in the

Northern Ionian/Southern Adriatic Sea (Casale et al., 2018;

Arcangeli et al., 2019).
2.2 Turtles capture, satellite tag description
and deployment

The seven loggerhead sea turtle specimens (adults and

subadults, Curved Carapace Length - CCL - between 50 and 70

cm) considered in this study come from accidental catches by

fishing gear along the coastal areas of the Apulia region (Italy),

recovered by the Management Consortium of Torre Guaceto

(Carovigno, BR, Italy) (Table 1).

The loggerhead sea turtles were transported to the “Luigi

Cantoro” Sea Turtle Rescue Center, where they underwent the

necessary treatment and rehabilitation for subsequent

reintroduction into the marine environment. None of the

individuals suffered any significant injuries that could potentially

affect their behavior. The specimens received only the essential care

required to facilitate their prompt release back into the sea. Then,

before being returned to the sea, satellite tags were applied to their

carapace using epoxy adhesive. The tags selected for this study were

Argos satellite transmitters, KiwiSat KS202 series (Lotek, 2024),

designed with specific characteristics such as compact shape and
Frontiers in Marine Science 04
abrasion protection, ideal for animals such as the loggerhead sea

turtle. The location data (including date, Coordinated Universal

Time (UTC), latitude, and longitude) was derived post-dive

through the analysis of Doppler shift in the received signals, an

integrated process within Argos. (Argos ).
2.3 Dataset description

In this study two datasets are considered:
• a dataset P collecting only the 8,851 points of presence of the

loggerhead sea turtles (see 2.4 Coordinates selection section),

each one enriched by the one hundred environmental features

(see 2.5 Variables description section);

• a dataset D collecting a total of 17,702 entries, made by the

sum of 8,851 presence points (dataset P) and 8,851 pseudo-

absence points of the loggerhead sea turtles, obtained as

described in the 2.4 Coordinates selection section. Each

entry has been enriched by one hundred environmental

features, described in the 2.5 Variables description section.

A label is assigned to each entry of the dataset D, indicating

its class of presence or pseudo-absence.
2.4 Coordinates selection

The dataset employed in this study covers the period between

July 2020 and February 2022. The locations of the loggerhead sea

turtles (geographical coordinates), estimated by the contact of each

tag with Argos satellites, were monitored through the Lotek web

service. The locations were available in different Argos accuracy

classes: Z, B, A, 0, 1, 2, 3 (Douglas et al., 2012). Considering the

EMODnet resolution, equal to 4,000 meters, the following analysis

was performed using class 0, 1, 2, and 3 Argos data, namely with a

precision of the recorded coordinates up to 1,500 meters.

A CSV file containing geographical information was

downloaded for each specimen (for a total of seven CSV files, see

Table 1). Filtering data, devoted to the selection of valid

coordinates, is required (Coyne and Godley, 2005; Douglas et al.,

2012) and the main steps were the following:

1. all points on land were discarded.

2. the ranges of the distances travelled by the loggerhead sea

turtles between one point and the next, were computed; the ranges

of speeds at which the loggerhead sea turtles moved were computed

as the ratio between the travelled distance and the time spent, as

recorded by tags. If the distance exceeded 100 km, or the speed

exceeded 5 km/h (Nagelkerken et al., 2003; Arendt et al., 2012), then

the coordinates were discarded.

As shown in Figure 2, the filtering process produced 8,851 valid

points, i.e. latitude and longitude coordinates of loggerhead sea

turtle presence: pi= (latitudei, longitudei), with i = 1, 8851.

Satellite tags only provide presence records, thus, to overcome

the lack of absence data, pseudo-absence coordinates (i.e., random

locations with no loggerhead sea turtle records) (Barbet-Massin
TABLE 1 Table shows tag ids, first transmitted data in water (First Data),
last transmitted data (Last Data), number of days elapsed (days), number
of filtered records (Valid Rows) for each tag.

Tag ID First Data Last Data Days Valid Rows

202778 23/07/2020 10/03/2021 230 193

202779 29/07/2020 22/10/2021 450 3081

202780 14/11/2020 15/02/2022 458 993

202781 24/12/2020 27/08/2021 246 1429

202782 04/01/2021 07/09/2021 246 1018

202783 13/03/2021 16/10/2021 217 386

202784 12/03/2021 16/09/2021 188 1751

TOTAL 8851
The total number of valid rows across all tags is indicated in bold at the bottom.
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et al., 2012) were generated following an original algorithm (see

Figure 2). From each point pi, with i = 1, …, 8,851, a point of

pseudo-absence ai of latitude and longitude in the water was

randomly selected over the circumference centered in p with

radius equal to r   = 4, 000 +   e, where 4,000 meters is the

Resolution constant required to exceed the satellite’s resolution

limit, and e (meters) is equal to the ErrorRadius reported by the

sensor. This is a measure of positional accuracy and represents the

radius around the recorded position within which the loggerhead
Frontiers in Marine Science 05
sea turtle was finally located (Argos, s.d.). The algorithm then

considered the circumference C centered in ai with radius equal

to 4,000 meters, and verified the following condition of presence or

absence of another point pj, with j = 1, …, 8851 and j≠i:
• if at least one point pj was present inside the circumference

C (see Figure 2A), then point ai is discarded; for the same

point pi, a new point ai is randomly selected, as previously

described, and the condition is verified again.
TABLE 2 List of the sixteen variables considered in this study, the relative source, the depth levels (meters) at which they were calculated, and the
total number of features for each variable (N. Features). The model horizontal grid resolution is 1/24° (ca. 4 km, see Materials and Methods section).

Name Class Units Source Levels (m) N. Features

Temperature PHY °C Model Surface, 5, 10, 15, 20, 30, 60, 100 8

Salinity PHY PSU Model Surface, 5, 10, 15, 20, 30, 60, 100 8

Nitrate PHY mmol/m3 Model Surface, 5, 10, 15, 20, 30, 60, 100 8

U Currents Component PHY m/s Model Surface, 5, 10, 15, 20, 30, 60, 100 8

V Currents Component PHY m/s Model Surface, 5, 10, 15, 20, 30, 60, 100 8

Current Intensity PHY m/s Computed - model Surface, 5, 10, 15, 20, 30, 60, 100 8

Current Direction PHY degree Computed - model Surface, 5, 10, 15, 20, 30, 60, 100 8

Density PHY kg/m3 Computed - model Surface, 5, 10, 15, 20, 30, 60, 100 8

Primary Production BIO mg/m3/day Model Surface, 5, 10, 15, 20, 30, 60, 100 8

Phosphate BIO mmol/m3 Model Surface, 5, 10, 15, 20, 30, 60, 100 8

3D-chlorophyll BIO mg/m3 Model Surface, 5, 10, 15, 20, 30, 60, 100 8

Phytoplankton BIO mmol/m3 Model Surface, 5, 10, 15, 20, 30, 60, 100 8

Surface chlorophyll (chl-a) BIO mg/m3 Satellite Surface 1

Squared Brunt Väisälä Frequency PHY cycle/h Computed - model / 1

Mixed Layer Depth (MLD) PHY m Model / 1

Sea Bottom Depth AUX m EMODnet 2020 bathymetry / 1

Total 100
FIGURE 2

Schematic representation of the selection strategy of pseudo-absence coordinates. (A) ai is discarded if a presence point pj is within C; (B) ai is saved
if no presence point pj is within C.
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Fron
• if no point pj is present inside the circumference C (see

Figure 2B), point ai is collected and saved, and the following

coordinates of presence are considered.
This algorithm produced 8,851 pseudo-absence coordinates of

the animals.
2.5 Variables description

For each of the 17,702 entries (equal to the sum of 8,851

presence points, and 8,851 pseudo-absence points of the

loggerhead sea turtles), a total of sixteen environmental variables,

provided by different sources, were obtained: temperature, salinity,

nitrate, U currents component, V currents component, current

intensity, current direction, density, primary production,

phosphate, 3D-chlorophyll, phytoplankton, surface chlorophyll

(chl-a), squared Brunt Väisälä frequency, mixed layer depth

(MLD), sea bottom depth (see Table 2).

Physical variables were provided by the Mediterranean Sea

Physics analysis (Clementi et al., 2020), produced by the Euro-

Mediterranean Center on Climate Change (CMCC), and delivered

by the Copernicus Marine Service. The product was generated by a

coupled hydrodynamic-wave model including tides. The

hydrodynamic was supplied by the Nucleus for European Modelling

of the Ocean (NEMOv3.6), while the wave component was provided

by Wave Watch-III; the model solutions were corrected by a 3DVAR

assimilation scheme (OceanVar) of temperature and salinity vertical

profiles, and along track satellite sea level anomaly observations. The

model horizontal grid resolution was 1/24° (ca. 4 km) with 141

unevenly spaced vertical levels. In addition, the water density and

the Brunt–Vä isä lä frequency were computed by means of the

simulated temperature and salinity, according to international

seawater equations (Mcdougall et al., 2009; Roquet et al., 2015).

Simulated biogeochemical features were provided by the

Mediterranean Sea biogeochemical analysis (Bolzon et al., 2019),

produced by OGS (IT), and delivered by the Copernicus Marine

Service. The data at 1/24° of horizontal resolution (ca. 4 km) were

produced by means of the MedBFM4 model system, consisting of

the coupling of the multi-stream atmosphere radiative model

OASIM, the multi-stream in-water radiative and tracer transport

model OGSTM_BIOPTIMOD v4.3, and the biogeochemical flux

model BFM v5. Additionally, MedBFM4 features the 3D variational

data assimilation scheme 3DVAR-BIO v3.3 with the assimilation of

chl-a (CMS-OCTAC NRT product) and of vertical profiles of chl-a,

nitrate, and oxygen (BGC-Argo floats provided by CORIOLIS

DAC). The biogeochemical MedBFM system was forced by the

NEMO-OceanVar model, while the product was run by the CMCC.

The ESA-CCI database of chl-a concentration (CMS-OCTAC REP

product) was assimilated with a weekly frequency.

The chl-a, observed via satellite, was provided by the multi-year

product Mediterranean Sea Ocean Colour Plankton L4 daily gap

free, and produced by the Italian National Research Council (CNR,

IT) within the Copernicus Marine Service. The chl-a was evaluated

via region-specific algorithms (Case 1 waters (Volpe et al., 2019),

with new coefficients; Case 2 waters (Berthon and Zibordi, 2004)),
tiers in Marine Science 06
and the interpolated gap free chl-a concentration (to provide a

“cloud free″ product) was estimated by means of a modified version

of the DINEOF algorithm (Volpe et al., 2018). The Level-4 product

included the daily interpolated chlorophyll field on a 1 km spatial

resolution grid, starting from the multi-sensor (SeaWiFS, MODIS,

MERIS, VIIRS-SNPP & JPSS1, OLCI-S3A).

In the process of data analysis, a sea-overland extrapolation was

used to prevent the presence of missing values by interpolating the

oceanic fields over each loggerhead sea turtle location record. This

procedure uses a diffusive boundary layer approach that

extrapolates the field values on the areas near the coastline, where

the Copernicus Marine Service solutions are not defined. The

procedure iteratively computes the ocean quantities on the land

grid points, so that such quantities can be interpolated on the

location records that are very close to the coast.

Among the auxiliary variables, high-resolution bathymetry was

derived from the EMODnet-bathymetry dataset 2020-DTM

(https://www.emodnet-bathymetry.eu/data-products).

Among the sixteen variables, twelve are three-dimensional:

temperature; salinity; primary production; nitrate; phosphate; 3D-

chlorophyll; phytoplankton; U currents component; V currents

component; currents intensity; currents direction, and density.

For these variables, the water column was analyzed in

correspondence to the positions of the loggerhead sea turtles

(geographical coordinates), and eight levels of depth were

considered: 0 (surface), 5, 10, 15, 20, 30, 60, and 100 meters.

From the sixteen variables, a total number of one hundred

environmental features were considered and employed.
2.6 Classification model and
statistical analysis

Random Forest (RF) (Breiman, 2001) is an ensemble method

that uses multiple de-correlated decision trees, which are merged to

perform regression or classification binary tasks: each tree is built

using a random subset of features and examples, while results on the

test set are obtained by computing the average of the results of each

tree. Here RF has been used to classify presence vs pseudo-absence

classes, using a Cross Validation (CV) strategy (Berrar, 2018).

Dataset D was divided into training and validation sets,

preserving the balance between presence and pseudo-absence

data: 70% of examples, randomly extracted from dataset D, were

collected as a training set, and the remaining 30% of examples were

collected as the validation set. Subsequently, model training was

performed using a stratified K-Fold CV, repeated n times on the

training set (Pedregosa et al., 2011). Parameter optimization of RF

classifiers was automatically performed using the Bayesian

optimization algorithm (Snoek et al., 2012). Finally, the classifiers

performance was validated on the independent validation set. By

utilizing cross-validation, hyperparameter tuning, and an

independent validation set, we were able to mitigate the risk of

overfitting and enhance the model’s generalization capabilities.

To ensure greater explainability of the model, feature importance

analysis was conducted, as it measures how variables influence the

model when predicting the response variable (Saarela and Jauhiainen,
frontiersin.org
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2021). The influence of a given variable increases with the value of this

measure. The idea underlying the features importance computed by

RF models is that if a variable is influential in prediction, then

permuting its values should affect the model error; if a variable is

not influential, then permuting its values should have little to no effect

on the model error (Maglietta et al., 2023).

Afterwards, the data were sorted by separating pelagic

observations from coastal ones: points of geographical

coordinates of loggerhead sea turtles locations were identified as

pelagic if the animals were found in areas with a bottom depth

greater than 200 m; otherwise, these were considered coastal.

Finally, to characterize the pelagic and the coastal habitats of the

studied loggerhead sea turtles, a two-sample t-test has been used to

investigate any potential differences in environmental variables

between coastal and pelagic locations for the different seasons.

For each of the remaining ninety-nine environmental features (all

except sea bottom depth), the null hypothesis was that the coastal

and pelagic data come from independent random samples from

normal distributions with equal means and equal, yet unknown

variances. The significance level was set at 0.05.
2.7 Evaluation of
experimental performance

Statistical measures for the performance of a binary classifier, used

in this work, are accuracy, sensitivity, and specificity. These metrics can

be easily derived by the confusion matrix, as indicated below:
Fron
• Accuracy is the percentage of predictions that were correct:

accuracy =
(TP + TN )

(TP + FN + FP + TN)
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• Sensitivity is the percentage of positive labeled instances

that were predicted as positive:

sensitivity =
TP

(TP + FN)

• Specificity is the percentage of negative labeled instances

that were predicted as negative:

specificity =
TN

(FP + TN)
where TP represents the number of true positives, TN represents

the number of true negatives, FP represents the number of false

positives and FN represents the number of false negatives.
3 Results

All the experiments were performed using Python 3.9. In

particular, the SciPy libraries were employed for statistical analysis

(Virtanen et al., 2020), while the Sklearn libraries were used for the

application of machine learning algorithms (Pedregosa et al., 2011).

RF classifiers were built using the dataset D (see 2.3 Dataset

description section), to classify presence vs pseudo-absence

coordinates classes. This dataset collects a total of 17,702 entries

(presence + pseudo-absence data), balanced between the

two classes.

Model training was performed using a repeated stratified K-

Fold of the training set, with K = 5 and n = 5 (see Classification

model and statistical analysis section). RF shows good performance

in classifying presence vs pseudo-absence classes over the validation

set: accuracy of 80.9%, sensitivity of 82.3% and specificity of 79.3%.

Moreover, Figure 3 shows the first twenty most influential features
FIGURE 3

The first twenty most influential features, ordered by features importance computed by RF classifier.
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in the comparison of presence vs pseudo-absence classes, evaluated

using the concept of features importance as computed by the RF

classifier. The most influential features in classifying presence vs

pseudo-absence of loggerhead sea turtles are sea bottom depth

(bathymetry max ranging from 0 meters to 2011 meters); chl-a

(values range from 0.03 mg/m3 to 20.5 mg/m3), and MLD (with

values between 6.16 meters and 516.14 meters) (Figure 3), which

clearly suggest the influence of physical and biological variations of

seawater and ocean dynamics on loggerhead sea turtle distribution.
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Since the RF model identified bottom depth as the most

influential feature in classifying presence vs pseudo-absence of

loggerhead sea turtles, a statistical analysis of pelagic and coastal

data of loggerhead sea turtles’ locations was developed. In

particular, the 8851 entries of the dataset P were labeled, based on

bottom depth values, of which 7,738 were coastal examples and

1,113 pelagic examples (see Classification model and statistical

analysis section). Figure 4A illustrates the histogram of 8,851

positions registered by the seven tags during the four seasons
FIGURE 4

(A) Histogram of the locations registered by all the seven turtles during the four seasons (fall, winter, spring, and summer), where coastal and pelagic
classes have been highlighted. (B) Distribution of the locations registered for each tag, where coastal and pelagic classes have been shown.
TABLE 3 Results of t-test analysis of the fifteen environmental variables are shown.

Variable N. Features Winter Spring Summer

Temperature 8 100% 88% 100%

Salinity 8 100% 100% 100%

Nitrate 8 100% 100% 88%

U Currents Component 8 100% 75% 0%

V Currents Component 8 88% 75% 75%

Currents Intensity 8 100% 88% 100%

Currents Direction 8 0% 50% 100%

Density 8 88% 88% 100%

Primary Production 8 100% 88% 100%

Phosphate 8 100% 100% 100%

3D-chlorophyll 8 100% 100% 100%

Phytoplankton 8 100% 88% 100%

Surface chlorophyll (chl-a) 1 100% 100% 100%

Squared Brunt Väisälä Frequency 1 100% 0% 100%

Mixed Layer Depth (MLD) 1 100% 100% 100%
N. Features is the total number of features for each variable (see Table 2). Winter, Spring and Summer columns show the percentage of features, for each variable, having a p-value higher than 0.05
in the season.
The values represent the percentage of features and are color-coded as follows: green represents 100% of features with a p-value > 0.05, orange and light red indicate that 50% to 90% of features
have a p-value > 0.05, and dark red indicates 0%, meaning no features have a p-value > 0.05.
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(fall, winter, spring, and summer), highlighting coastal and pelagic

classes. The 87.4% of available data comes from the coastal area (fall

= 913 locations, winter = 1563 locations, spring = 2236 locations,

summer = 3026 locations) and the remaining 12.6% referred to

pelagic area (winter = 269 locations, spring = 762 locations, summer

= 82 locations). In fall, there are no records identified as pelagic. The

distribution of the location registered by each tag, highlighting

pelagic and coastal classes, is illustrated in Figure 4B. Again, for all

tags, the coastal class contains more examples than the pelagic class.

T-test results for the coastal and pelagic classes are shown in

Table 3. Here, we cannot analyze data acquired during fall,

because, as illustrated earlier, no locations from pelagic habitat were

collected by the tags. Each row in the table indicates a variable and

the corresponding number of features available. Moreover, for each

variable, the percentage of features that has passed the statistical test

(i.e., p-value ≤ 0.05), thus rejecting the null hypothesis, is shown in

winter, spring, and summer. In the case of three-dimensional

variables, which have multiple features (e.g., temperature with

eight features, each at different depths), a percentage of 100%

indicates that the means of all eight features show significant

differences, evaluated by eight statistical tests, between coastal and

pelagic classes. Lower percentages, such as 88%, indicate that only

some of the features of a variable (e.g., seven out of eight) result to

be significantly different. In case of one-dimensional variables,

having only one feature (see MLD in Table 3), there are only two

possible states: 100%, indicating that the feature shows a significant

difference between coastal and pelagic locations, or 0%, indicating

that the feature does not show a significant difference (i.e., the null

hypothesis is not rejected). Considering winter, twelve variables out

of a total of fifteen showed a statistically significant difference

between coastal and pelagic locations; during spring, six variables

showed a statistically significant difference between coastal and

pelagic locations; in summer, twelve variables showed a statistically

significant difference between coastal and pelagic locations (see

Table 3). To sum up, five variables (salinity, phosphate, 3D-

chlorophyll, chl-a, and MLD) were found to be statistically

significant, consistently showing percentages of 100% across all

three seasons (highlighted in bold in Table 3). Notably, these

variables exhibited distinct average values between coastal and

pelagic zones at all depths.
4 Discussion

The outcome of the RF analysis revealed that sea bottom depth,

chl-a, and MLD were the most important features in classifying

presence vs pseudo-absence of loggerhead sea turtles. This result

aligns with existing literature, underscoring its consistency with

previous research findings. In fact, in (Hazen et al., 2018) bottom

depth was one of the most important predictors in modeling habitat

of several species over the Californian Current domain, among

them Leatherback turtles. Sea turtles have complex life-history

patterns, and they utilize a wide range of areas throughout their

life, from pelagic zones to extremely coastal areas (Haywood et al.,

2020), depending on several ecological factors (Arcangeli et al.,

2019). Sea turtles, as previously noted, often make long journeys to
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reach sites with optimal ecological conditions for foraging. In this

regard, it is known that there is a positive relationship between high

chl-a water masses and loggerhead sea turtle routes; frequently,

these animals move from areas with low chl-a concentrations to

higher ones for foraging (McCarthy et al., 2010), as their prey may

be more abundant in these latter regions (McCarthy et al., 2010).

The ocean mixed layer is a quasi-homogeneous area of the upper

ocean, characterized by small temperature and density variations

with depth (Kara et al., 2000), and the importance of the MLD in

classifying the presence vs pseudo-absence of loggerhead sea turtles

is strictly connected to the chl-a concentration. MLD influences the

phytoplankton dynamics through light and nutrient control, thus

affecting biological productivity in the ocean (Sverdrup, 1953;

Yentsch, 1990; Jang et al., 2011).

Once the results of the machine-learning model were obtained

and examined, we sorted our data by selecting the 200 m

bathymetry (continental shelf boundary). Immediately, it became

clear that a greater number of satellite locations referred to coastal

areas (Figures 4A, B) and this evidence is consistent with what is

reported in the literature, concerning the habit of adult and

subadult loggerhead sea turtles. In fact, early-stage loggerheads

sea turtles are opportunistic feeders, consuming soft prey living in

the water column of open oceans (Parker et al., 2005; Marshall et al.,

2012); this pelagic life stage is then followed by an ontogenetic shift

to coastal habitats, where loggerhead sea turtles continue to grow

and sexually mature (Marshall et al., 2012). The coast provides

important foraging areas (Foley et al., 2014), with an abundance and

diversity of prey, suitable for loggerhead sea turtles. Moreover,

coastal areas are also essential for reproduction and nesting

activities (Casale et al., 2018). To this end, loggerhead sea turtles

equipped with tags no. 202780, 202781, 202783, and 202784

traveled the migratory corridor of the Otranto channel (Casale

et al., 2018) in winter and spring.

As for the movements of loggerhead sea turtle specimens in the

pelagic environment, these were recorded most in spring (Figure 4

and Figure 5), and least in winter and summer. Although our data

showed significantly fewer loggerhead sea turtle satellite locations in

the pelagic environment, it is well known that adult and subadult

loggerhead sea turtles move frequently through migratory

corridors, located both in the open ocean and along the coasts,

during reproductive migrations from and to breeding sites (Casale

et al., 2018), as well for post-breeding migrations from the breeding

areas to foraging grounds (Schofield et al., 2013a; Dujon et al., 2014;

Luschi and Casale, 2014; Patel et al., 2015; Mingozzi et al., 2016;

Snape et al., 2016; Casale et al., 2018). Loggerhead sea turtle

movements may be correlated also to post-nesting (Zbinden et al.,

2011; Schofield et al., 2013b) and seasonal migrations (Bentivegna,

2002; Zbinden et al., 2011; Casale et al., 2012; Luschi and Casale,

2014; Hochscheid et al., 2005).

Our results highlighted that the monitored loggerhead sea turtle

specimens inhabited a coastal rather than a pelagic habitat.

However, we should consider that the imbalance between coastal

and pelagic classes could partially depend also on the scarcity of

data for each tag (for example, ID 202778 has fewer entries

compared to the others), or on the scarcity of data in different

seasons, as shown in Figure 5. Specifically, in fall, only 10.32% of the
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locations were registered, against the 35.11% acquired during

summer, 33.87% in spring and 20.7% during winter. This

different distribution of data among seasons also depends on the

different release data and monitoring period of the loggerhead

sea turtles.

Many of the environmental variables considered in this study

showed statistically significant differences between coastal and

pelagic satellite locations during the considered seasons (winter,

spring, and summer) (see Table 3). Among them, it is particularly

interesting that chl-a and MLD showed the above significant

differences in all three seasons, and that these two variables were

among the three most important selected by the RF results, thus

reflecting the usefulness of predictive algorithms, as well as

descriptive statistics tests, for the study of habitat characterization

and selection of marine species.

Above all, our results found that the areas closest to the coast

differed from the offshore ones in environmental variables that

clearly indicate nutrient-rich (phosphate) and highly productive
Frontiers in Marine Science 10
waters (chl-a, MLD, 3D-chlorophyll), thus potentially associated

with an abundance of prey for sea turtles. It therefore cannot be

excluded that these variables may have substantially contributed to

outlining the distribution patterns of the seven specimens of

loggerhead sea turtle (Figure 5).

Unlike previous studies, this is the first to apply machine

learning, integrated with tracking data and environmental

variables, in the Mediterranean Sea for habitat modeling of

loggerhead sea turtles. While the results align with findings from

previous studies, this work consolidates existing knowledge by

providing a statistically robust and comprehensive model,

demonstrating the reliability of machine learning for habitat

modeling. Importantly, the proposed methodology could be easily

applicable to the study of large datasets and of other marine species

in the Mediterranean Sea and beyond. Furthermore, it could

integrate additional information and data based on study needs.

In our specific case, it should still be considered that the main

limitation was the small sample size of tagged animals. Despite this,
FIGURE 5

Winter, spring, and summer routes of the seven C. caretta specimens. Each season reports the percentage of transmitted locations (PTL). Fall data
were not represented since showed only the 10.32% of transmitted locations and were not considered in the statistical analysis. The colors reflect
tag ids. The map is displayed in geographical coordinates (ocean data view software).
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the study highlighted the usefulness of the proposed methodology,

offering a strong foundation for future research focused on

advancing conservation efforts on endangered species in the

marine environment.
5 Conclusions

The loggerhead sea turtle is a species threatened on a global

scale that typically travels thousands of kilometers. To improve

conservation policies and plans for this species, it is essential to have

a thorough knowledge of the habitats it visits during its life cycle.

The results of this study underlined that the environmental

variables that may have greater weight in the distribution patterns

of this species are proxies for nutrient-rich and highly productive

waters, therefore potentially associated with the presence of prey

species (e.g., chl-a and MLD). These variables have seasonal

variations, are profoundly influenced by regional and local

drivers, and are likely to be altered by climate change.

Considering the movements of the seven loggerhead sea turtle

specimens in the Adriatic and Ionian Seas, the results obtained

suggest that productive and nutrient-rich seawater, potentially

associated with the presence of multiple prey species, appeared to

have an important role in the distribution of these animals,

highlighting consistency with the existing literature. However,

migratory animals inhabiting vast areas could be influenced also

by aspects on a strictly local or seasonal scale (e.g., local and

seasonal coastal anthropic impact, presence of specific

conservation measurements such as Marine Protected Areas); this

aspect needs to be confirmed with further analyses, useful for

studying both the behavior of the individual animal and the

influence of the anthropic impact. To this end, the continuous

monitoring of many specimens using cutting-edge and minimally

invasive technologies such as satellite tags could be highly useful.

The use of the RF algorithm, together with the support of statistical

techniques for the analysis of the remote sensor data, numerical

models and satellite tag data, resulted in a functioning, replicable

and safe framework that could be applied on a larger spatial scale,

also considering different geographical areas in further studies.

Moreover, in future studies, this framework could be adapted and

applied to the monitoring of different species.

This stage of our study is currently limited by the low number of

tagged animals (seven specimens, as indicated earlier). Evidently, a

larger quantity of tags could prove strategic in providing further

information on loggerhead sea turtle behavior. In fact, collecting

more tracking data on loggerhead sea turtle movements could fill

the gap caused by the data missing from the fall, also providing new

and valuable information on pelagic areas. Furthermore, being able

to track a greater number of animals could reveal that some of them

explore larger areas, thus expanding the area of study investigated in

this paper.

Another important challenge for future research is to

investigate the impact of environmental variable autocorrelation

on machine learning models. In this study, fully aware of the
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significance of this issue, we implemented a robust Random

Forest-based methodology incorporating k-fold cross-validation

and design-based validation, as suggested by the relevant

literature (Ambroise and McLachlan, 2002; Mushagalusa et al.,

2024; Moudrý et al., 2024). That said, it is clear that with a larger

number of tags, a key future challenge will be to address the design,

construction, and validation of a statistically robust methodology

that thoroughly assesses the effect of environmental variable

autocorrelation on model performance.

Future studies will focus on an extensive analysis of the diving

patterns of loggerhead sea turtle specimens recorded by satellite

tags, which could, in turn, provide new and important information

on the behavior of this species. In fact, the combination of surface

information and dive patterns, obtained through an extended

application of the methodology proposed in this study, could

become an essential tool for the validation of numerical models,

as well as offer important insights into the behavior of loggerhead

sea turtles in relation to the effects of climate change.
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