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seabream (Sparus aurata)
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and Tomeu Viver2*

1Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentaries (IRTA), La Ràpita, Spain,
2Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain
In many meta-analyses and literature reviews on fish microbiota, the provenance

of the animals (farmed vs. wild) is often overlooked. Given the well-established

role of diet as a key factor in shaping gut microbiota, this study investigates the

impact of dietary nature by comparing the microbiota of gilthead seabream

(Sparus aurata) fed a commercial diet versus a wild-type diet, all reared within a

recirculating aquaculture system. Over a 60-day period, we tracked changes in

gut bacterial diversity, structure, and composition following a shift from a

commercial feed to a diet exclusively based on pink shrimp (Parapenaeus

longirostris). Gut bacterial communities were assessed using 16S rRNA gene

sequencing (Illumina MiSeq platform) with primers targeting the V3-V4

hypervariable regions. Twenty days after the dietary change, microbial diversity

(Shannon index) increased in fish fed the shrimp diet compared to those fed the

commercial diet, while Dominance index values decreased. Additionally, inter-

individual (beta-) diversity based on Bray-Curtis distances also differed between

dietary treatments. These results support further that microbiota comparisons

between farmed/captive and wild fish are challenging due to the unpredictable

feeding regimes and dietary variations in wild fish. However, the diet impact on

microbiota diminished over time, with the differences in intra- and inter-

individual diversity being reduced after 40 days, which suggests an adaptation

of microbial communities to dietary changes. At this point, gut microbial

communities also showed a similar taxonomical composition. Moreover, a

core microbiota consisting of species belonging to the genera Ralstonia,

Paraburkholderia, Fulvimonas, Pseudomonas, and Cutibacterium was

maintained in all sampling times under both dietary treatments. Overall, this

study serves as a conceptual approach that shows a long-term adaptation of the

gut microbiota after a radical dietary change, probably driven by host-inherent

factors. Furthermore, these results may be a valuable insight for feed

manufacturers aiming to develop sustainable and cost-effective ingredients

since they suggest that some alternative feeds and ingredients do not have

adverse long-term effects on fish gut microbiota.
KEYWORDS

diet change, wild-type diet, commercial diet, gut microbiota, time course, core
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1 Introduction

The fish gut microbiome plays an important role in numerous

aspects of fish life-history and physiology, including digestion,

nutrient absorption, immunity, and even behavior or stress

response (Diwan et al., 2022). In recent years, understanding the

microbial diversity and their metabolic function has garnered

increasing attention due to its profound implications for fish

condition and health, aquaculture practices, and ecosystem

sustainability. The composition and diversity of the fish gut

microbiota are influenced by various factors, such as habitat, host

genetics, environmental conditions, and particularly, the diet-

associated factors (Silva et al., 2011; Ghanbar et al., 2015;

Degregori et al., 2024). Different dietary components, such as

carbohydrates, proteins, lipids, and fiber, serve as specific

substrates for microbial metabolism, that together with the feed-

accompanying microbes may influence microbial species diversity

(Li et al., 2014; Pan et al., 2023; Viver et al., 2023).

The growing interest in optimizing the utilization of fish meal

and fish oil in aquafeeds has prompted to the search for sustainable

and economically viable alternative ingredients. This search aims to

identify substitutes that not only align with environmental

sustainability but also contribute positively to fish health, with a

particular focus on understanding the potential influence of dietary

components on the gut microbiome (Rimoldi et al., 2018a; Niu

et al., 2019; Xie et al., 2022). In addition, the importance of studying

the diet-microbiome modulation also lies in the fact that dietary

alternatives cannot only have health-promoting effects, but may

also cause dysbiosis, impairing the composition and/or functions of

the gut microbiota, which subsequently can have a physiological

effect, such as the generation of an intestinal injury, inflammation or

a reduced immune response (Infante-Villamil et al., 2021). Hence,

examining microbial fluctuations over time after a diet change can

offer valuable insights into the diet impact on the fish microbiota

and intestinal health.

During the last years, numerous studies have highlighted that

diet is a primary factor influencing gut microbial communities

(Ringø et al., 2016; Egerton et al., 2018; Ruiz et al., 2024). However,

the scientific literature often compares gut bacterial taxa in fish

without accounting for whether they are reared under wild or

cultured conditions. In this regard, several comparison studies

have shown significant differences in gut microbial diversity,

structure, and composition between farmed and wild species. This

was the case for gilthead seabream (Sparus aurata) (Kormas et al.,

2014), fine flounder (Paralichthys adspersus) (Ramıŕez and Romero,

2017), Nile tilapia (Oreochromis niloticus) (Bereded et al., 2021),

common carp (Cyprinus carpio) (Ruzauskas et al., 2021), Korean

rockfish (Sebastes schlegelii) (Yu et al., 2021), zig-zag eel

(Mastacembelus armatus) (Liu et al., 2022), red cusk-eel

(Genypterus chilensis) (Romero et al., 2022), brook trout

(Salvelinus fontinalis) (Mugetti et al., 2023) and pike perch

(Sander lucioperca) (Wang et al., 2024), among many other fish

species. In addition, in our previous study we observed that two

distinct wild fish species, the pearly razorfish (Xyrichtys novacula)

and gilthead seabream, exhibited a more similar microbial profile
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than the wild and farmed gilthead seabream, suggesting that

environmental and dietary factors significantly shape microbial

composition (Viver et al., 2023). In this sense, numerous

environmental factors influence microbial modulation, including

the water temperature, salinity, and the microbial composition of

the environment (Roeselers et al., 2011; Rudi et al., 2018).

Furthermore, the ingredient formulation and composition of the

commercial feeds differs significantly from the fish diets in natural

environments. However, the aforementioned studies reflect that is

challenging to discern between the impacts caused by the

environmental conditions and by the diet on the gut

microbial communities.

To elucidate the impact of the diet type on fish gut microbiota

over time, this study aims to evaluate how the microbial

communities of gilthead seabream are modulated over a 60-day

period following a dietary shift from commercial feed to a diet

exclusively composed of deep-water pink shrimp (Parapenaeus

longirostris), which more closely mimics the fish diet under

natural conditions. Gilthead seabream was selected as a biological

model for this study due to its status as the second most farmed fish

in the European Union (APROMAR, 2023) and its importance in

aquafeed research within the framework of the search for novel

sustainable ingredients (Matos et al., 2017; Porcino and Genovese,

2022). The current approach seeks to determine whether there is an

adaptation period during which the microbiota adjusts to the diet

change, and how the effect of the wild-type vs. commercial diet

varies over time. The results of this study may provide valuable

insights into the impact of the diet type on the frequently observed

differences in microbiota composition when comparing wild and

farmed fish, as well as supporting the exploration of novel aquafeeds

formulated with more sustainable, cost-effective, and readily

available ingredients.
2 Materials and methods

2.1 Experimental setup

The experiment was conducted at Insitute of Agrefood Research

and Technology (IRTA) facilities, in La Ràpita (Tarragona, Spain).

Gilthead seabream juveniles (1.6 g in body weight, BW) were

purchased from a commercial fish hatchery in the East coast of

Spain and transported by road to IRTA. A subset of these fish was

used in our previous assay, so details about their acclimation may be

found there (Viver et al., 2023). Fish with an average initial body

weight (BWi) of 25.29 ± 4.90 g (standard deviation, SD) were

randomly distributed in two tanks, each with a volume of 400 L (n =

30 per tank), connected to an IRTAmar™ water recirculation

system, where they were maintained for 4 months. During three

months the fish were fed with the commercial feed D-2 Optibream

AE 1P (2.2 mm pellet size, Skretting; Nutreco N.V.), and in the

fourth month, the commercial feed was progressively switched to

D-4 Optibream AE 3P (4 mm pellet size, Skretting) in order to

adjust pellet size to fish growth. The macronutrient proximate

composition of D-2 Optibream AE 1P was 48.5% crude protein,
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18% lipids and 18.5 MJ kg-1 digestible energy, while D-4 Optibream

AE 3P contained 44% crude protein, 20% lipids and 18 MJ kg-1

digestible energy (Serie D2-D5 Fish meal composition is: fish oil,

vegetable oils, cereal products and by-products, legume products

and by-products, oilseed products and by-products, vitamins and

minerals). After 4 months of being exclusively fed with commercial

diets, the fish from the second tank were switched to a diet

exclusively based on deep-water pink shrimp (T0), while the fish

from the first tank continued being fed with D-4 Optibream AE 3P

(Skretting), in order to compare the microbial dynamics induced by

the diet change with respect to a control group over time. For the

diet shift assay, 25 kg of entire individuals of deep-water pink

shrimp (total length: 4-6 cm) which had been frozen only once just

after capture with no further manipulation, were purchased from a

local fishing company. However, commercial crustaceans normally

contain sodium metabisulfite (E223), which is a synthetic

antioxidant preservative added to avoid melanosis after removal

from the water with a slight antimicrobial activity (Miraglia et al.,

2021). To avoid the potential penetration of sodium metabisulfite

into the shrimp tissues, before thawing, shrimps were cleaned with

abundant sterile seawater. Then, shrimps were cut into pieces of

between 2-3 cm length to facilitate their ingestion. Fish from both

tanks were manually fed ad libitum with their respective diets three

times per day during all the experiment, which extended for a

period of 60 days after the diet change of the second tank (T0).

Specimens from both tanks were collected at 20, 40, and 60 days

after T0, (T20, T40, and T60, respectively). In each sampling time,

eight specimens were col lected from each condit ion

(Supplementary Figure S1, Supplementary Table S1). To monitor

the tanks’ water quality at the microbiological level during the

experiment, each week an aliquot of 100 µL was spread onto TSA

(Trypticase Soy Agar) + 0.6% NaCl, and TCBS (Thiosulphate

Citrate Bile Salts Sucrose) Agar medium and incubated at 22°C

for 48 h to obtain the Total Viable Counts (CFU) of heterotrophic

microorganism and Vibrionaceae, respectively.

The water temperature (18–22°C) and dissolved oxygen (6.4 ±

0.6 mg L−1; OXI330, Crison Instruments) were daily measured and

controlled, and pH (7.4 ± 0.2; pHmeter 507, Crison Instruments),

salinity (36‰; MASTER-20 T, ATAGO Co. Ltd), ammonia (0.14 ±

0.1 mg NH4
+ L−1) and nitrite (0.2 ± 0.1 mg NO2

− L−1) levels

(HACH DR9000 Colorimeter, Hach, Spain) were weekly

monitored. Just after T20, the fish were transferred to two other

400 L tanks for the cleaning and maintenance of the tanks in this

module, but the water quality and environmental conditions among

modules were maintained.
2.2 Sample processing

For each sampling point, fish were manipulated as detailed

previously (Viver et al., 2023). Briefly, all fish in each tank were

deprived of feed for 86 h before the sampling in order to collect only

the autochthonous microbiota (Hao and Lee, 2004; Naya-Català

et al., 2021). Among them, fish were euthanized with an overdose of

the buffered anesthetic (tricaine methanesulfonate, MS-222, Sigma-
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Aldrich; 300 mg L-1). The entire intestinal tract was aseptically

extracted and the perivisceral fat surrounding the intestine was

gently removed with a scalpel; then, a 3 cm section of the anterior

intestine and another of the posterior intestine with the same

length, were dissected using sterile scissors, and opened

lengthwise. The mucosal content was gently scraped with a round

edge spatula and immediately frozen at -80 °C for further microbial

analysis. The rest of the individuals were fed again after the fasting

period until the next sampling point when the above-mentioned

process was repeated for the next 8 fish. The fish was considered as

the experimental unit of this study since it is the smallest entity that

is randomly assigned to a different treatment group (Wilson et al.,

2023). In this sense, all fish used for the experiment had similar

characteristics (fish age, size, origin), and they were exposed to the

same controlled environmental conditions (temperature, dissolved

oxygen, pH, salinity, nitrite, and ammonia levels) within the

IRTAmar™ water recirculation system. The use of the fish as the

experimental unit is a common practice in microbiota studies

(Rimoldi et al., 2018b; Kokou et al., 2019; Naya-Català et al.,

2021; Viver et al., 2023) which takes into account the inter-

individual variation in the microbial communities (Legrand et al.,

2020; Panteli et al., 2020) and aligns with the 3Rs principle

(Zemanova, 2020).
2.3 Microbial composition of commercial
feed and shrimp

Commercial feed pellets (D-4 OptiBream AE 3P) and samples of

shrimps were stored at -80 °C at each sampling time. For processing

purposes, three feed pellets and three shrimps were crushed with an

autoclaved mortar and cut into very small pieces with sterile scissors,

respectively. A total amount of ca. 150 mg in wet weight from feed or

shrimps were collected and used for DNA extraction by means of the

FastDNA™ Spin Kit for Feces (MP Biomedicals) following the

manufacturer’s protocol. Three extractions for feed and shrimps were

performed from each sampling time.
2.4 DNA isolation, amplification,
and sequencing

The FastDNA™ Spin Kit for Feces (MP Biomedicals) was used

to perform DNA extraction from the scraped mucosa content (up to

150 mg), following the manufacturer’s instructions. Illumina

amplicon sequencing was performed using the set of primers of

the V3-V4 region of the 16S rRNA gene for Bacteria forward (5’ -

CCTACGGGNGGCWGCAG - 3’) and reverse (5’ - GACTACHVG

GGTATCTAATCC - 3’) (Herlemann et al., 2011) containing the

forward (5 ’ - TCGTCGGCAGCGTCAGATGTGTATAA

GAGACAG - 3’) and reverse (5’ - GTCTCGTGGGCTCGGAGAT

GTGTATAAGAGACAG - 3’) Illumina sequencing adapters. A first

PCR was performed with the following program: an initial step of

30 s at 98°C for polymerase activation and DNA denaturation,

followed by 35 cycles of 10 s at 98°C, 30 s at 55°C, 30 s at 72°C, and a
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final extension step of 2 min at 72°C. Another 8-cycle amplification

with similar cycle conditions was then carried out to add specific

dual-index barcodes to each template. After each PCR, the

templates were purified using Ampure XP beads (Beckman

Coulter, USA) and 1 mL of a 1:50 dilution was analyzed on a

Bioanalyzer DNA 1000 Chip (Agilent Technologies, USA) to check

the size of the final library product (Illumina, 2013). Then, DNA

samples were pooled at equimolar concentrations and sequencing

was performed using an Illumina MiSeq instrument (2x300 bp)

(FISABIO, Valencia, Spain).
2.5 Amplicon sequence variant and
operational phylogenetic unit approaches

Raw sequencing data were provided in a demultiplexed FASTQ

format containing paired-end reads. The data were analyzed using

the Qiime2 bioinformatic platform (Bolyen et al., 2019) with the

parameters –p-trunc-len-f 280, –p-trunc-len-r 220, –p-trim-left-f

19 and –p-trim-left-r 22. Amplicon sequence variant analyses

(ASV) were obtained with DADA2 software implemented in

Qiime2. The representative sequence of each ASV was aligned

using the non-redundant SILVA REF 138.1 database (Quast et al.,

2013) and the ARB package (Ludwig et al., 2004). Sequence

alignment was performed using the SINA tool implemented in

the ARB program (Pruesse et al., 2012). The aligned sequences were

inserted in the SILVA REF 138.1 database containing the pre-

stablished operational phylogenetic units (OPUs) detected in Viver

et al. (2023) for taxonomic classification, using the parsimony tool

available in the ARB package. The non-affiliated sequences to the

pre-stablished OPUs were inserted again in the SILVA REF 138.1

database to select the close relative sequences for phylogenetic

analysis and de novo OPUs identification. In this context, the

phylogenetic tree was manually inspected, and isolated sub-

branches containing the query sequences along with at least one

representative sequence were grouped into OPUs based on visual

assessment of the final tree to ensure a high degree of accuracy

(Mora-Ruiz et al., 2016; Viver et al., 2015). Predictive functional

profiling was carried out with the R package Tax4Fun (Ref99NR)

(Aßhauer et al., 2015) using the trans_func class function of

microeco (Liu et al., 2021). Metagenomics functions were inferred

from the Kyoto Encyclopedia of Genes and Genomes (KEGG) and

collapsed into pathways (level 1 – level 3).
2.6 Statistical analyses

Since the values of BW did not follow a normal distribution

(Shapiro-Wilk test, P < 0.05), Wilcoxon-test was used to evaluate

significant differences in BW among groups (P ≤ 0.05). To analyze

the alpha and beta diversity indices, the dataset was rarefied to the

minimum sample depth (21,494 sequencing reads per sample) with

the vegan R package (Oksanen et al., 2022). To assess the

phylogenetic complexity of the samples, rarefaction curves,

Shannon and Dominance indices were calculated using the PAST

statistic tool (Hammer et al., 2001) based on the diversity and
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abundance of 16S-based OPUs. The microeco R package (Liu et al.,

2021) was used to calculate the Bray-Curtis dissimilarity values

between the different community profiles of samples and periods of

the assay based on OPUs. Non-metric multidimensional scaling

(NMDS) plot based on Bray-Curtis dissimilarity was constructed

using the vegan package (Oksanen et al., 2022) and plotted using the

R package ggplot2 (Wickham, 2016) in R tool version 3.6.3 (R Core

Team, 2020). The values of Shannon diversity index and Bray-

Curtis dissimilarity were also compared between the two fish tanks

at T0 (before the diet change) verifying that the tanks in which fish

were initially located did not influence the microbial communities

(Supplementary Figure S2). A divergence test between samples

based on OPU abundance and composition was performed using

non-parametric two-sample Kolmogorov-Smirnov tests (Jarek,

2015), since the data did not meet the assumptions of normality

and homoscedasticity. Differences in alfa diversity indices and in

the predictive functional pathways between groups were

determined by Wilcoxon test (P ≤ 0.05), with P-values adjusted

by False Discovery Rate (FDR). Differences in beta diversity were

evaluated by performing permutational multivariate analyses of

variance (PERMANOVA), with P-values adjusted by FDR.

According to the definition given in previous studies (Astudillo-

Garcıá et al., 2017; Neu et al., 2021; Custer et al., 2023), in this work

the core microbiota was considered as the microbial taxa shared by

at least two individual samples among all the experimental

conditions which was present at an average abundance of at least

2%. The cutoff for defining an OPU as highly abundant was set at

1% relative abundance.
2.7 Terminology on bacterial phyla

The authors are aware that certain phyla names have been officially

proposed by Oren and Garrity (2021) as Bacillota (= Firmicutes),

Bacteroidota (= Bacteroidetes), Pseudomonadota (= Proteobacteria),

Act inomyceto ta (= Act inobacter ia) , Planctomycetota

(= Planctomycetes), Chloroflexota (= Chloroflexi), Fusobacteriota

(= Fusobacteria) and Chlamydiota (= Chlamydia), but for pragmatic

reasons and comparative purposes with available published literature,

the former nomenclature was used in this manuscript.
3 Results

3.1 Fish growth

Along the 60-day experimental trial, we observed a consistent

BW pattern in both dietary groups. At the initial sampling day in

which a group was submitted to the diet change (T0), the fish

weighed an average of 158 ± 32.9 grams. At T20, the fish fed with

shrimp showed a significantly higher BW (211.2 ± 23.8) than the

fish fed with commercial feed (190.0 ± 25.1; P = 0.038). However,

during T40 and T60, fish fed with both diets exhibited a similar BW

(Wilcoxon-test; P > 0.05): an average BW of 202.1 ± 34.1 and 259 ±

48 g for those fed with commercial feed, respectively, and 220.3 ±

31.9 and 252 ± 31.8 g for those fed with deep-water pink shrimp,
frontiersin.org

https://doi.org/10.3389/fmars.2024.1498892
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Ruiz et al. 10.3389/fmars.2024.1498892
respectively (P = 0.290 in T40, P = 0634 in T60; Supplementary

Table S1).
3.2 Phylogenetic diversity based on OPUs

After trimming and chimera removal, all samples included in this

study rendered a total of 10,957,204 sequenced reads, and the number

of sequences per sample ranged between 21,494 and 160,269. All

sequences were clustered in 8,072 ASVs and after phylogenetic

inference a total of 1,256 OPUs were detected (ranging between 22

and 428 OPUs per sample) (Supplementary Table S2). Taking into

consideration that an OPU is the smallest cluster of query sequences

that affiliates with at least one reference sequence and considering

that the size of each cluster typically falls within a sequence distance

of less than <97% (considering the relatively short length of ~400 pb

for partial sequences), we can assert with confidence that an OPU

represents a single species (Mora-Ruiz et al., 2016). Each OPUs is

recognized as a distinct species within genera whenever possible. To

ensure statistical accuracy, the dataset was rarefied at the lowest

number of sequences detected in a single sample (21,494;

Supplementary Table S3), and the rarefaction curves demonstrated

that the number of OPUs had reached their plateau at this number of

reads for all samples (Supplementary Figure S3).

The phylogenetic analysis showed that the 1,256 OPUs were

classified in 620 genera and 314 families, affiliated with 38 different

phyla (Supplementary Tables S4, S5). In agreement with our previous

assay (Viver et al., 2023), the phylum Proteobacteria was the most

prevalent phylum, accounting for 42.9% of the total OPUs.Within this

phylum, the majority of OPUs were classified as Gamma- and

Alphaproteobacteria, representing 20.7% and 18.9% of the OPUs,

respectively. Firmicutes (22.9% of the OPUs), Actinobacteriota

(12.7%), Bacteroidota (7.0%), and Planctomycetota (2.2%) were also

predominant in the examined samples. Furthermore, the study

identified a total of 620 genera, from which 514 were represented by
Frontiers in Marine Science 05
only one OPU. However, there was a considerable OPU diversity

within some genera, such as Vibrio (32 distinct OPUs), Bacillus (29

OPUs), Lactobacillus (27 OPUs), Pseudomonas (22 OPUs), and

Paenibacillus (15 OPUs).
3.3 Microbial composition of the feed
pellets and shrimp

The microbial diversity patterns showed that the commercial

feed and shrimps presented the highest diversity values, as

measured by the Shannon index (average of 2.09 ± 0.22 in the

commercial feed and 3.35 ± 0.58 in pink shrimps), and the lowest

dominance values (average of 0.22 ± 0.04 in the commercial feed

and 0.13 ± 0.1 in pink shrimps), indicating a more even distribution

of species compared to the fish gut microbiomes (Figure 1;

Supplementary Table S6). Shannon diversity values were

positively correlated with the detection of a higher number of

specific OPUs from commercial feed datasets. Out of the 424

OPUs detected in commercial feed and 810 OPUs detected in

pink shrimp, a substantial proportion (30% and 35.7%, respectively)

were exclusive to each set of samples. In contrast, the exclusive

detected OPUs in the fish microbiomes ranged from 6.1% to 2.0%

(Supplementary Table S4). The microbial diversity of the

commercial feed remained relatively consistent throughout the

experiment, with the lowest range of Bray-Curtis dissimilarity

values (average value of 0.12 ± 0.06) (Supplementary Table S7)

suggesting that storage did not significantly alter the microbial

assemblage of feed pellets for at least 60 days. The OPU analysis

revealed that 12 microbial species were consistently abundant (with

an abundance close to 1% in all samples), and their combined

abundance ranged from 89.8% to 95.02%. Among them, six of these

species affiliated with phylum Firmicutes, specifically the class

Bacilli, where the OPU0015, OPU0011, OPU0036 and OPU0037

affiliated with Lactobacillus (average abundance of 36.02 ± 5.8%,
FIGURE 1

Alpha diversity variation among the experimental groups in relation to the Dominance (A) and Shannon (B) indices. Column A and F represent the
direct microbial analysis of the commercial feed and deep-water pink shrimp (Parapenaeus longirostris), respectively. Columns B to E represent the
gut microbiomes of gilthead seabream (Sparus aurata) collected at the beginning of the experiment and through 60 days of continuous feeding with
commercial feed in chronological order. Columns G, H, and I represent the gut microbiomes of gilthead seabream fed with deep-water pink shrimp
after 20, 40, and 60 days from the beginning of the experiment.
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9.02 ± 1.4%, 1.75 ± 0.4% and 1.67 ± 0.3%, respectively), Bacillus

OPU0145 (2.61 ± 0.4%) and Staphylococcus OPU0076 (1.49 ±

0.3%). The other highly abundant OPUs affiliated with Ralstonia

OPU0522 (4.4 ± 3.6%) and Photobacterium OPU0624 (3.47 ±

0.9%). Moreover, a high abundance of chloroplasts (OPU1059)

and mitochondria (OPU1038) sequences were detected in all

samples (Figure 2; Supplementary Table S8). Ralstonia OPU0522

was found to be shared among the commercial feed (4.39 ± 3.65%),

deep-water pink shrimp (18.84 ± 19.51%) and all fish gut

microbiome samples (37.81 ± 29.37%) (Figure 2).

The microbial composition of shrimp exhibited a slightly higher

level of heterogeneity (average Bray-Curtis dissimilarity value of

0.54 ± 0.2) than the compound feed, but all samples were closely

clustered in the NMDS plot (Figure 3A). This variability could be

associated to the batch selected for DNA extraction and sequencing.

The high abundant OPUs detected in shrimp and absent or poorly

detected in fish microbiomes affiliated with the Flavobacterium

OPU1209 (relat ive abundance of 14.4 ± 11.9%) and

Chryseobacterium OPU_R402 (2.1 ± 1.5%) of the Bacteroidia

c l a s s ; Glu tamic ibac t e r OPU0420 (2 . 4 ± 1 .4%) and

Psychromicrobium OPU0427 (2.07 ± 1.4%) of the Actinobacteria

class; the Psychrobacter OPU0705 (11.9 ± 7.3%), the Oceanimonas

OPU_P06 (1.9 ± 1.9%) and Marinomonas OPU0684 (3.5 ± 1.78%)

of the Gammaproteobacteria class.
3.4 Gut microbial communities in fish fed
with commercial diet

All gilthead seabream juveniles were fed with commercial pellets

upon arrival to the experimental facilities and during the 4 months

preceding the start of the experiment on the shift of food items. At

time zero (T0), the control group continued being fed with the

commercial diet over a period of 60 days and we did not observe any

differences in species diversity and abundance between distal and

proximal intestine for 80% of the specimens studied (n = 16 intestinal

samples per diet) as indicated by the Kolmogorov-Smirnov test

(Supplementary Table S9) and the NMDS plots (Supplementary

Figure S4), which shows the distinction between distal and

proximal intestine samples over time and diet. At T0, all samples

exhibited a similar dominance and Shannon indices with T20 (with

an average dominance value ranging from 0.47 ± 0.15 to 0.47 ± 0.22

and Shannon index ranging from 1.22 ± 0.46 to 1.33 ± 0.53 in T0 and

T20, respectively). We detected a slight increase in diversity with a

decrease in the dominance after 40 and 60 days (average dominance

value ranging from 0.37 ± 0.14 to 0.39 ± 0.16 and a Shannon index

ranging from 1.44 ± 0.43 to 1.46 ± 0.55 in T40 and T60, respectively)

(Figure 1; Supplementary Table S6). No significant differences were

observed in dominance and Shannon indices over time (Wilcoxon-

test; P > 0.05). The NMDS plot, based on the Bray-Curtis index,

indicated that the dissimilarity between the control samples from the

T0 and T20 datasets was higher (averaging 0.67 ± 0.24 and 0.7 ± 0.24,

respectively) compared to that within the T40 and T60 datasets

(averaging 0.46 ± 0.23 and 0.53 ± 0.29, respectively), suggesting a

higher species homogeneity among individuals in the final stages of

the experiment (Figure 3B; Supplementary Table S7). Comparisons
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between T0 and the rest of sampling times indicated that T60 showed

the most significant microbial diversity changes (average Bray-Curtis

dissimilarity value of 0.85 ± 0.12 between T0 and T60 samples)

(Supplementary Table S7).

Commercial feed and control fish in all time points shared 206

OPUs, including the species Ralstonia OPU0522, Paraburkholderia

OPU0542, Leptospira OPU1052, Fulvimonas OPU0572,

Pseudomonas OPU0713 and Cutibacter ium OPU0409

(Supplementary Table S8). There were microbial species exclusive

in each dataset or sampling day. Out of the 319 total species

detected, 5.6% were exclusive of the initial time (T0). At 20 days

(T20), the percentage of exclusive species decreased to 4.6%, and at

T40 and T60 the values were of 2.2% and 3.6%, respectively

(Supplementary Table S4). The genus Vibrio exhibited the highest

richness with 32 OPUs identified. In the fish, ten Vibrio species were

identified as highly abundant (Figure 2). However, the prevalence of

these species varied significantly over time. Specifically, Vibrio

OPU0604, OPU0606, OPU0599, OPU0581 and OPU0594 were

highly abundant in T0 and T20 days, and Vibrio OPU0600 and

OPU0588 showed higher abundance in samples T20, T40 and T60.

Aliivibrio OPU0614, OPU0615 and OPU0616 were abundant in

T20. Candidatus Kaiserbacteria OPU1085 and LeptospiraOPU1052

were highly abundant at T0 and T20 days, while Psychrobacter

OPU0705, Corynebacterium OPU0366, Acinetobacter OPU0701

and Subdoligranulum OPU0242 were highly abundant in T40

and/or T60 days.
3.5 Gut microbial communities in fish fed
with shrimp

The feed of the second group was replaced by shrimp at T0 and

was maintained during 60 days. In this case, the alpha diversity values

showed that the switch to a shrimp diet resulted in a reduction in

microbial diversity along the first 20 days, as indicated by the non-

significant, but numeral decrease in Shannon values (average from

1.22 ± 0.46 at T0 to 1.04 ± 0.25 at T20 (Wilcoxon-test; P = 0.42)),

accompanied by a significant increase in dominance (average from

0.47 ± 0.15 at T0 to 0.63 ± 0.12 at T20 (Wilcoxon-test; P = 0.008)).

However, after a gradual increase in diversity and a decrease in

dominance occurred, reaching similar levels to the control at T60

[average Shannon value of 1.6 ± 0.27 (Wilcoxon-test; P = 0.26) and

dominance of 0.33 ± 0.1 at T60 (Wilcoxon-test; P = 0.28)] (Figure 1;

Supplementary Table S6).

Regarding beta diversity, the NMDS plot shows that the samples

became more homogeneous after 20 days reflected by decrease in

the average Bray-Curtis dissimilarity value from 0.67 ± 0.24 at T0 to

0.3 ± 0.25 at T20. This shift coincided with a significant increase in

the dominance of the Ralstonia OPU0522, which exhibited an

average abundance value of 73.59 ± 20.49% at T20. All the

groups compared in this experiment were significant different

among them (showing P-values < 0.01; PERMANOVA), except

for fish fed commercial feed at T0 vs. fish fed commercial feed at

T20 (P = 0.137), fish fed commercial feed at T40 vs. fish fed

commercial feed at T60 (P = 0.204), and fish fed pink shrimp at

T20 vs. fish fed pink shrimp at T40 (P = 0.098). A temporal shift in
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beta diversity was observed during the experiment, with the most

significant changes occurring in the samples collected at T60, as

shown by the differences in beta diversity observed during the rest

of timepoints (P < 0.01) and represented in the NMDS (Figure 3C).

We observed a similar pattern for the control dataset in the

percentage of exclusive OPUs, with 6.1%, 6%, and 2% of OPUs

being unique to T20, T40, and T60, respectively (Supplementary

Table S4). A total of 324 OPUs shared between the shrimps and the

gut microbiota of the fish fed with them were also observed. Among

the most abundant OPUs from shrimp, very few were shared

between the fish gut microbiome and the shrimp, such as

Paraburkholderia OPU0542 and Pseudomonas OPU0713

(Figure 2). The Candidatus Kaiserbacteria OPU1085 was manly

present in samples T20 and Vibrio OPU0600 and OPU0573 were

mainly detected in specimens collected at T40 and T60. On the

other hand, Acidovorax OPU0530 and Aliivibrio OPU0614,

OPU0615 and OPU0616 were most abundant in T60 (Figure 2).

Despite significant differences between the two dietary

treatments in all the timepoints (P < 0.01), the NMDS based on

Bray-Curtis dissimilarity showed a higher overlapping in the

microbial structure of fish fed both diets at the final stage of the
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experiment (T60) with respect to T20 groups (Figure 3A).

Moreover, when evaluating dominance and Shannon index values

at T60, no statistically significant differences were observed between

fish fed with commercial feed and shrimp (Wilcoxon-test; P = 0.05).
4 Discussion

In this study, we examined the impact of a dietary shift (from a

compound diet to a wild type shrimp-based diet) on the resident

(autochthonous) gut microbiota of a commercially significant fish

species. In all cases, bacteria accompanying the feed had a limited

influence on the diversity in the gut, which was evidenced by the

independent clustering of the diets with respect to the fish as well as by

the different Shannon diversity and dominance indices. For instance,

highly abundant species in the commercial feed or in shrimps did not

establish in fish gut. Other studies also described different bacterial

compositions between feed and intestinal autochthonous microbiota

of many teleosts as gilthead seabream (Rimoldi et al., 2018b),

European sea bass (Dicentrarchus labrax) (Rimoldi et al., 2020) or

rainbow trout (Oncorhynchus mykiss) (Rimoldi et al., 2021). Our
FIGURE 3

NMDS analyses based on Bray-Curtis distances of the microbiota of: (A) all samples included in this study; (B) gilthead seabream (Sparus aurata) fed
with commercial feed; (C) gilthead seabream fed with deep-water pink shrimp (Parapenaeus longirostris). “Commercial feed” (grey) and “Pink
shrimp” (orange) represents the direct microbial analysis of the commercial feed and deep-water pink shrimp, respectively. The dataset includes
samples labeled by colors according to the day of the experiment followed by the type of feed provided to the fish.
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findings are also supported by similar studies using experimental diets

for gilthead seabream with increasing levels of Firmicutes that not only

did not establish, but rather decreased in abundance over time

(Moroni et al., 2021), and by a previous study in European sea bass

(Rimoldi et al., 2021), where the feed pellets were dominated by

Lactobacillus that did not either establish in their guts (Rimoldi et al.,

2021). In this sense, while some studies have shown the presence of

feed-associated bacteria in the fish digesta (Wilkes Walburn et al.,

2019; Gaudioso et al., 2021; Ruiz et al., 2024), these bacteria may not

establish in the gut as part of the autochthonous commensal

microbiota, as suggested by previous works (Karlsen et al., 2022;

Viver et al., 2023). In addition, commercial feeds are submitted to an

extrusion process reaching high temperatures (> 100°C) that would

washout the vast majority of viable bacteria (Encarnação, 2016;

Konovalenko et al., 2022), but some species, as the observed

Lactobacillus sp. may develop as a consequence of fermentative

conditions during feed processing, manipulation or storage. These

organisms or their residual DNA can be identified through amplicon

sequencing, even in cases where they are non-viable, signifying their

transient presence in the fish gut.

One of the most relevant species detected was Ralstonia sp. 1,

which was found in remarkable abundance in the gut of gilthead

seabream in our previous study (Viver et al., 2023). Members of this

genus are normally found as part of the autochthonous gut

microbiota in several fish species, such as rainbow trout (Kim et al.,

2007), yellow catfish (Pelteobagrus fulvidraco) (Wu et al., 2010),

European sea bass (Carda-Diéguez et al., 2014), yellowtail kingfish

(Seriola lalandi) (Dam et al., 2020), large yellow croaker

(Larimichthys crocea) (Zhang et al., 2022), pearly razorfish, and

gilthead seabream (Viver et al., 2023). In the present study,

Ralstonia was present in all samples, but its abundance was clearly

enhanced in fish fed with shrimps. Contrarily to the commercial feed,

beyond freezing, shrimps were not submitted to a pre-processing to

destroy or minimize the accompanying bacteria. Thus, the increased

amounts of Ralstonia in the fish fed with shrimps may partially

respond to the colonization of this genus having its origin in the feed.

Despite the commercial feed also contained Ralstonia, probably

originated from fish meal, these bacteria may be not viable and this

fact would explain the lack of their growth in fish guts. Although

further research is needed to unravel the role of the members of this

aerobic genus in the fish intestine, they may play an important role in

marine animals, and their presence in the guts offish may respond to

a symbiotic or mutualistic relation (Cerezo-Ortega et al., 2021).

Indeed, some Ralstonia species have been suggested to have

antimicrobial activity biosynthesize bioactive compounds, and

produce beneficial secondary metabolites for the host fish (Cerezo-

Ortega et al., 2021).

Altogether, here the type of feed does not seem to be a key factor

as a source of bacteria, as no remarkable changes were found

between the two groups for the rest of represented species (> 2%).

However, the diet ingredients could modulate the gut

autochthonous microbiomes. Utilizing diverse protein, lipid, and

carbohydrate sources, or incorporating varying levels of dietary

supplements, can induce a spectrum of pronounced effects on the

microbial profile of the fish. These effects may be directly and/or

indirectly initiated by alterations in host physiology (Ringø et al.,
Frontiers in Marine Science 09
2016). For example, here, the effect of the diet was reflected in the

differential relative abundances of some Aliivibrio species in the

group fed shrimps, especially at T60, that were not detected when

using the commercial diet. These species related to A. finisterrensis,

A. fischeri, and A. logei, seem to be established in the gut of marine

teleosts (Dunn, 2012; Hatje et al., 2014; Bazhenov et al., 2019). Some

Aliivibrio species in the gut of the Atlantic cod (Gadus morhua) has

been reported to be stimulated by the supplementation with chitin

(Ringø et al., 2012), one of the main components of exoskeletal

shells from crustaceans (Kurita, 2006). In aquafeed, chitin is

considered as a prebiotic, able to increase bacterial intestinal

richness by favoring the growth of beneficial and chitin-degrading

bacteria (Mohan et al., 2023; Rimoldi et al., 2023). In this sense,

many Aliivibrio species have chitinase activity (Raimundo et al.,

2021), which may aid in the digestion of this ingredient since many

marine fish, such as gilthead seabream, have shown a low chitin

digestibility (Piccolo et al., 2017; Belghit et al., 2018; Basto et al.,

2020). Then, it seems plausible that the higher growth of Aliivibrio

in fish fed with shrimp compared to those fed with commercial feed

was due to the probiotic effect of chitin. However, no differences on

the KEGG pathway “Other glycan degradation” were observed at

T60 between both groups (fish fed commercial feed: 0.04%; fish fed

pink shrimp: 0.03%; P = 0.31). Nonetheless, this metabolic pathway

does not only reflect degradation of chitin, but also of other glycans,

such as starch, cellulose, and xylans, which are likely present in the

commercial feed and may be degraded by the fish gut microbiota

(Pedrotti et al., 2015; Maas et al., 2020). Further research on

transcriptomic and/or activity characterization is needed to

confirm whether the absence of changes in this metabolic

pathway responded to the ability of different taxa to degrade the

distinct types of glycans. In addition, we cannot discard that the

transient feed-associated microbes that do not establish in the gut, if

viable, may also influence the gut autochthonous microbiota (e.g.,

the probiotic effects in modulating microbial functionality and

exerting a beneficial effect on the fish health; Rimoldi et al., 2021;

Marco, 2019; Schoultz and Keita, 2019).

Beyond dietary factors, the gut microbiome is also influenced by

the environmental conditions such as the temperature which is a

paramount driver determining fish microbiomes (Rudi et al., 2018;

Soriano et al., 2018; Kim et al., 2021). In this context, we observed

and increase in abundance of Staphylococcus, Acidovorax, Vibrio,

Corynebacterium, and Psychrobacter in both groups regardless the

diet provided just after T20 when we relocated the fish in the new

tanks for the cleaning and maintenance. Although we maintained

the environmental conditions between tanks after the change, the

differential microbiota in the water and on the tanks’ wall biofilms

might have been the source of these taxonomic changes (Minich

et al., 2020; Zeng et al., 2020). Unfortunately, we did not collect

samples from water or biofilms from the tanks to compare their

taxonomic profiles, and therefore, we cannot confirm whether these

bacteria were present in the new tanks. Additionally, some of the

changes induced by the relocation were more marked in gilthead

seabream fed with the commercial diet, such as the differential

abundances of some Vibrio species and Clostridium sp. 22 before

and after T20. The higher impact of the relocation in fish fed with

the commercial diet in comparison to those fed with pink shrimp
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may be attributed to their longer adaptation period to the diet

before the relocation. In this context, at the moment of the

transference fish fed the commercial feed had been already

adapting to this diet type for 7 weeks plus other 3 previous

months when they were fed with a similar commercial diet. In

this sense, a microbial adaptation over time can be expected in

response to external changing factors, such as shifts in the diet

(Michl et al., 2017, 2019), the feeding regime (Sherif et al., 2020), an

antibiotic administration (Payne et al., 2022), or an induced stress

(Webster et al., 2021). Considering that the period of adaptation to a

diet can last for some weeks (up to 12 weeks in some cases), with

variations depending on the fish species, size and diet formulation

among other experimental factors (Heikkinen et al., 2006; Ingerslev

et al., 2014; Keating et al., 2021), the changes in the gut microbial

communities of fish fed with pink shrimp observed from T20 on

may reflect the combined or synergetic effect of the adaptation to

the diet change and to the relocation.

Under current experimental conditions, the most striking

observation was to find that there were some bacteria which were

present in all groups of individuals regardless the sampling time and

diet provided, such as Ralstonia sp. 1 (15.6-73.6%), Paraburkholderia

sp. 1 (1.6-16.3%), Fulvimonas sp. 1 (0.2-1.4%), Pseudomonas sp. 1

(0.1-0.7%) and Cutibacterium sp. 1 (0.1-5.2%). Thus, this bacterial

members could be considered as part of the core microbiota of this

farmed species (Astudillo-Garcıá et al., 2017; Roeselers et al., 2011;

Rudi et al., 2018; Kokou et al., 2019). In addition, the same OPUs

identified as Ralstonia sp. 1, Paraburkholderia sp. 1, Pseudomonas sp.

1 and Cutibacterium sp. 1 were found at high abundances in our

previous study in the intestine of farmed and wild fasted gilthead

seabream (Viver et al., 2023), which reinforces the hypothesis that

these genera may be considered as part of the core microbiota of this

species regardless the external conditions, such as the type of diet

and/or the animal lifestyle. The similarities in terms of species

composition and abundance among individuals were reflected in a

similar diversity (Shannon diversity and Dominance indices) and

structure (representation of Bray-Curtis distances in NMDS, despite

significant differences) of both dietary groups at the later stages of the

experiment (T40 and T60). It seems that the core microbiome

prevalence is not affected by the environmental changes after the

adaptation processes in the tanks. In contraposition, studies in

juveniles of rainbow trout (Michl et al., 2017) and brown trout

(Salmo trutta) (Michl et al., 2019) have shown that the microbiome

composition is directly dependent in the actual diet provided after a

dietary shift, but barely influenced by the initial diet provided before

the change. However, these juveniles were younger and with much

lesser body weight (around two orders of magnitude smaller) than

ours at the end of the assay, which pinpoints that the differential

plasticity of the fish gut microbiota to adapt to diet changes depends

on the animal age as it was previously postulated in gilthead seabream

(Piazzon et al., 2019) as well as in mammals' gut (Quercia et al., 2014;

Barreto et al., 2020) and rumen (Yin et al., 2021).

Previous results have already showed that there are host-

inherent factors which act as paramount modulators of the fish

gut microbiota, such as the species, sex, age, and genetic background

(Navarrete et al., 2012; Piazzon et al., 2019). Overall, the present

results suggest that a diet change have much less weight in the
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modulation of the gut microbiota than these host-inherent factors, as

demonstrated by the presence of a core microbiome in all fish

regardless the diet provided, leading to gut bacterial communities

with a similar diversity, structure, and composition in the long-term.

These findings are consistent with those of Keating et al. (2021), who

observed that the effect of time on the hindgut microbiota of Atlantic

cod was significantly higher than the impact of different dietary

treatments which resulted in similar microbial communities over

time. In addition, these authors also identified a core microbiome

that persisted throughout the 12-week duration of the experiment.

Furthermore, previous studies in rainbow trout have shown that its

gut microbiota is highly sensitive to new diets, but stabilizes over

time (Ingerslev et al., 2014). Similarly, Niu et al. (2020) observed that

when comparing the gut microbial profiles of olive flounder

(Paralichthys olivaceus) fed two diets with different replacement

levels of fish meal by plant-based protein sources over an 8-month

period, the effect of the growth stage on the gut microbiota was much

higher than the diet effect. Moreover, Kokou et al. (2019) reported a

common core microbiome over time in European seabass fed with

different diets over a 6-week period. Our hypothesis is also in

consistency with the existing evidence of a host-specific shaping of

the fish gut microbiota regardless the environmental conditions

(Nikouli et al., 2021). However, in the present trial the diversity,

structure, and composition of the microbial communities of gilthead

seabream fed each type of diet was very different in the first 20 days

after the dietary shift. Given that there are many variables that may

affect the fish feeding regimes in natural conditions (i.e., dietary

changes based on prey availability), our results indicate that even

when considering the specific environmental conditions of each

study, it is not advisable to establish comparisons of the microbiota

of wild and farmed fish. Furthermore, the relevance of these findings

lies in the adaptation of the microbial communities to the diets over

time, which offers the possibility to explore novel feeds formulated

with more sustainable, cost-effective, and readily available

ingredients and which may not have a long-term effect on the

fish microbiota.
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