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Capture-mark-recapture methods (CMR) are a commonly used tool in species

conservation and management for the estimation of demographic parameters in

a population. However, biases in these estimates can occur due to the

heterogeneity in processes influencing recapture data or the experimental

design. We outline an approach to quantify and identify ways to reduce this

bias through both experimental design and data analysis, using individual based

modelling (IBMs). By using an IBM that includes key sources of heterogeneity that

are believed to exist in the system, the release and recapture of marked

individuals can be simulated under differing experimental, behavioural or

landscape scenarios. Using this IBM as a data-generator, we compare a

simulated population of individuals with a subset of that population that

represent those marked and recaptured in a CMR experiment. Parameter

estimates from the data generated by the marked subset are then compared

to ‘true’, realised parameters from the wider, unmarked population. We

demonstrate this with an application of ‘simulated tagging’ of Pacific skipjack

tuna (Katsuwonus pelamis), using scenarios of different release locations of

marked individuals, alternative band-recovery models, and differing

assumptions that define the spatial extent of the unmarked population. We

quantify the error in the estimated survival and fishing mortality parameters

and examine how these can be reduced by following differing release and

analysis strategies. We show that spatiotemporal heterogeneity of individual

dispersion and recovery effort (i.e. fishing pressure) led to severe bias in

recapture probability estimates, up to 361%, regardless of experimental design.

However, when the baseline of the unmarked population of which marked

animals were assumed to be representative was defined by spatial coverage of

recaptures, rather than a fixed, spatial management area, bias was reduced to

25%. Our results show that the use of IBM frameworks exploring alternative

hypotheses, either in the design of or post-hoc analyses of CMR experiments,
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support maximising the information that can be derived and quantify the degree

of potential bias due to analysis model mis-specification. Furthermore, these

methods can benefit other sampling and monitoring programmes in systems

with high levels of spatial or ecological heterogeneity.
KEYWORDS

capture-mark-recapture, Lagrangian, individual-based modelling, bias, parameter
estimation error, tagging, experiment design, tropical tuna
1 Introduction

A significant challenge in ecology is to infer population

processes from a limited subset of individuals that can be

sampled (Tourani, 2022). In the case of widely or heterogeneously

distributed species, the representativeness of the subset observed

from a particular sampling strategy can be highly questionable

(Rees et al., 2011; Kolody and Hoyle, 2015). Marking and tracking

animals, using Capture-Mark-Recapture (CMR) experiments, is a

commonly applied methodology in ecological research and

management. CMR provides a means of monitoring animal

populations and estimating demographic parameters such as

population size, distribution and rates of mortality, growth, and

connectivity (Wang et al., 1995; Pine et al., 2003; Pollock et al., 2004;

Sippel et al., 2014). In a CMR experiment, a subset of the population

in a region is marked, of which the number of individuals, key

biological properties and release locations are known. This group

can then be monitored through time via future encounters of the

marked individuals when sampling the population, and

demographic or life history parameters of that population are

then estimated (Lindberg and Rexstad, 2001; Sandercock, 2006).

The assumptions of the CMR analytical model chosen to

estimate parameters greatly influence the resulting bias in these

estimates. A critical assumption in such models is that the marked

subset is representative of the unmarked population of interest and

key for the accuracy of these estimations (Lindberg and Rexstad,

2001; Pine et al., 2003). Failure to satisfy this assumption in

subsequent analyses, or account for their potential effects, may

lead to a bias in population level parameter estimations (Pledger

and Efford, 1998; Pledger, 2005; Mathur, 2007; Fletcher et al., 2012;

Abadi et al., 2013; Guillemain et al., 2014).

CMR experiments aiming to estimate or inform population

dynamics parameters would ideally mark individuals by random

sampling of the studied population. However, in the case of

heterogeneously and/or widely distributed species this is often

logistically challenging, and so typically animals are marked in a

small number of spatially-limited locations, from which they move

through the region of interest and mix with the unmarked

population. Over some initial period of time, ideally the marked

animals will become distributed relative to the distribution of the

unmarked population, such that random sampling any set of
02
animals in the population will lead to the same probability of

recaptures with marked individuals. As recaptures can occur

immediately after release, spreading marked individuals across

many locations and times may help achieve mixing more quickly,

improving the representativeness of the marked subset and

subsequent estimation of population parameters. However,

attempts to quantify the reliability of this mixing have generally

concluded that the underlying heterogeneity in the processes

driving behaviour, recapture effort and the spatial extent of the

population, likely make the degree of representation by marked

individuals highly variable in both space and time (Pépino et al.,

2012, 2016; Schaub and Royle, 2014; Sippel et al., 2014; Kolody and

Hoyle, 2015; Chadœuf et al., 2018; Moqanaki et al., 2021).

Testing analytical models using data generated by simulation

modelling provides a way to examine the bias in estimated life

history parameters resulting from such violation of sample design

(Rees et al., 2011; Abadi et al., 2013). Individual-based simulation

models (IBMs) offer the benefit of being structured on the

fundamental unit of the individual, as are CMR experiments

themselves. This allows population-level parameters such as

movement rates, mortality or probability of detection to emerge

from the simulation of large numbers of animals, rather than being

explicitly defined (Grimm and Railsback, 2005; Vangestel et al.,

2011; Meli et al., 2013). Simulated individuals can have unique

properties, such as age or sex, and have variable and stochastic

behavioural responses to a spatiotemporally heterogeneous habitat.

In contrast to Eulerian or state variable models of animal

population dynamics, the pathways and properties of many

individuals can be tracked, providing a measure of cumulative

process effects through time experienced by individuals and the

variability of these effects across groups of individuals.

Generating data using an IBM that contains spatial and

temporal heterogeneity in the processes hypothesised to violate

the assumptions of the analytical model can be used to quantify the

degree of the bias that may arise under a particular experiment-

analysis design. By simulating the release and subsequent recapture

over time of marked, free-roaming individuals released in discrete

locations, parameters estimated from these data by a proposed

analytical model can be compared to realised values from the same

or a parallel simulation of individuals from an unmarked

population throughout the management region of interest. While
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goodness-of-fit tests can be applied to the results of a particular

analytical model using real data, bias due to model mis-specification

and failure to satisfy assumptions requires full knowledge of the

underlying system, typically only available through simulation.

Here, we demonstrate this approach with an example

application for a widely-distributed, highly mobile species,

skipjack tuna (Katsuwonus pelamis). This species challenges

traditional CMR analytical methods as their dynamics are driven

by highly heterogeneous spatiotemporal ocean habitats, and

recapture of marked individuals relies on non-uniform recovery

effort and reporting from commercial fisheries across large regions

defined by population dynamics models used in stock assessment.

This frequently results in a large variability in recapture rates, due to

the highly dynamic spatiotemporal nature of fishing effort, and the

degree to which ‘tagged’ individuals in these CMR experiments mix

with and represent the underlying population in an assessment

region has been frequently questioned (Kolody and Hoyle, 2015;

Peatman et al., 2022).

We combine simulations from an IBM parameterised for this

species to generate data with two formulations of a simple Brownie

‘band-recovery’ analysis (Brownie, 1978a), a typical analytical

model used to inform time dependant natural and fishing

mortality estimations in fish species (Lauretta and Goethel, 2017;

Peatman et al., 2022; Vincent and Pilling, 2023), using two model

parameters: survival and recapture probability, respectively. These

Brownie models require several assumptions to be met. First, the

marked population should be a representative sample of the

population of interest on which the analysis is structured. Second,

that survival and recapture probability parameters are age-

independent, that is, they do not change for individuals of

differing ages or within some age structure. Finally, while these

parameters can change through time, they are assumed to be shared

by all individuals in the population of interest during each time-

period. In the case of CMR experiments on skipjack tuna,

heterogeneity in distribution, heterogenous recovery effort and

ontogenetic influences in survival and vulnerability to fishing

gears results in all the above assumptions being violated.

However, our hypothesis testing exercise permits quantification of

the resulting parameter bias under differing experimental designs or

complexity in this family of models.

In our example, first we test differing strategies for the spatial

spread of release locations for their ability to improve the

representativeness of the marked population with the population

of interest. Secondly, we use alternative formulations of our

Brownie analytical model which better account for the

spatiotemporal heterogeneity in recovery effort. Finally, we can

also test how parameter bias is influenced by the lack for spatial

coverage of marked individuals within a widely-distributed

unmarked population, and how this bias can be reduced through

redefining the spatial extent of what can be assumed to be an

appropriate study population of interest. By defining this spatial

extent as a function of the spread and recapture of marked

individuals themselves, rather than a fixed region based on

management objectives, our approach can quantify the spatial

area over which a given parameter precision can be expected.
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We use simulation experiments under these three types of

scenarios to illustrate how simulated data from IBMs can be used

to guide the spatial design of such CMR experiments, as well as the

choice of procedures used to analyse their resulting data.
2 Methods

2.1 Method summary

Our approach consists of the following steps:
1. Use a simulation model as a data generator, parameterised

for the heterogeneous processes (such as spatiotemporal

differences in environment, food availability, or predation/

exploitation) believed to influence the movement, recapture

and other properties of interest in the population.

2. Simulate the population, including both marked and

unmarked individuals, and track their properties over

time, generating recapture data from the marked group as

a function of their individual pathways, survival, and

recapture effort.

3. Calculate the realised ‘true’ parameter values for the

processes of interest from the unmarked population.

These are then compared to those same parameters as

estimated from the recapture data simulated by the marked

population, using the analytical methods being considered

for the CMR experiment data (in our example case, a

Brownie band-recovery model), to quantify the bias in

parameter estimates.

4. Repeat steps 2 and 3, examining alternative experimental

designs and analytical assumptions of the mark-release

effort strategy for their impact on this parameter

estimate bias.
For our example application, we simulate marked and

unmarked Pacific skipjack tuna under different CMR design-

analysis scenarios, using recapture probabilities that emerge

across a group of individuals to generate recapture matrices for

the estimation of demographic parameters.
2.2 Simulation model

We use an existing individual-based simulation model,

Ikamoana (Scutt Phillips et al., 2018), to simulate movement of

our target species. The model uses Lagrangian formulations of

Eulerian advection-diffusion equations, building on the Parcels

particle simulation engine (Delandmeter and van Sebille, 2019) to

simulate fish movement behaviours. Individual particles

representing animals perform three types of movements: passive

transport by ocean currents, active movements towards preferred

habitats, and random movements that mimic the search strategies

of fish. These movement behaviours are driven by heterogeneous

environmental and habitat fields, with advection-diffusion
frontiersin.org
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parameters estimated for Pacific skipjack tuna externally in a

Eulerian ecosystem model (SEAPODYM, Senina et al., 2020). The

positions, internal states such as age, and the history of individuals

are recorded along their pathways. A full description of this

simulation model is given in Scutt Phillips et al. (2018), and the

base code is publicly available online (https://github.com/

PacificCommunity/OFP-Ikamoana).

In tuna CMR ‘tagging’ experiments, recapture of marked

individuals is carried out by commercial and recreational fishers,

resulting in dead-recoveries. We therefore introduce a new

probabilistic mechanism of natural and fishing mortality to the

Ikamoana model to derive the survival and recapture probability of

individuals. This allows tracking of the recovery probability that

emerges as a function of each individual fish’s movement through

spatiotemporally varying fields of historical fishing mortality, as

estimated from catch and effort data in SEAPODYM (Senina

et al., 2020).

To calculate the effect of spatially varying fishing mortality in a

Lagrangian context, we must incorporate values normally

considered as deterministic reduction of the number or biomass

of animals within an area over a timestep. Instead, we consider these

values as a probabilistic function of dying for an individual within

the area, assuming that the probability that an individual is caught is

uniform across all the individuals present in that area.

Rather than a proportion of all individual particles being

removed from the simulation over time to represent mortality,

instead each n-th individual has a probability of survival sn which

diminishes over time due to either natural or fishing mortality.

Therefore, the population size represented by any group of particles

is given by the sum of all survival probabilities in the group. By

maintaining all the particles in the simulation, we increase the

spatiotemporal sampling of our model domain, so can base our

results on larger sample sizes.

Our model domain is divided into a regular grid of resolution

¼° x ¼°, and the total reduction in biomass in each grid cell at time

t, emerges from the cumulative probability of each n-th individual

dying of natural causes or being caught with probability mn(t) or hn
(t), respectively, depending on the observed spatial and temporal

distribution of fishing effort and/or catch by fishery in that cell. For

each position x and time t, the instantaneous mortality rate over

time-step Dt in that cell, Z(x,t), causes a proportion of fish there

present to be depleted through the combined effects of fishing and

natural mortality, F(x,t) and M(x,t), respectively. For the definition

and estimation of these parameters, we refer the reader to

SEAPODYM (Senina et al., 2020).

The probability of any individual dying at position x at time t, z

(x,t), is therefore simply m(x,t) + h(x,t), and can be defined as a

Lagrangian reinterpretation of the death rate from the Baranov

catch equation (Baranov, 1918), a common model for estimating

removal of animal biomass in fisheries applications.

z(x, t) = 1 − e−Z(x,t) (1)

Here, instantaneous mortality affects the probability of any

individual surviving, rather than the removal of a number of

individuals passing through position x at time t. However,
Frontiers in Marine Science 04
consecutive values of z(x,t) over time do not independently

influence the survival of an individual n over time, as death can

only occur once. For a given time representing an individual

‘proper’ time-at-liberty t, which is some time interval from its

time of release t0 and time-step tk, the probability that the n-th

individual survives this interval, Sn(t), is simply the product of all

probabilities of n having not died during t = t0 to t = tk.

sn(t) =
Ytk

i=t0

(1 − z(xi, ti)),   t = tk − t0 (2)

These probabilities are recorded along the trajectory of all

individuals through each simulation, their values changing in

response to the cumulative effect of the individual’s position, age,

and decreasing chance of survival throughout its time-at-liberty t.
In the context of recapture/encounter probability of marked

individuals in our tag recovery application for skipjack tuna,

probability of an individual’s death due to fishing is also that of

tag recapture, assuming 100% reporting of tags post capture. This

probability of recapture at a particular location x and time t, h(x,t),

is the proportion of total instantaneous mortality Z(x,t) caused by

fishing at time t at x.

h(x, t) =
F(x, t)
Z(x, t)

z(x, t) (3)

Substituting (1) into Equation 3, we recover an analogy of the

Baranov catch equation (Baranov, 1918).

Thus, the overall probability of a recapture for an individual n

during an arbitrary time interval of length j > Dt during it’s time at

liberty, is simply the sum of all probabilities of having survived until

the time prior to recapture (Equation 2) and then having been

caught (Equation 3) during each time during the interval (tk, tk+Dj).

pn(j) = o
tk+Dj

i=tk

(sn(i − 1) · h(xi, ti))         ∀ i ∈ (tk, tk + Dj) (4)

In our model, where individuals are recovered dead, this

probability of recapture at an individual level will necessarily

asymptote with increasing individual time-at-liberty t, as

additional exposure of an individual to recovery effort will result

in decreasing chance of recapture due to the preceding natural

mortality, and fishing mortality associated with past effort. An

individual movement trajectory from Ikamoana is given in

Figure 1, demonstrating how movement through a heterogeneous

field of fishing mortality influences survival and recapture

probability over time. Using this individual-level and probabilistic

approach to generate a recapture probabilities through time, it is

then straightforward to generate simulated recapture data over a

given time window.

2.3 Simulation experiments

CMR experiments have been a feature of the monitoring

program for skipjack in the western and central Pacific Ocean

(WCPO) since the 1970s with the subsequent CMR data used in tag

attrition models (Kleiber et al., 1987), integrated stock assessments
frontiersin.org
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(Hampton and Fournier, 2001) and ecosystemmodels (Senina et al.,

2020). Annual or biannual CMR ‘tagging’ campaigns in the WCPO

have now been undertaken since 2006 as part of the Pacific Tuna

Tagging Project (PTTP Leroy et al., 2013).

In our example application, we have chosen an important

management region within the WCPO convention area for tuna

fisheries, the archipelagic area around the Solomon Islands and

Papua New Guinea. This area is centred in the core of Pacific

skipjack tuna habitat (Senina et al., 2020), constitutes a major

proportion of catch from the WCPO convention area (Hare et al.,

2021), and forms a distinct region within the population dynamics

models currently used to manage WCPO tunas (Castillo-Jordan

et al., 2022). As with many CMR programmes, much of the

experimental design of fish tagging in this region is largely

determined by logistical constraints.

We simulated a year of continuous, monthly CMR experiments

using multiple combinations of release locations, and estimated

survival and fishing mortality parameters using a simple Brownie

band-recovery model from the generated recapture data (Brownie,

1978b). We compare these parameter estimates to ‘true’, realised

survival and fishing mortality parameters from a simulated,

unmarked population whose initial positions are spread

throughout a surrounding region defined by differing conditions,

at the same moment as each release experiment.

Our simulation experiments test combinations of three

experiment-analysis designs. The full list of simulation

experiments performed is given in Table 1.
Fron
1. We vary the spatial extent of marked individual releases

(‘release locations’) from which parameters will be
tiers in Marine Science 05
estimated, comparing them to unmarked individuals

within a pre-defined management area.

2. We then test varying the analysis method for estimating the

demographic parameters from the marked population,

accounting for the period during which individuals ‘mix’

with the unmarked population from the pre-defined

management area.

3. Finally, we vary the spatial extent of the unmarked

population from which realised parameters are calculated,

using a more biologically meaningful definition that

emerges from the spatial distribution of recaptures, and

to which CMR estimated parameters will be compared.
Each time marked individuals were released at a particular

location, 100,000 individuals were simulated to adequately sample

the space of potential movement trajectories post marking, as a

function of the movement model. For each experiment, individuals

were released throughout a 1°x1° area at locations within a currently

assumed spatial management region for this species and

corresponding to four areas of historical high tag releases: the

Bismarck Sea, south of New Britain, north of Isabel, and the New

Georgia Sound (‘The Slot’). We also simulated an ‘idealised’ release,

by assuming that marked individuals could be released throughout

the management region in proportion to the unmarked population.

These locations are shown in Figure 2 and summarised in Table 2.

For the unmarked population, 3 million individuals of the same

age were released throughout the Pacific Ocean, with an initial

spatial distribution that corresponded to that estimated by the

population dynamics model SEAPODYM, and for the same date

as each simulated CMR experiment. Differing spatial subsets of
FIGURE 1

Left: Diagram of an individual pathway in Ikamoana, over an example field of spatially heterogeneous fishing mortality (high mortality in red, low in
yellow). Right: corresponding time-series along this pathway of, from top to bottom, (A) survival after time-at-liberty t, sn(t); (B) probability of death
due to fishing at time t, h(x,t); and (C) cumulative recapture probability after time-at-liberty t, Pn(t).
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these individuals were then used as the reference, unmarked

population to which the estimated parameters from the simulated

recapture data were compared.

First, we used a subset of unmarked individuals distributed

throughout the current management region of interest in which our

CMR release locations belong: a large archipelagic region shown in

Figure 2. To test the impact of our analytical assumptions, we also

examined the impact on bias of changing the spatial extent of the

region from which the unmarked population are defined, by using

alternate subsets of this population based on the spatial extent of

recapture probability of the marked individuals released. This

represents a more biologically-based spatial structure for

comparison than the fixed management region currently used in
Frontiers in Marine Science 06
stock assessments for this species. In this case, differing proportions

of the spatial spread of recaptures after differing periods of time at

liberty for each release event were used. These corresponded to the

5%, 25%, 50%, 67% and 95% area of increasing size containing of

the greatest recaptures, after one, three and six months at liberty.

Only unmarked individuals from within this area, at the time the

marked group were released, were used to calculate the realised

survival and mortality parameters to which estimated values

were compared.

All simulation experiments were run using Ikamoana on

Australia’s National Computational Infrastructure (NCI), and

divided into parallel model runs of approximately 50,000 particles

each. Generation of the environmental fields driving behaviour, and
TABLE 1 List of simulation CMR experiments for our example application on Pacific skipjack tuna.

Simulations Marked Individual Spatial Extent Unmarked Individual
Spatial Extent

Scenario Tested

A1 Management Region Management Region Idealised Case

A2 Bismarck Sea Bismarck Sea Marked Group Only

B1 Bismarck Sea Fixed Management Region Single Release Location

B2
All individual, and all combined
release locations

Fixed Management Region Multiple Release Locations

C1 All combinations of four release locations Fixed Management Region Alternative ‘mixing period’ Analysis Model

D1
New Britain All combinations of spatial extent of 5%,

25%, 50%, 67% and 95% of recaptures, after
1, 3 and 6 months at liberty

Biology Driven: Spatial Extent of
Unmarked Population

D2
All four release locations All Combinations of spatial extent of 5%,

25%, 50%, 67% and 95% of recaptures, after
1, 3 and 6 months at liberty

Biology Driven: Spatial Extent of
Unmarked Population
FIGURE 2

Map of simulated, 1°x1° release locations (yellow) with the archipelagic management region boundary for skipjack tuna marked, as currently assumed
within the WCPO convention area.
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fishing mortality fields driving recapture probability, were pre-

calculated and saved per age class-time period combination for

efficiency. Each simulation was run on a single core and took ~20

minutes, meaning for each monthly release of marked and

corresponding unmarked individuals, the total computation time

was approximately 270 hours of computing time.
2.4 Parameter estimation

To estimate the parameters that emerge from our simulated

CMR experiments, for which we will examine for bias, we use a

common analysis in fisheries science for estimating demographic

parameters for animal populations: the Brownie band recovery

model (Brownie, 1978b). Using recapture data from multiple

release-recapture time periods, the approach estimates average

survival Sj and reported recapture probabilities fj, for each time

period j, and assumed shared for each release group cohort.

This model describes the fate of a cohort of Ni marked animals,

released at time i. Animals can be recovered in one of several

subsequent time periods, or they are never recovered. The number

of animals that were released at time i and recovered during time

period j is Rij. The recaptures can be summarised by an upper

triangular matrix (Table 3). The sum of each row, ri, equals the

number of individuals in cohort Ni that were recovered over the

course of the experiment.

Using the IBM approach described above, we populated these

upper triangular matrices for each proposed tagging experiment

using Equation 4, where

Ri,j = o
Ni

n=1
pn(j)   (5)

for each fish n in R released at time i.
Frontiers in Marine Science 07
The probability of each entry into the triangular matrix is given

by Table 4. We fitted the model using the analytical-numerical

estimators described in (Brownie, 1978b; Mann, 1989).

In addition, we also estimate an alternative generalisation of the

Brownie model in which, due to lack of instant mixing of marked

individuals, each release cohort is assumed to experience a separate

probability of recapture f �i for the period immediately

following release.

To examine the parameter bias, we compare the estimates from

the Brownie model to the equivalent, realised survival s and

probability of recapture f , over time period j, from the simulated

marked and unmarked groups. Realised values are the sum of values

across all individuals currently at liberty N, weighted by the

probability of those individuals having survived prior to time

period j. Using Equations 2, 4:

�Sj = o
N

n=1

sn(j)
sn(j − 1)

·o
N

n=1
sn(j − 1) (6)

�fj = o
N

n=1
pn(j) ·o

N

n=1
sn(j − 1) (7)
3 Results

3.1 Demographics of marked group
(Experiments A1 and A2)

To begin, we undertook two simulation experiments to examine

parameter estimate bias purely as a function of our Brownie model

assumptions, and not due to the assumptions of representativeness

of the unmarked population, by comparing estimated against

realised parameters from the same group of individuals

(Simulations A1 and A2, Table 1). First, we simulated the

movement and mortality of 12 monthly releases of marked

skipjack tuna with release locations throughout the management

region of interest, distributed spatially in proportion to the

unmarked population (A1). This represents the hypothetical, ideal

CMR experiment for the region, where fish are marked equally

throughout the corresponding population, instead of in discrete

release locations. Both realised and estimated survival and recapture

probability parameters by month for this idealised case are shown

in Figure 3A.
TABLE 3 Upper triangular matrix describing the numbers of recaptures
of fish released at each time period i, over time period j.

j = 1 2 3 4 5 Never
recovered

i = 1 R1,1 R1,2 R1,3 R1,4 R1,5 N1 – r1

2 R2,2 R2,3 R2,4 R2,5 N2 – r2

3 R3,3 R3,4 R3,5 N3 – r3
TABLE 4 Upper triangular matrix describing the assumed probability of
marked recapture released at each time period i, over time period j,
using Brownie band-recovery mode parameters.

j = 1 2 3 4 … T

i = 1 f1 S1f2 S1S2f3 S1S2S3f4 …
YT−1

j=i
Sj · fT

2 f2 S2f3 S2S3f4 …
YT−1

j=i Sj · fT

3 f3 S3f4 …
YT−1

j=i Sj · fT
fr
TABLE 2 Summary of release locations used in simulated CMR
experiments, with true numbers of marked individuals released at each
as part of the Pacific Tuna Tagging Project.

Release
Location
Name

Latitude
Vertex

Longitude
Vertex

Number of
Historical PTTP
Tag Releases

Bismarck Sea 4.5°S 150.5°E 13,700

New Britain 6.5°S 150.5°E 31,200

Isabel 5.5°S 155.5°E 12,700

The Slot 8.5°S 158.5°E 24,000
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Realised parameters show a near-stable survivability Sj through

time, which is generally under-estimated using the simple Brownie

model. The variability in recapture probability fj experienced by the

group, as a function of changing fishing effort across their area of

dispersion, is well tracked but over-estimated. The median, relative

bias over time was 4.4% and 9.5% for survival and recapture

probability, respectively (Figure 3A).

Undertaking the same exercise, that is, comparing estimated to

realised parameters for the same group of individuals, but for

individuals released in one of the discrete locations described in

Table 1 (The Bismarck Sea, Experiment A2), survival was again

generally underestimated, although more variable, and recapture

probability overestimated (Figure 3B). Median, relative bias over

time was 7.0% and 11.5%, respectively. Realised recapture

probability was, however, an order of magnitude greater due to

the release of fish in an area of intense fishing, and this was reflected

in more variable survival estimates from the simulated

recapture data.
3.2 Comparison of marked group to
unmarked population (Experiments B1,
B2, C1)

To replicate more accurately true CMR experiments,

demographic parameters estimated from typical release events

were compared against those realised parameters from a regional-

scale population of interest (Simulations B1 and B2, Table 1).

Figure 3C shows the estimated survival and recapture probability
Frontiers in Marine Science 08
from the Bismarck Sea release scenario against the realised

parameters experienced by the unmarked population distributed

throughout the management region shown in Figure 2 (B1).

Once again, probability of survival was reasonably well

estimated (median, relative bias over time = 9.3%), although fish

released in the Bismarck Sea produced a larger, negative bias in

these estimates compared to the ‘true’, realised survival of the

unmarked population. However, recapture probability estimates

were severely overestimated and highly variable, with a median

value of 361% greater than that of the unmarked population over

time (Figure 3C).

Extending these comparisons, we compared relative bias in

estimates from scenarios involving different release sites throughout

the historical tagging area, as well as simultaneous releases at all

four release locations (Figure 4A, experiment B2). Increasing from a

single to multiple release locations decreased bias in survival

estimates, from an overall median from all time periods of 9.9%

to 6.0% for one to all four locations, respectively. Estimated bias was

also most consistent over time for a given combination of locations,

with increasing numbers of release locations. For recapture

probability estimates, however, while the variability in relative

bias over time was reduced with increasing number of release

locations, the median bias across all time periods did not

improve. Furthermore, the scale of bias was still very large even

when individuals were released at all four release locations, with

median of 156% (interquartile range 143-234%). While some

parameter estimates from individual release scenarios and time

periods j were overestimated by nearly 900% (Figure 4A), some

individual releases actually outperformed the combined release
FIGURE 3

Time-series of estimated (yellow) and realised (blue) parameter values for survival (top) and recapture probability (bottom). Panel (A) shows results
from an idealized CMR experiment, with all simulated individuals marked throughout the region. Panel (B) compares estimated and realised
parameters of individuals released at the Bismarck Sea location. Panel (C) shows results comparing estimated parameters from marked individuals
released at the Bismarck Sea location, against realised parameters from the individuals throughout the region.
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event scenario when considered over time (e.g. Isabel and New

Britain location releases, with time-median errors of 37% and

98%, respectively).

To examine the effect that large differences in local recovery

effort (in this case, fishing pressure) may have on marked

individuals immediately post-release, we also fitted Brownie

models in which recapture probability during the first period

post-release was distinct to that for the other individuals at liberty

(f �i , experiment C1, Table 1). Figure 4B shows relative, percentage

bias in survival and recapture probability estimates (excluding f �i ),
for differing release scenarios. Survival estimates had similar bias

than for the Brownie model in which f �i = fi, ranging from overall

mean from all time periods of 12.8% to 7.6%, for one to all four

locations, respectively. For recapture probability, extreme levels of

error were less evident, but time-mean error was again very similar

to the simple Brownie model estimates (209% median, interquartile

range 104-317%, Figure 4B).
3.3 Comparison of marked groups to local
population (Experiments D1 and D2)

We also examined the impact on parameter error of changing

the spatial extent of what we consider to be the baseline, unmarked

population to which estimates from CMR experiments were

compared. We used unmarked individuals from within a spatial

boundary around release locations, with that boundary defined by

the spatial limit of simulated recapture density of marked

individuals, after differing periods of time (experiments D1 and

D2, Table 1). As an example, we first examined results using a single

release location (D1).

Figure 5 shows this spatial recapture density of the 5%, 50% and

95% areas of greatest recaptures for the New Britain release
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scenario, after one, three and six months at liberty. When

considering the densest 5% area (Figures 5A–C), the great

majority of recaptures were focused within the Solomon Sea area

and extended east through the archipelago over increasing time

from release. When considering the 50% and 95% area of all

recaptures (Figures 5D–I), the spatial distribution of recaptures

increased to include the wider archipelagic area alongside more

oceanic regions to the east. By six months, low recapture numbers

were spread out throughout the region, extending as far west as

Indonesia and as far east as Fiji by six months offish being at liberty.

Relative error in estimated parameter was calculated using

realised parameters from the unmarked population defined by the

95, 67, 50, 25 and 5% area of greatest marked individual recaptures

after three months at liberty, respectively (Figure 6). Survival

estimates were very similar across all scales of recapture area,

with median errors ranging from 13.3% to 12.5% for the areas of

95% and 5% greatest recaptures, respectively (interquartile ranges

8.5-29.2%, 7.1-29.0%). Error in recapture probability estimates was

again larger, and highly variable when comparing to the unmarked

population over larger areas, from a median of 49% to 51.5%, for

95% and 5% recapture areas, respectively (interquartile ranges 18.0-

54.4%, 36.3-74.5%).

The same exercise was carried out for the combined, four

release locations examined previously, this time comparing

parameter estimates with the unmarked population from within

the same spread of recaptures areas, but after one, three and six

months at liberty (experiment D2). The distribution of relative

recapture probability errors across all time periods are shown in

Figure 7. Survival estimate errors are not shown, as they did not

vary from those from Figure 6.

After only one month at liberty, error in recapture probability

estimates had similar variability across all recapture area scales,

except for the tightest, 5% recapture area around the four release
FIGURE 4

Positive, relative error between estimated and realised parameters for survival (top), and recapture probability (bottom) for different combinations of
CMR release location. Left: panel (A) time-series from all each separate release location (blue, dashed and all four (red, solid) release locations.
Boxplots show the distribution of all relative parameter errors combined, for the individual release locations (blue) and all four combined (red). Right:
panel (B) time-series of the same results, discarding the initial time-period following release for the estimation of population parameters. Note that,
when using this approach, recapture probability and survival cannot be estimated during the first and last time periods, respectively.
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locations, which was considerably more variable (median error =

25%, interquartile range 19-121%). This can be explained through

the relatively short time at liberty of marked individuals resulting in

localised and distinct areas of recapture. Comparing recapture

probability parameters estimated from releases in an area that

experiences high recapture effort, to the realised parameters of an

unmarked population made up of individuals from highly localised
Frontiers in Marine Science 10
areas around release locations of varying recapture effort, is more

likely to result in larger and more variable bias over time. Despite

this, the median, relative parameter error ranged from only 13 to

25% for all recapture areas considered.

Comparing to unmarked fish from the region determined by tag

recapture density after three months at liberty, the highest error and

variability was again seen for the 5% greatest recapture area, though
FIGURE 5

Spatial extent of the 5% (left, A–C), 50% (middle, D–F) and 95% (right, G–I) area of highest numbers of recaptures from marked individuals released
at the New Britain location, after one (top, A, D, G), three (middle, B, E, H) and six (bottom, C, F, I) months. Coloured cells show greater (red) or
fewer (yellow) recaptures by one degree cell.
FIGURE 6

Relative parameter error for survival (top) and recapture probability (bottom) for a CMR experiment releasing individuals in New Britain, comparing
estimated against realised parameters from the unmarked population defined by the area covering the 5% (green), 25% (red), 50% (purple), 67%
(orange) and 95% (teal) greatest numbers of recaptures. Boxplots show the distributions of all relative parameter errors.
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this was reduced compared to the one month at liberty case. Median

error was similar to the latter case for all areas considered, ranging

from 20 to 26%.

By six months at liberty, the areas over which recaptures

occurred had increased quite considerably, particularly when the

extremes of the recapture distribution were included under the 95%

greatest recapture density case. This resulted in a clear increase in

median error and variability when comparing parameter estimates

to the realised recapture probability of unmarked individuals over

an increasing area, from 20% to 58% when considering the area

covering 25% to 95% of the greatest recoveries, respectively

(Figure 7). The exception to this remained the case of comparing

estimates to realised parameters from only the area defined by the

greatest 5% of tag recaptures around the four tagging release

locations, where median, relative error was 27%. Here, once again

due to the highly concentrated fishing pressure in the area

immediately around the four different release areas even after six

months at liberty, there remained high variability between

estimated and realised recapture probability.
4 Discussion

In this study, we have demonstrated that using individual-based

models incorporating high levels of process heterogeneity can reveal

the bias in estimated demographic parameters from capture-mark-

recapture experiments. The error present in even the simplest,

idealised case we have presented here (that of estimating true,

realised parameters of a marked group from recaptures of that same

group, Figures 3A, B) demonstrates the limitations of the Brownie

model in such a system. The simple fact that the individuals do not

all experience the same fishing pressure due to their individual
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pathways through a spatially varying field of fishing effort leads to

estimator bias, particularly for recapture probability parameters.

Survival estimate biases were consistent across all our simulations,

regardless of experiment design scenario or analytical approach.

This is due to our assumed population model, in which natural

mortality is a dominant survival process that does not vary spatially,

despite being additive to fishing mortality.

While finding bias in parameters estimates for a heterogeneous

system, using a model that assumes homogeneity in those processes,

is hardly surprising, quantifying the degree of this bias is of value.

Despite the clear heterogeneity in our hypothesised system, the

relative parameter bias in the idealised cases (of the order of ~10%)

may certainly be acceptable for some management decisions.

However, examining experimental design and analytical scenarios

more typical to those carried out in CMR programmes for this

species, we demonstrate a large and likely unacceptable impact on

recapture probability estimates, a critically important parameter

that is often used to inform levels of fishing mortality in population

dynamics models. Our CMR simulations with releases in those

locations commonly undertaken in WCPO skipjack tagging

experiments typically resulted in recapture probability error in

our Brownie model of 100-300% (Figures 3, 4). This is due to

marked individuals being released in areas of the management

region in which fishing effort is exceptionally high and patchy, often

with large recoveries of marked individuals in the months

immediately following release. The bias in Brownie model

estimates that was already present in the idealised case becomes

greatly magnified under these circumstances, in response to the

most spatiotemporally heterogeneous processes in our model:

environmentally driven movement and fishing effort. While

spreading the point of release across varied locations in the

region considerably reduced the variability of this error through
FIGURE 7

Boxplots of relative parameter error distribution from CMR experiments at all four release locations, comparing estimated parameters against
realised from the unmarked population defined by the area covering 5% (green), 25% (red), 50% (purple), 67% (orange) and 95% (teal) greatest
numbers of recaptures, after (A) one, (B) three and (C) six months of time-at-liberty.
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time, as the spatiotemporal patchiness of fishing effort is more

evenly sampled across all individuals, the overall median error in

estimates did not change.

Introducing a parameter allowing each release to have a separate

recapture probability f* during the initial period following release, is

analogous to the ‘mixing period’ commonly applied to CMR data for

such species (Peatman et al., 2022). This trades off the discarding of

data that cannot be used in the estimation of population-level

parameters, as f* is meaningless for the population overall, against

decreasing the potential bias caused by lack of mixing from the

release location. Our results show that, for skipjack tuna CMR

experiments in our example management region, such gains are

minimal or non-existent with a mixing period of one month. The

spatial scale of the region at which the population being considered

exists, alongside the patchy concentration offishing effort and around

the areas used to release individuals, is simply too great for marked

individuals to become representative. It is important to note that in

stock assessment of this tuna species, mixing periods of much longer

than one month are typically explored (Castillo-Jordan et al., 2022),

and such time scales could, of course, also be examined using the

IBM framework.

The consideration of spatial scale and representativeness in

CMR experiments is important, and caution must be taken in

applying the results of local-scale experiments to large-scale

population models (Zimmermann et al., 2011). The fixed, spatial

management region of interest that we have examined in our

example is large. Our operating model predicts considerable

habitat away from the main areas of fishing, with an associated

‘cryptic’ biomass, which contributes considerably to the high error

in recapture probability estimates. In practice, the dimensions of

such conservation or management areas may not necessarily

depend on the known ecology of a species and the ecosystem, but

rather geopolitical contexts, local or state-level jurisdiction, and

single- or multi-species conservation policies (Albers et al., 2010).

As such, mismatches between the spatial evolution and capture

probability of two groups of marked and unmarked animals

through time can often occur (Fletcher et al., 2012).

Indeed, the lowest, consistent levels of parameter error we have

demonstrated in this study occurred when the assumed spatial

coverage was dynamic. When the baseline of the unmarked

population to which marked animals were being compared was

changed to 25-50% of the area in which recaptures occurred this

bias was reduced by around 150% (Figure 7). Rather than hoping to

estimate parameters accurately for a population within an arbitrary

area, using CMR experiments whose design is more a function of

logistics and practicality than the management region, here we use

an area defined by the spatial evolution of recaptures themselves to

guide our use of these data. In the case of our Pacific skipjack tuna

application, this demonstrates the potential benefits of spatial

structures that are driven by biologically plausible processes,

rather than being fixed or defined by the nature of other data

sources (e.g. catch). Similarly, other processes, such as those driving

population structure, may influence life history parameter bias

within spatially explicit models (Bosley et al., 2022) and can also

be examined using our approach.
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While adaptive and dynamic spatial management of the marine

environment is certainly possible (Maxwell et al., 2015), the

difficulty in estimating parameters within data-integrated

population dynamics models typically requires fixed spatial

structures. Our approach can certainly be used to define or

inform the nature of the spatial structure within such models, but

more pragmatically it can be used to indicate the spatial or other

dimensional limitations on how CMR data can precisely inform

models and quantify the potential scale of error.

For example, wildlife managers could choose a degree of bias

that is acceptable for decision making, and then use our simulation

approach to find the spatial scale at which planned or historical

CMR experiments will robustly fulfil these requirements. Once

determined, spatial structures can be chosen to make best use of

the available data. In the case of fisheries management, models that

seek to parameterise growth, connectivity or mortality rates can be

constructed to best match the available CMR data. In the case of

integrated population dynamics models, where multiple sources of

data are used in parameter estimation, CMR data could be used to

only inform those parameters of the model that also match this

spatial scale, such as in the case of fisheries limiting the influence of

recapture data to the estimation offleet parameters who also operate

at the identified spatial scale.

A further benefit of our approach using individual-based

modelling is in their flexibility to easily test alternative hypotheses

and mechanisms which are not easily estimated in data-driven

models. Undertaking such model exploration is important

to improve the credibility and appropriateness of existing

predictions (Thiele and Grimm, 2015). Wang et al. (2022)

undertook such an exercise examining the potential bias in

population estimates from CMR experiments on swallowtail

butterflies, varying the value of behavioural parameters as well as

landscape and sampling effort distributions. They were able to

identify recapture effort scenarios that would result in large errors

in demographic estimates, as well as those parameters that typical

CMR analyses were highly sensitive to for this system. Similarly,

Petrovskii et al. (2012) quantified the relationship between insect

trap catches and population density, using an IBM with hypotheses

on differing diffusion-like behaviours.

In contrast, our example in this study takes the approach of

fixing landscape (habitat and fishing mortality fields) and biological

(diffusion, taxis and mortality) parameters from existing

estimations made on data, and instead focuses on logistical

scenarios of experimental design and analytical assumptions to

examine bias. However, it would be relatively straightforward to

also explore the influence of alternative behavioural scenarios in

CMR analyses, and differing assumptions regarding the drivers of

behaviour may potentially lead to very different outcomes, which

should be explored where valid hypotheses exist for the system.

IBMs using individual level attributes or interactions have been

used to examine the spatial aggregation of phytoplankton (El Saadi

and Bah, 2006), the impacts on catch of fish in response to local

aggregation sites (Dagorn et al., 2000; Nooteboom et al., 2023), the

expansion of invasive termites (Tonini et al., 2014), and habitat

utilisation by jaguars (Watkins et al., 2015). Similarly, our approach
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can assist with evaluating bias in analyses of existing CMR data to

maximise the information derived.

We encourage the use of such hypothesis testing in IBMs for

optimising the design and analysis of CMR experiments and related

approaches. When the experimental design is spatially limited or

local in nature, it is an important tool to characterising spatial

extent over which results can provide precise and robust parameter

estimates. Similarly, the fields of close-kin mark recapture

(Bravington et al., 2016), ecotoxicology (Topping et al., 2009),

and telemetry (McClintock, 2021), for species with high levels of

behavioural heterogeneity and in patchy landscapes, are likely to

benefit from our approach to optimise costly experiments and

monitoring programmes.
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