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Suspended particles, including plankton and clay minerals, are ubiquitous in

aquatic environments. Understanding their characteristics is crucial for gaining

insights into biogeochemical processes and accurately assessing material and

element fluxes in coastal estuaries. Following the impact of Typhoon Cempaka

on the Pearl River Estuary (PRE) in July 2021, we conducted field observations

throughout various stages of the subsequent algal bloom, simultaneously

capturing holographic images of particles alongside hydrographic data. We

developed an innovative method to transform these images into datasets for

deep learning object detection models, enabling advanced morphological

analysis. This approach allowed for efficient identification and characterization

of particle morphology and vertical distribution in coastal estuarine

environments. Our study revealed substantial morphological and distributional

differences in diatoms and aggregates in response to environmental changes

throughout the stages of the typhoon-induced algal bloom. Specifically,

elongated-curled diatoms tended to settle in the middle and bottom layers

under turbulent mixing but remained concentrated in the surface phytoplankton

layer under stratified conditions. In contrast, short-straight diatoms exhibited

minimal sensitivity to physical dynamics, persisting in the surface layer across all

conditions. We observed that aggregate morphology and distribution patterns

correlated with physical dynamics intensity and diatom concentration. These

findings accurately reflect particles’ natural states and underscore the potential

of in situ particle morphology and distribution as indicators of environmental

changes, highlighting the ecological significance of studying in situ particle

functional traits. We recommend that future studies expand particle imaging

across diverse condit ions to deepen understanding of estuarine

ecosystem evolution.
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1 Introduction

The term “marine particles” encompasses a wide variety of

components in aquatic environments, including both coastal waters

and open oceans. These particles consist of living organisms like

zooplankton and phytoplankton, biotic detritus such as algal

aggregates and fecal pellets, as well as non-living materials like

suspended sediments and clay minerals (Kiko et al., 2022). Whether

biotic or abiotic, these morphologically diverse particles play a

crucial role in the global carbon cycle across aquatic ecosystems

(Briggs et al., 2020; Worden et al., 2015). Phytoplankton, as a key

living particle, contribute significantly to the carbon cycle through

photosynthesis, serving as a primary source of organic carbon

(Chavez et al., 2011). This organic matter transforms through

food webs, flocculation, and bacterial decomposition, influencing

carbon transport and deposition (Stemmann and Boss, 2012).

Particle traits, including size, shape, and porosity, are crucial for

understanding their dynamics, such as formation, sinking, and

degradation (Boyd et al., 2019). Thus, detecting and analyzing

particles is essential for studying carbon cycling and broader

oceanic biogeochemical processes.

High-quality imaging is essential for obtaining detailed

information on particle morphology, and extensive research has been

conducted on morphological traits derived from such images

(Orenstein et al., 2022). Morphological traits, which are specific

attributes inherent to an individual, are often referred to as

“functional traits” (Martini et al., 2021; Violle et al., 2007). For

instance, traits like size, shape, and structure in diatoms transcend

taxonomic boundaries, offering insights into how biological

communities respond to environmental conditions. Analyzing these

functional traits enables a quantitative assessment of phytoplankton

communities’ or ecosystems’ resilience to environmental changes

(Mcgill et al., 2006). Laboratory research has shown that diatoms are

not merely passive particles in aquatic environments; their morphology

reflects active responses to fluctuating external conditions. Under

varying turbulence intensities, diatoms adjust their survival strategies,

resulting in distinct adaptive morphologies (Sengupta et al., 2017).

Furthermore, recent findings reveal that diatoms undergo genetic

changes in response to environmental variability, underscoring their

adaptive capabilities (Amato et al., 2017). However, while laboratory

research has provided valuable insights, many of these findings

regarding algae have yet to be fully validated in natural settings

(Johnson et al., 2006; Moran et al., 2004). To address this gap,

advances in statistical classification of image-based morphologies

have enabled the identification of functional traits in natural

aggregates. For example, Trudnowska et al. (2021) employed

principal component analysis on a large dataset of in situ marine

snow images from the Arctic, devising a method to assess and compare

snow morphology across systems. This approach has been

instrumental in evaluating carbon fluxes during algal blooms in ice-

covered areas. These findings underscore the critical research value of

in situ particle morphology and distribution, particularly in relatively

stable environments like the Arctic. Nevertheless, understanding how

these dynamics manifest in more complex and rapidly evolving

ecosystems, such as densely populated coastal estuaries, remains

limited. The morphology and distribution of particles in such
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environments are heavily influenced by both natural processes and

anthropogenic factors, making them more challenging to study. In

particular, the coupling of physical dynamics and particle morphology

during post-typhoon algal blooms presents an area of crucial

importance for environmental health monitoring, yet it remains

relatively underexplored.

Underwater holographic imaging offers the capability to collect in

situ particle data with high spatiotemporal resolution, owing to its

flexibility in deployment. However, challenges in data reconstruction

and the extraction of vast amounts of particle parameters have

hindered the technology from reaching its full potential (Nayak

et al., 2021). Fortunately, recent advancements in the YOLO (You

Only Look Once) series of object detection models have enabled

the automation of tasks such as object detection, classification,

and feature extraction, standing out for their speed and accuracy

(Terven et al., 2023). If applied to particle images, these technologies

could significantly enhance the ability to detect, classify, and extract

morphological traits from large collections of such images.

Furthermore, by integrating pattern recognition, artificial

intelligence, and machine learning, the automation of particle

identification holds the potential to transform this specialized field

into a more accessible and verifiable science (MacLeod et al., 2010).

Incorporating object detection models into holographic image

processing can generate a wealth of comprehensive data, allowing

for the extraction of more intricate morphological traits. This, in turn,

would enable a more detailed study of particle morphology and

distribution from an in situ perspective.

Algal blooms in coastal oceans have intensified in recent years,

drawing increasing attention (Dai et al., 2023). Typhoons have played

a critical role in this process by facilitating vertical nutrient transport

through upwelling and increasing nutrient inputs from subsequent

runoff (Pan et al., 2017). The influx of freshwater and altered

hydrodynamics following a typhoon significantly impacts the

concentration and distribution of particles in the water, leading to

complex physical-biogeochemical processes. Detecting rapid, short-

term in situ changes induced by typhoons remains challenging, yet it

is essential for effectively managing and forecasting the ecological

health of estuarine environments. In this study, we utilized in-situ

holographic imaging data, combined with object detection models, to

develop algorithms capable of detecting, classifying, and quantifying

particle morphology. Furthermore, we evaluated the broader

applicability of this method in ecological research and, using in-situ

particle statistics, conducted a quantitative assessment of the

typhoon’s impact on the coastal ecosystem.
2 Materials and methods

2.1 Study area and field observation

The Pearl River Estuary (PRE) is located in the northern South

China Sea (Figure 1A). In July 2021, Typhoon Cempaka passed near

the PRE, triggering an algal bloom. Leveraging this event, our study

investigated particle dynamics during the bloom through field

observations conducted immediately after the typhoon’s landfall.

The observation site (Site S, marked by a blue star in Figure 1A) is
frontiersin.org
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situated in the transitional zone between the estuarine mouth and the

shelf sea at a depth of approximately 15 meters, where both tidal and

runoff dynamics exert influence. We conducted two consecutive 48-

hour mooring observations at site S on the 3rd and 10th days

following the typhoon’s landfall, corresponding to the early bloom

stage (Stage E: Jul. 23, 2021, 17:00 - Jul. 25, 2021, 17:00, Figure 1B)

and the late bloom stage (Stage L: Aug. 1, 2021, 11:00 - Aug. 3, 2021,

11:00, Figure 1C). We used two survey modes during these

observations. The first was hourly profiling, where instruments

descended from the surface to the seafloor at 0.3 m s-1, ensuring

accurate particle distribution data across the vertical profile. The

second involved continuous monitoring with a bottom-mounted

platform, positioning instruments 0.6 m above the seafloor

(Figure 1D). For profiling observations, we utilized a combination

of instruments to collect vertical CTD (conductivity, temperature,

depth) data, chlorophyll-a (Chl-a) concentrations, and holographic

images of particles. These included an RBR-CTD, an SBE 25plus

Sealogger CTD, and a LISST-HOLO2. A bottom-mounted platform

was equipped with an ADV and an additional RBR-CTD to measure

turbulent kinetic energy dissipation rates and CTD data near the

seafloor. Additionally, we collected several in situ water samples at

various times and depths, capturing particle images using an onboard

Olympus X71 microscope. Detailed information on the instruments

is provided in Supplementary Table 1.
2.2 Generating the composite
focused images

The LISST-HOLO2 is a submersible digital holographic camera

designed to capture holograms of suspended particles like plankton

and aggregates, with a high sampling rate and fast data
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transmission, ideal for field observation (more details, see https://

www.sequoiasci.com/). To mitigate poor image quality in high-

turbidity environments (Choi et al., 2021), we equipped the device

with an optical path reduction module to obtain clearer images. The

field of view of the holograms is cropped to 1200� 1200 pixels2,

with a resolution of 4.4 mm per pixel, and the reconstruction

distance within the imaging sampling volume is 5 mm.

Consequently, the imaging sampling volume of each hologram is

approximately Vholo = 1:39� 10−7  m3. Processing the holograms

into a composite focused image (CFI) involves four main steps: raw

hologram selection, preprocessing, reconstruction, and image plane

consolidation (Figure 2A). To avoid invalid images from air

exposure, we manually filtered the data, retaining around 92,000

high-quality holograms (Figure 3A). These high-quality holograms

were then preprocessed by extracting the average of all images in a

profile to create a background image (Figure 3B). Subtracting this

background from each hologram effectively removed fixed spots on

the lens and background noise (Nayak et al., 2018). The enhanced

images (Figure 3C) were reconstructed within the imaging sampling

volume using the angular spectrum method (De Nicola et al., 2005).

We divided the imaging volume into 50 equal segments, with a

reconstruction interval of 0.1 mm. As shown in Figure 2A, Zi, Zj,

and Zk represent different reconstruction distances within the

sampling interval. In this study, we designed an overlapping

sliding window algorithm, where a sliding window of 100 pixels

in length moves with a stride of 50 pixels. We calculated the average

edge Gaussian gradient value within the same sliding window

position in each reconstructed image. The position at which this

value reaches its maximum across different focal planes indicates

the optimal focus distance for that sliding window (Liu et al., 2023).

These focused sliding windows were then projected and

consolidated onto a single plane to form a CFI. The targets in the
FIGURE 1

(A) Location of the Pearl River Estuary and the trajectory of Typhoon Cempaka. (B, C) Field photographs taken at site S during the early (Stage E) and
late (Stage L) stages of the typhoon-induced algal bloom, illustrating the shift in water color from blue-green to dark brown or reddish-brown,
respectively. (D) Schematic diagram of the instrument setup deployed for consecutive observation at mooring site S.
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FIGURE 3

Main steps for generating composite focused images (CFIs) using two particle types: (A) Original holograms displaying clear interference fringes,
noise, and uneven illumination; (B) Background extracted from profile data; (C) Enhanced images produced by background subtraction and
denoising; (D) CFIs created via reconstruction and image plane consolidation, showing clear target contours; (E) Binarized images of detected target
particles, with regions of interest extracted from CFIs in (D) are using a custom binarization algorithm. Two morphological parameters shown:
MaxFD (maximum Feret diameter) for a helical diatom and ECD (equivalent circular diameter) for a floc.
FIGURE 2

The workflow for acquiring and analyzing particle morphology and distribution information includes the following steps: (A) The process starts with
the generation of composite focused images (CFIs), detailing the steps involved in converting raw holograms into CFIs. (B) A subset of the CFIs
generated in step (A) is selected for manual annotation, which is then used to create a training dataset. (C) The YOLOv5x architecture, adapted from
Jocher et al. (2022), is then used to train on the annotated dataset from step (B), facilitating particle detection. (D) The final step involves further
analysis of the detected particles, including binarization of the target images, extraction of morphological features, and reconstruction of
distribution patterns.
Frontiers in Marine Science frontiersin.org04
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CFI are generally clear and complete, allowing us to manually select

and label them using annotation software (Figures 2B, 3D).
2.3 Creating the training dataset

A preliminary visual assessment of all the CFIs revealed that the

algal bloom, observed throughout the entire observation period, was

predominantly composed of diatoms. Biologically mediated

aggregates primarily consisted of algal agglomerates and clay

mineral flocs. The morphology of the diatoms was highly

distinctive, presenting various curvilinear forms, including bead-

string, chain-like, coiled, helical, and semicircular shapes. In

contrast, the aggregates exhibited varying porosity and

continuously changing shapes. Based on these morphological

characteristics, we classified the particles in the CFIs into seven

classes: (1) agglomerates, characterized by an aggregated

morphology, where numerous small particles or filamentous

structures cluster together to form larger clumps. Some portions

may appear amorphous and irregular, lacking specific shape or

structure, and presented a relatively loose and disorganized

appearance (Figures 4A, 5A); (2) diatom beads, distinguished by

small cells with transparent connections between them, resulting in

a bead-string appearance as the connections are not clearly visible

in the CFIs (Figures 4B, 5B); (3) diatom chain, which appear as

relatively straight, solid chains, with the connections between

diatom cells remaining dense after holographic imaging, although

the chains may vary in thickness (Figures 4C, D, 5C); (4) diatom

coiled, which feature chains of varying filament lengths that overlap

like coiled ropes (Figures 4E, 5D); (5) diatom helix, characterized by

elongated chains that bend and extend in a helical shape in space

(Figures 4F, 5E); (6) diatom semicircle, forming an incomplete

curve that resembles a C-shaped semicircle (Figures 4G, 5F); and (7)

flocs, primarily composed of biologically mediated flocculated clay

minerals, appearing as dense, complex structures with irregular,
Frontiers in Marine Science 05
shifting boundaries (Figures 4H, 5G). Following these preliminary

analyses, we preselected 5,430 images from the CFIs as the training

dataset (Figure 2B). The images were carefully selected to include a

variety of clear targets, ensuring sufficient samples for each class label.

Approximately 10,000 targets, randomly distributed throughout the

images, were manually labeled using the image labeler application.

For a detailed overview, refer to Supplementary Figures 1, 2.
2.4 Objects detection

We selected YOLOv5 for our object detection model, first

released by Ultralytics in 2020 and continually optimized (Jocher

et al., 2022). Built on the PyTorch framework, YOLOv5 benefits

from a robust ecosystem, making it ideal for object detection

(Terven et al., 2023). Its architecture comprises three main

components: backbone, neck, and head (Figure 2C). The

backbone uses CSPDarknet53, integrating CSPNet (Wang et al.,

2020) and Darknet53 (Redmon and Farhadi, 2018), with C3

convolutional modules for multi-scale feature extraction and an

SPPF (Spatial Pyramid Pooling Fast) layer to pool features into a

fixed-size map (Figure 2C). The neck includes a Feature Pyramid

Network (FPN) (Liu et al., 2018) and a Path Aggregation Network

(PAN) (Lin et al., 2017), enhancing feature fusion. FPN applies a

top-down strategy for high-level feature integration, while PAN

improves small object detection by merging features across multiple

pathways. The neck generates three feature map scales that are

passed to the head for prediction. The head generates predictions

using anchor boxes and employs a loss function and non-maximum

suppression (NMS) (Neubeck and Van Gool, 2006). The loss

function combines binary cross-entropy for classification and

confidence (Ho and Wookey, 2020) with CIoU loss for precise

bounding box regression (Zheng et al., 2020). NMS eliminates

redundant bounding boxes, retaining only the highest-probability

box for final output. This process results in the final prediction,
FIGURE 4

Main types of particles observed in water samples collected in situ during the observation period through microscopy: (A) Algal agglomerates,
exhibiting a loose and irregular clustered state; (B) Bead string diatom; (C) Straight-chain diatom; (D) Thin filamentous diatom; (E) Coiled diatom;
(F) Helical diatom; (G) Semicircular diatom; (H) Clay mineral floc. Red scale bars in all the panels represent 100 mm.
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which includes the object’s class, score, and bounding box

coordinates (Figure 2C). YOLOv5 introduces depth_multiple and

width_multiple scaling factors to adjust layer count and channel

size (Jocher et al., 2022). The five variants—YOLOv5n, YOLOv5s,

YOLOv5m, YOLOv5l, and YOLOv5x—share the same architecture

but differ in size. Smaller models like YOLOv5n prioritize

speed for mobile use, whereas larger ones like YOLOv5x offer

better performance with higher computational costs. This

scalability allows YOLOv5 to balance speed and accuracy for

various applications.

In this study, we chose YOLOv5x for higher detection precision,

despite the increased computational cost. The dataset created in

Section 2.3 was divided into training, testing, and validation sets in a

ratio of 7:2:1. To evaluate the model’s performance, we employed

Recall (R), Precision (P), and Mean Average Precision (mAP) as the

primary metrics. Recall measures the model’s ability to correctly

identify positive samples, while Precision indicates the accuracy of

the model in classifying these positive samples (Padilla et al., 2020).

The specific formulas for these metrics are as follows:

R = TP
TP+FN � 100% (1)

P = TP
TP+FP � 100% (2)

where TP (True Positive) represents the number of correctly

identified positive samples, FP (False Positive) denotes the number
Frontiers in Marine Science 06
of negative samples incorrectly classified as positive, and FN (False

Negative) indicates the number of positive samples that were

wrongly classified as negative. The determination of positive and

negative samples is based on the Intersection over Union (IoU)

threshold. The IoU is calculated as the overlap area between the

predicted bounding box and the ground truth, divided by the area of

their union. A sample is classified as positive if its IoU exceeds the

threshold, otherwise, it is classified as negative.

Average Precision (AP) is a measure that integrates both recall

and precision for ranked retrieval outcomes, providing an overall

assessment of object detection performance. By plotting the

Precision-Recall (P-R) curve, with P on the y-axis and R on the

x-axis, the area under this curve represents the AP. The formulas for

AP and mean Average Precision (mAP) are as follows:

AP =
Z 1

0
P � RdR (3)

mAP = 1
No

N

i=1
APi (4)

where N = 7 is the number of classes in the dataset. At an IoU

threshold of 0.5, the average precision of the model is denoted as

AP0.5, and the mean average precision is denoted as mAP0.5. The

mAP0.5 represents the mean average precision when the IoU

threshold is 0.5. Additionally, mAP 0.5:0.95 is the average mAP
FIGURE 5

Examples of cropped images extracted from the composite focused images under different class labels: (A) agglomerates; (B) diatom beads;
(C) diatom chain; (D) diatom coiled; (E) diatom helix; (F) diatom semicircle; and (G) flocs. Red scale bars in all the panels represent 100 mm.
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over IoU thresholds ranging from 0.5 to 0.95. These metrics, mAP

0.5 and mAP 0.5:0.95, are crucial for evaluating the algorithm’s

positional accuracy in target detection. By analyzing these values,

one can gain a comprehensive understanding of the algorithm’s

detection performance across various targets.
2.5 Detection results analysis

All CFIs from Section 2.2 were input into the trained object

detection model (Section 2.4) to identify particle targets, assign classes,

and determine locations. Since class and bounding box data alone

don’t fully capture morphological details, each particle was extracted

from its bounding box and converted into cropped images for further

analysis (Figure 2D). We enhanced the segmentation algorithm based

on the Expectation-Maximization method (Diplaros et al., 2007),

which facilitated the acquisition of higher-quality binarized images

(Figure 6, second row). Additionally, we introduced a new algorithm

for calculatingmorphological parameters in various particles, enabling

the effective extraction of these parameters from binarized images

across different particle types.

For diatoms classes, some binary images displayed fragmented

components, such as diatom beads (Figure 6A). To address this, we

first connected these fragments belonging to the same particle

within the cropped image using a proximity-based connection

algorithm, and then applied skeletonization morphological

operations to the entire binarized image. The skeleton image,

being a single-pixel-wide representation, allowed us to calculate

the number of pixels in the skeleton to represent the filament length

(FL) of the diatom (Figure 6, third row). Given the varying sizes and
Frontiers in Marine Science 07
morphologies of diatoms observed in this study, using FL as a

representative morphological parameter is both reasonable and

effective. For the complex curved morphologies of diatoms, we

employed the coiling ratio (CR) to describe this attribute:

CR = maxFD
FL (5)

where maxFD represents the maximum Feret diameter of the

particle measured on the binarized image. The maximum Feret

diameter is defined as the greatest distance between any two parallel

tangents to the boundary of the particle within the image,

representing the longest caliper measurement of the particle

across all possible orientations (Figure 3E). A smaller CR

indicates a higher degree of coiling, providing a comprehensive

metric for quantifying the diatom morphology.

For agglomerates and flocs, we defined two additional

parameters to describe their characteristics: the equivalent circular

diameter (ECD) and the perimeter-based two-dimensional fractal

dimension (DF2) (Maggi et al., 2006; Vahedi and Gorczyca, 2011).

These parameters are calculated as follows:

ECD =
ffiffiffiffiffi
4A
p

q
(6)

DF2 = 2 lg(P)
lg(A) (7)

where A is the area of the particle and   P is its perimeter. These

values can be directly obtained by counting the total number of

pixels and edge pixels in the binarized image. ECD effectively

describes the size of the particle, while DF2 reflects the

compactness and internal spatial structure of the particle. A
FIGURE 6

Examples of cropped images of various particles and their binarization and skeletonization: (A) diatom beads, (B) diatom chain, (C) diatom coiled,
(D) diatom helix, (E) diatom semicircle, (F) flocs, (G) agglomerates. The first row shows particle images cropped from composite focused images
using bounding box data from the object detection model. The second row displays the binarized images, and the third row shows the
corresponding skeletonized images. Flocs and agglomerates lack filament length, leaving blank sections in the third row for these types. Red scale
bars in all panels represent 100 mm.
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smaller DF2 value indicates that the particle is more compact, while

a larger DF2 suggests a more loosely packed structure.
2.6 Processing of water properties data

In this study, the primary seawater properties observed were

salinity, turbidity, Chl-a, and particle number concentration

throughout the water column. To estimate particle number

concentration, we performed vertical averaging at 0.5 m intervals,

counting the number of images captured and the total number of

particles observed within each section. Given that the sampling

volume for each holographic image is Vholo, particle number

concentration was roughly estimated by dividing the total particle

count by the corresponding total volume of captured images.

Salinity, turbidity, and Chl-a data were directly obtained from the

instruments and averaged to a vertical resolution of 0.5 m per

profile. Due to tidal range variations between Stage E and Stage L,

water depths differed by 1-2 m; therefore, the depth data were

normalized to relative depth (with the sea surface as 0 and the

seabed as 1) to facilitate comparison. Additionally, observations

from the bottom-mounted platform included turbidity and

turbulent kinetic energy dissipation rate. The turbulent kinetic

energy dissipation rate (e) near the bottom boundary layer is

calculated using high-frequency fluctuating velocities measured by

ADV. The dissipation rate is determined with a temporal resolution

of 15 min. This calculation involves transforming the high-

frequency vertical fluctuating velocities recorded by the ADV into

the vertical turbulence kinetic energy spectrum via Fourier

transform. The resulting frequency spectrum is analyzed using

Taylor’s “frozen field hypothesis” which assumes that turbulence

remains steady as it advects past the instrument, without developing

or decaying. This assumption allows the conversion of temporal

observations into spatial ones (Guerra and Thomson, 2017).

Consequently, we obtain the turbulence energy spectrum E(k),

which describes the distribution of energy across different

wavenumbers k. In the inertial subrange, the energy spectrum

adheres to Kolmogorov’s theory:

E(k) ∝ e2=3k−5=3 (8)

The inertial subrange is identified within the wavenumber space

where the energy spectrum exhibits a − 5=3 slope. This

identification is typically achieved by examining the log-log plot

of the energy spectrum. Once the inertial subrange is determined, a

least squares fit is applied to the data within this range to derive the

dissipation rate e (Smith et al., 2005).
3 Results

3.1 Detection results

The training dataset (Section 2.3) comprised a comprehensive

and diverse set of particles across seven classes, which were used to
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train and evaluate the YOLOv5x object detection model (Section

2.4). The training process was configured to run for 150 epochs,

with model performance evaluated on the validation set after each

epoch. The model that achieved the highest performance metrics

during these evaluations was selected as the optimal model. This

optimized model was evaluated on a test set of over 2,000 particles,

demonstrating robust detection performance by consistently

generating accurate bounding boxes, class predictions, and scores

in the CFIs (Supplementary Figure 3). The confusion matrix

indicated that classification accuracy for all classes exceeded 0.87

(Supplementary Figure 4). Furthermore, the overall mAP0.5 for

detected targets reached 0.83, with each individual class achieving

an mAP0.5 above 0.70 (detailed results in Supplementary Table 2).

The detected targets (seven classes) were primarily divided into two

major groups: diatoms, which are living particles and include five

classes—diatom beads, diatom chain, diatom coiled, diatom helix,

and diatom semicircle; and aggregates, which are mainly formed by

biologically mediated flocculation and include two classes—

agglomerates and flocs. These classes exhibited significant inter-

class variability and intra-class consistency in morphology

(Figure 5, more sample images see Supplementary Figure 5). We

further categorized the detected targets into Stage E and Stage L,

with approximately 6.28×104 particles detected in Stage E and

2.09×104 particles in Stage L. Diatom particles accounted for 28%

and 57% of the total particles in Stage E and Stage L, respectively,

while aggregates made up 72% and 43% of the total particles in each

stage, respectively. Among the aggregates, flocs were the

predominant particle class, constituting 69% of the total particles

in Stage E and 33% in Stage L (Supplementary Figure 6).
3.2 Hydrological properties

The hydrodynamic conditions at site S displayed marked

differences between Stage E and Stage L. During Stage E, which

coincided with the spring tide, the stratified water column was

disrupted by the passing typhoon, resulting in a well-mixed state. In

contrast, during Stage L, which corresponded with the neap tide, the

water column had re-established strong stratification. Tidal cycle-

averaged profiles underscored this contrast, showing uniform

conditions during Stage E and pronounced stratification during

Stage L. Notably, the salinity and temperature differences between

the surface and bottom layers were approximately 7 PSU and 2°C

during Stage E but increased to 12 PSU and 5°C during Stage L

(Figures 7A, B). The turbidity profiles in both stages followed a

typical pattern of lower values at the surface and higher values at the

bottom, with significant differences between the two stages. In Stage

E, strong mixing caused turbidity to increase from 13 NTU at the

surface to 28 NTU at the bottom. In Stage L, the variation was less

pronounced, with turbidity rising from approximately 7 NTU at the

surface to 12 NTU at the bottom. This trend in turbidity mirrored

the volume concentration of aggregates, which increased from 3 mL
L-1 at the surface to 28 mL L-1 at the bottom during Stage E, and

from 1 to 4 mL L-1 during Stage L (Figures 7C, D). The Chl-a

concentration profiles also showed higher surface values and lower
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bottom values in both stages, ranging from 1 to 3 mg m-3. Chl-a

levels were generally slightly higher in Stage L, with a more

pronounced vertical gradient (Figure 7E). The diatom number

concentration followed a similar pattern, ranging from 102.3 to

103.4 individuals L-1, with slightly higher surface values in Stage L

and slightly lower bottom values compared to Stage E (Figure 7F).

Time series data from the bottom-mounted platform revealed

distinct differences in the hydrodynamic structure between the

two stages. During Stage E, turbidity ranged from 8 to 35 NTU,

whereas in Stage L, it remained consistently below 10 NTU

(Figure 7G). The turbulent kinetic energy dissipation rate

fluctuated with tidal cycles, closely mirroring the bottom water

flow velocity, averaging around 10−5 W kg-1 in Stage E and 10−6 W

kg-1 in Stage L—approximately an order of magnitude lower

(Figures 7H, I). Scatter plot linear regression analyses during

Stage E revealed strong positive correlations between Chl-a

concentration and diatom number concentration, as well as

between turbidity and aggregates volume concentration, with

correlation coefficients both exceeding 0.5. In contrast, these

relationships were notably weaker during Stage L, with

correlation coefficients falling below 0.3 (Figures 7J–M). The

implications of this contrast will be explored in greater detail in

the Discussion section.
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3.3 Particle morphology

A statistical analysis of the morphological parameters of

particles across each class during Stage E and Stage L revealed

significant inter-class differences among diatom particles, while

intra-class variations between the two stages were relatively minor

(Figures 8A–C). In Stage L, except for the diatom helix class, which

showed an 8% decrease in average FL from approximately 1750 mm
to 1600 mm, all other classes exhibited varying degrees of increase.

Notably, the average FL in the diatom beads and diatom chain

classes increased significantly, by 8% and 27%, from approximately

400 mm and 360 mm to 430 mm and 460 mm, respectively. In

contrast, the diatom coiled and diatom semicircle showed smaller

increases, with FL rising by about 5% and 4% to approximately 990

mm and 380 mm, respectively (Figure 8A). Regarding changes in the

CR, the diatom beads and diatom chain classes exhibited very low

curvature, maintaining a straight morphology with average CR

values above 0.8. In contrast, diatom coiled and diatom helix had

average CR values below 0.4, while diatom semicircle had an

average CR of around 0.6. Apart from diatom coiled, which

showed a slight increase in both FL and CR during Stage L

compared to Stage E, the other diatom classes exhibited an

increase in FL alongside a corresponding decrease in CR during
FIGURE 7

Characteristics of seawater properties at site S: Vertically averaged profiles of (A) salinity, (B) temperature, (C) turbidity, (D) aggregate volume
concentration, (E) chlorophyll-a (Chl-a), and (F) diatom concentration over the tidal cycle during Stage E (blue) and Stage L (red). Time series of
(G) turbidity, (H) current velocity, and (I) turbulent dissipation (e) near the bottom boundary layer, with the time axis set to relative time starting from
zero. Panels (J, L) show relationships during Stage E: Chl-a versus diatom number concentration and turbidity versus aggregate volume

concentration. Panels (K, M) depict these relationships during Stage L. Equations and r2 values indicate the linear regression models and goodness
of fit.
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Stage L (Figure 8B). These results suggest that FL and CR generally

follow an inverse trend, where diatoms with longer FL tend to have

lower CR, indicating a higher degree of curvature (Supplementary

Figures 7A, B). In both stages, diatoms were primarily concentrated

in the upper half of the water column above 0.5 H.

The elongated-curled diatoms, such as diatom coiled and

diatom helix, exhibited a deeper and broader average distribution

depth during Stage E compared to Stage L. Conversely, the short-

straight diatoms, including diatom beads and diatom chain, were

more concentrated in the surface layer during Stage E than in Stage

L (Figure 8C). Notably, regardless of the stage, the FL of diatom

semicircle was comparable to that of diatom beads and diatom

chain, but its average distribution depth was both deeper and more

extensive than those of the latter two. The differences between the

agglomerates and flocs became more pronounced between Stage E

and Stage L. The ECD of agglomerates increased slightly by 3%,

from 124 mm in Stage E to 128 mm in Stage L, while their average

DF2 increased from 1.70 to 1.72, indicating that agglomerates

became more loosely packed. In contrast, flocs exhibited more

significant changes, with their average ECD decreasing by 14%

from 142 mm to 122 mm, while their average DF2 increased from

1.48 to 1.52. During Stage E, agglomerates were distributed

throughout much of the water column, but in Stage L, they

became concentrated primarily in the upper layer above 0.6 H.

Flocs, on the other hand, were mainly concentrated near the

bottom. They were more confined to areas below 0.6 H during
Frontiers in Marine Science 10
Stage E, while in Stage L, their distribution expanded, concentrating

primarily below 0.3 H. The relationship between ECD and DF2 in

these aggregates did not show a clear correlation. Aggregates with

ECDs near the average value could exhibit either a high DF2,

indicating a loose structure, or a low DF2, indicating a compact

structure (Supplementary Figures 7C, D).
3.4 Particle vertical distribution

The number concentration and distribution of diatoms and

aggregates at site S exhibited significant differences between Stage E

and Stage L. Diatoms were primarily concentrated in the upper half

of the water column, with short-straight diatoms (e.g., diatom beads

and diatom chain) showing the highest concentrations. Although

their number concentration slightly decreased from Stage E to Stage

L, both stages consistently revealed higher concentrations of these

diatoms near the surface (Figures 9B, C). In contrast, the elongated-

curled diatoms (e.g., diatom coiled, diatom helix, and diatom

semicircle) showed a slight increase in maximum concentrations

from Stage E to Stage L, with a deeper and broader distribution

range during Stage E compared to Stage L (Figures 9D–F). For

aggregates, flocs had significantly higher concentrations than

agglomerates. Agglomerates were more concentrated in the mid-

to-upper layers, with Stage E showing lower surface concentrations

than Stage L. However, the vertical distribution of agglomerates
FIGURE 8

Particle morphological parameters of different classes during Stage E (blue) and Stage L (red) are shown. The left column represents diatom particles,
detailing: (A) filament length (FL), (B) coiling ratio (CR), and (C) distribution at relative depth (surface = 0, bottom = 1). The right column depicts
aggregates, illustrating: (D) equivalent circular diameter (ECD), (E) perimeter-based two-dimensional fractal dimension (DF2), and (F) distribution at
relative depth. The heights of the box plots indicate the interquartile range (25th to 75th percentile), the lines within the boxes represent the median
(50th percentile), and the whiskers extend to the maximum and minimum values within 1.5 times the interquartile range, without exceeding the
actual data range.
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during Stage E was more uniform compared to Stage L (Figure 9A).

The concentration of flocs increased from the surface to the bottom

in both stages, but concentrations below 0.5 H were notably higher

during Stage E than in Stage L (Figure 9G).

To investigate the depth-dependent distribution of particle

morphology, we classified all detected particles into two main

groups: diatoms and aggregates, analyzing their respective

parameters—FL and CR for diatoms, and ECD and DF2 for
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aggregates. The water column was divided into ten layers based

on relative depth, with one-dimensional kernel density estimation

applied to each parameter within these layers (Figure 10). In Stage

E, diatoms exhibited an increase in median FL with depth, along

with a more dispersed distribution. Conversely, in Stage L, the

median FL slightly decreased with depth, becoming more

concentrated. The median CR displayed a similar downward

trend with depth in both stages. At the surface, two peaks in CR
FIGURE 10

Depth-resolved kernel density estimate plots for Stage E (A, C, E, G) and Stage L (B, D, F, H) are shown, with relative depth from surface (0) to
bottom (1) divided into ten segments to depict particle distribution. Each segment has a heatmap representing the kernel density estimation of the
parameter using a Gaussian kernel, indicating parameter density within this space. Red curves represent the median parameter distribution
(cumulative density of 0.5) at each depth segment.
FIGURE 9

The average vertical profiles of particle number concentration for each class over two tidal cycles are presented for Stage E (blue bars) and Stage L (red
bars). The classification from (A–G) represents agglomerates, diatom beads, diatom chain, diatom coiled, diatom helix, diatom semicircle, and flocs.
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values were observed, indicating a diverse population of diatoms,

with both straight and coiled forms prominent. As depth increased,

the CR distribution became more concentrated, dominated by

lower CR values, indicative of more coiled diatoms. For

aggregates, the median ECD increased with depth during both

stages, while the median DF2 decreased. Notably, during Stage E,

the median ECD values were larger and the median DF2 values

smaller across all layers compared to Stage L, suggesting that

aggregates formed during Stage E were generally larger and more

compact throughout the water column.

To investigate how morphological parameters influence the

distribution of diatoms and aggregates within the water column,

we first applied two-dimensional kernel density estimation to

analyze FL and relative depths. This analysis enabled the

classification of diatoms into two distinct groups based on their

CR: those with a CR< 0.7, which correspond to elongated-curled

diatoms, and those with a CR > 0.7, representing short-straight

diatoms (Figures 8A, B). The elongated-curled diatoms,

characterized by longer median FL ranging from approximately

102.5 to 103.7 mm, exhibited significant vertical distribution

variations that correlated with changes in water structure. During

the well-mixed conditions of Stage E, these diatoms settled deeper,

reaching depths around 0.8 H (Figure 11A). However, in the

strongly stratified conditions of Stage L, their settlement was

restricted to shallower depths around 0.4 H (Figure 11B). In

contrast, the short-straight diatoms, with shorter median FL

ranging from 102.0 to 103.4 mm, were less influenced by water

conditions and consistently concentrated in the upper 0.2 H of

the water column across both stages (Figures 11C, D).

Similarly, aggregates were analyzed using kernel density

estimation based on their ECD and relative depths. They were

categorized into two types based on their DF2 values: compact
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aggregates (DF2< 1.6) and loose aggregates (DF2 > 1.6)

(Figures 8D, E). Compact aggregates, with median ECD ranging

from approximately 101.5 to 102.5 mm, were predominantly

concentrated near the seabed during Stage E, with their

concentration increasing with depth. Despite a significant decrease

in compact aggregates during Stage L, they remained primarily near

the seabed, exhibiting a more uniform vertical distribution and a

noticeable presence even in the upper layers (Figures 11E, F). On the

other hand, loose aggregates, characterized by median ECD ranging

from 101.5 to 102.7 mm, displayed distinctly different distribution

patterns between the stages. In Stage E, they were mainly

concentrated near the bottom but were more evenly distributed

throughout the water column, including the middle and upper

layers. In Stage L, loose aggregates were primarily found near the

surface, with some high-concentration areas near the bottom, while

the middle layers exhibited lower concentrations (Figures 11G, H).
4 Discussion

4.1 Holographic images provide more
accurate information

This study introduces an innovative algorithm for efficiently

generating large sets of CFIs that capture essential particle shapes

and textures (Figure 5). Compared to Sequoia’s HOLO batch

software, our method significantly improves target recognizability,

as demonstrated by images and parameter calculations in

Supplementary Figure 9. Despite being grayscale, these CFIs retain

critical morphological details, enabling high performance in object

detection models while reducing computational costs by using only

one-third the data volume of color images (Bui et al., 2016),
FIGURE 11

2D kernel density plots of particle morphological parameters and relative depth. These figures illustrate the relationships between various parameters
and their corresponding relative depths, ranging from the surface (0) to the bottom (1). The panels (A, C, E, G) correspond to Stage E, and the panels
(B, D, F, H) correspond to Stage L. Each point represents an individual detected particle, with coordinates determined by its properties. The color
represents Gaussian kernel density estimation, indicating particle distribution density, with color bars on the right showing the density scale.
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underscoring the practical benefits of our holographic image

processing approach. Furthermore, the object detection model

accurately defines bounding boxes around targets, which is crucial

for extracting morphological parameters from cropped particle

images. Direct binarization of CFIs often causes fragmentation,

especially in particles with transparent or thin connections like

diatom beads, leading to scattered fragments (Figure 6A). This

fragmentation varies by binarization method, affecting flux and

concentration estimates (Giering et al., 2020). Object detection

models mitigate this by bounding entire targets, ensuring

fragments are recognized as a single object, reducing errors in

calculating parameters like filament length and making them

reliable for CFI analysis.

Utilizing the object detection model enhances particle

classification and extraction in CFIs, enabling more accurate

concentration measurements (Figure 9). This approach offers

greater efficiency and precision compared to traditional water

sampling and microscopy (Lund et al., 1958). While conventional

methods infer algal concentration indirectly through Chl-a, our

holographic imaging findings show that diatom and Chl-a

concentrations do not consistently correlate across depths and

time intervals (Figures 7J, K). During Stage E, a strong linear

relationship indicates that Chl-a can reflect diatom concentration

under certain conditions (Figure 7J), but this weakens in Stage L due

to diatom degradation (Figure 7K). This spatial and temporal

decoupling (Supplementary Figures 8A, B, E, F) highlights the

limitations of relying solely on Chl-a to infer diatom

concentration. Furthermore, previous studies have raised

concerns about the accuracy of using chlorophyll fluorescence as

a proxy for Chl-a (Cullen, 1982), reinforcing the need for direct

observational data and experimental validation (Cullen, 2015). In

this context, holographic imaging not only provides valuable data

for correlating Chl-a with diatom biomass but also offers direct,

visual measurements of algal concentration, making it a more

reliable alternative.

Similarly, traditional methods often estimate the volume or

mass concentration of suspended particles based on turbidity (Bunt

et al., 1999). However, our results show that estimating aggregate

volume concentration based on ECD from detected images does not

consistently produce a strong linear correlation with turbidity.

While the relationship between aggregate volume concentration

and turbidity is similar to that of diatoms, it is not always linear. In

Stage E, aggregates dominate particle concentration and strongly

correlate with turbidity (Figure 7L); however this correlation

weakens considerably in Stage L (Figure 7M), likely due to

stratification, which reduces aggregates below the pycnocline.

Simultaneously, shear at the pycnocline can cause elongated

diatoms to rotate and align with the shear flow, enhancing

photosynthetic efficiency (Nayak et al., 2018) and potentially

increasing optical backscattering by up to 35% (Marcos et al.,

2011). These findings indicate that relying solely on turbidity to

measure volume or mass concentration without considering particle

composition can yield inaccurate results. The coexistence of

diatoms and aggregates, with their distinct morphologies, further

complicates turbidity measurements. Studies have also shown that

this affects size measurements using laser scattering methods like
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LISST, potentially misinterpreting sub-scales as independent

particles (Graham et al., 2012). In contrast, holographic imaging,

with its particle classification capabilities, provides detailed

distribution data (Figure 10), enabling more accurate

interpretations of turbidity and LISST measurements.
4.2 Ecological insights from particle
morphology in holographic images

Statistical analysis of FL and DF2 for all diatoms reveals that

morphological variation in diatoms is not continuous but primarily

falls into two major categories: short-straight and elongated-curled

forms (Supplementary Figures 7A, B). Straight diatoms generally

exhibit shorter FL (Figure 8), with variations in cell connectivity

leading to distinct classes in CFIs, as diatom beads and diatom

chain. For example, in species like Thalassiosira, synthesized chitin

threads between cells (Gherardi et al., 2016), though not fully visible

in CFIs, result in a bead-string appearance (Figure 5B). Similar

patterns are observed in Skeletonema (Figure 4B), while other short-

straight diatoms, such as Aulacoseira (Figure 4C) and Pseudo-

nitzschia (Figure 4D), appear as solid lines (Figure 5C). Despite

differences in cell connectivity, these diatoms maintain a unified

short-straight morphology in CFIs. Experimental studies suggest

that short-straight diatoms, such as Skeletonema typically exhibit

minimal curvature and strong rigidity, which enhance their

resistance to shear forces (Young et al., 2012) and nutrient uptake

(Musielak et al., 2009). In contrast, curled diatoms with longer FL

display varying degrees of curvature, forming diatom coiled, diatom

helix, and diatom semicircle classes. The genus Chaetoceros, which

connects via frustule processes (Fryxell, 1978), exemplifies this, with

species like Chaetoceros pseudocurvisetus (Figures 4E, G) classified

as diatom coiled and diatom semicircle, and Chaetoceros debilis

(Figure 4F) as diatom helix. However, this morphological diversity

among diatoms complicates their precise classification based solely

on CFIs. Research indicates that longer, flexible diatoms maintain

chain integrity in turbulent waters, resisting breakage under

mechanical stress (Karp-Boss and Jumars, 1998). Additionally,

flexible chains may also have higher “morphological stickiness”

increasing their likelihood of entanglement and cohesion, which

facilitates aggregation.

Beyond species identification, these morphological parameters

provide valuable insights into environmental and ecological shifts.

Diatom morphological traits, such as size and shape, respond to

environmental conditions and reflect their ecological functions and

adaptability (Naselli-Flores et al., 2007). FL and CR, as key

morphological functional traits, can serve as indicators of

environmental changes. Additionally, the mechanical properties

of diatoms, including flexibility and rigidity, influence their

interactions with the physical environment. The comprehensive

in situ data provided by CFIs allows for detailed analysis of algal

vertical distribution, facili tating deductions regarding

environmental impacts on diatom communities. Studies have also

shown that diatoms produce transparent exopolymer particles

(TEP), a gelatinous substance that plays a crucial role in

aggregating suspended sediments into large organic aggregates
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(Passow, 2002). This process is particularly significant in coastal

areas with high resuspension, where the resulting aggregates display

diverse morphologies and smooth transitions between types

(Figure 5G). The morphological traits of these aggregates can

reflect the intensity of diatom activity. By analyzing the ECD and

DF2 of aggregates, we can use these key indicators of size and

density to assess environmental changes, including biologically

mediated flocculation and turbulent shear (Maggi, 2007). In the

following section, we will explore particle dynamics using these

morphological traits to examine hydrodynamic changes in the

estuarine environment from an in situ perspective.
4.3 Suspended particles dynamics during
the typhoon-induced algal blooms

During Stage E, the well-mixed state driven by tidal stirring at the

seabed produced turbulence with kinetic energy dissipation an order of

magnitude higher than in Stage L (Figure 7I). This enhanced

turbulence propagated throughout the entire water column (Coogan

et al., 2020), intensifying sediment resuspension and promoting the

downward diffusion of surface diatom particles (Figure 12A; time-

series data in Supplementary Figure 8). The increase in suspended

sediments, combined with enhanced turbulence, led to frequent

particle collisions, forming larger, denser flocs (Burd and Jackson,

2009). Physically, in these highly mixed, non-stratified conditions,

surface phytoplankton layers were dissipated by turbulence (Stacey

et al., 2007). Our observations showed that the downward diffusion of

diatoms follows a distinct tidal cycle (Supplementary Figures 8A, B),

suggesting that strongmixing prevents the formation of a stable surface

phytoplankton layer. This underscores the crucial role of tidal mixing

in driving the downward transport and distribution of diatoms,

particularly affecting elongated-curled forms. While laboratory

studies suggest that elongating diatom chains increases settling

resistance and reduces settling velocity (Takabayashi et al., 2006); our

results show that elongated-curled diatoms with larger FL settled at

greater depths, indicating that physical mixing dominates their passive

settling rather than active regulation. Statistical analysis also revealed

that diatoms with greater curvature (lower CR values) had a diffusion

advantage even when FL was similar, as seen in the comparison

between diatom chains and semicircles (Figure 9C). This aligns with

Padisak (2003) experiment using a physical model of diatoms, which

found that greater curvature reduces settling resistance, reinforcing that

elongated-curled diatoms are more prone to settling in mid to deeper

layers. These findings highlight the differentiation of morphological

traits in diatom distribution within strongly mixed environments.

Biogeochemically, strong mixing increased nutrient availability

throughout the water column, accelerating diatom proliferation.

Enhanced turbulence promotes nutrient uptake by reducing the

thickness of the boundary layer around diatoms, increasing nutrient

flux and stimulating growth (Prairie et al., 2012). However, diatom

species and morphologies respond differently to turbulence. For

example, Chaetoceros, with its elongated, flexible chains, increased

net carbon assimilation by 59%, while Skeletonema, with shorter, rigid

chains, showed a 31% increase (Bergkvist et al., 2018). Under nutrient-

rich conditions, diatoms excrete part of the fixed carbon as transparent
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exopolymer particles (TEP), which promote the flocculation of

suspended sediments. Flocs formed from suspended sediments alone

are typically small, but TEP from chain-forming diatoms can result in

much larger flocs (Hamm, 2002). Our observations confirmed this,

with many aggregates exceeding the Kolmogorov microscale of

turbulence (Supplementary Figure 10). The abundance of elongated-

curled diatoms and their higher carbon assimilation rates in the middle

and bottom layers during Stage E likely contributed to the formation of

larger, denser flocs compared to Stage L (Figures 10E–H). Strong

turbulence facilitated the settling of these diatoms, forming numerous

loose algal agglomerates. The high concentration of suspended

sediment may attach to these agglomerates (Supplementary

Figure 11) further increased their density and settling velocity,

explaining why large agglomerates were primarily found in the

middle and bottom layers during Stage E (Figure 11G).

During Stage L, strong stratification reestablished, as shown by

significant salinity and temperature gradients (Figures 7A, B) and

particle distribution patterns (Figure 12B; time-series data in

Supplementary Figure 8). Physically, this stratification inhibited

turbulent diffusion from tidal stirring, leading to reduced turbulent

dissipation and sediment resuspension (Figures 7G, I) (Coogan et al.,

2020). As turbulence decreased, suspended sediment concentration

and collision frequency dropped, resulting in smaller floc sizes. This

stratified structure caused diatoms to distribute unevenly throughout

the water column, forming a surface phytoplankton thin layer in the

upper 0.4 H. Such layers typically develop in stable waters with

minimal tidal mixing (Prairie et al., 2012). FL of diatoms generally

increased during Stage L, especially in short-straight diatoms like the

diatom chain class, which grew by 27% (Figure 8A), likely due to

reduced turbulence minimizing mechanical disruption.

Biogeochemically, stratification restricted the vertical supply of

nutrients (Barton et al., 2013), exacerbating nutrient depletion in the

upper layers. As the algal bloom entered its late phase, diatoms faced

intensified competition and increased mortality. Our observations of

increased FL suggest that under nutrient-limited conditions, diatoms

may switch from asexual to sexual reproduction, further contributing

to longer FL (Litchman and Klausmeier, 2008). Consequently, diatom

morphology and life processes played a critical role in determining

their distribution within the surface phytoplankton layer. Bergkvist

et al. (2018) demonstrated that under nutrient-limited conditions,

Chaetoceros, with longer filaments, grew faster than the shorter-

straight Skeletonema, a pattern also reflected in our observations.

During Stage L, a slight reduction in the concentration of short-

straight diatoms was noted (Figures 8B, C), indicating a decline in

their competitiveness. In contrast, elongated-curled diatoms showed a

broader distribution, extending toward the lower boundary of the thin

layer (Figure 11B), while short-straight diatoms remained

concentrated in the upper part (Figure 11D). This suggests that

elongated-curled diatoms, with greater activity, are better adapted to

inhabiting deeper layers. These differential growth dynamics likely

contributed to the observed distribution patterns within the thin layer.

As in Stage E, the distribution of algal agglomerates was closely tied to

that of diatoms, particularly elongated-curled forms, leading to

agglomerates concentrating near the surface (Figure 11H). In the

late bloom stages, the decomposition of surface diatoms released large

amounts of Chl-a and TEP, which diffused into deeper layers,
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weakening the correlation between diatom and Chl-a concentrations

(Figure 7K). Although sediment resuspension decreased significantly,

excess TEP and biogenically mediated flocculation persisted, resulting

in flocs that remained larger than those flocculated from pure mineral

clay particles. Thus, the weakened turbulence in Stage L was the

primary factor leading to the formation of smaller and less dense flocs

compared to Stage E, and allowed low-density flocs and agglomerates

to distribute more evenly across the vertical profile in the stratified

water column (Figures 11F, H).
4.4 Ecological implications in
estuarine systems

The findings indicate that changes in particle morphology and

distribution in shallow estuaries are far more complex due to physical

dynamics. During Stage E, strong mixing can drive elongated-curled

diatoms into deeper layers. Although this reduces their sunlight

exposure, intense turbulence enables them to sustain high rates of
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nutrient uptake and carbon assimilation. This photosynthetic activity

contributes to replenishing dissolved oxygen and offers a potential

explanation for the mechanisms underlying the impact of typhoons on

estuarine hypoxia. Furthermore, this process enhances the

incorporation of organic carbon into denser, biologically-mediated

flocs, intensifying the carbon pump and increasing organic carbon

deposition on the estuary floor. The subsequent bacterial respiration

and decomposition of these materials may contribute to the worsening

hypoxia observed after typhoons (Wang et al., 2017). The restoration of

stratification triggers morphological and distributional changes in

diatoms within surface phytoplankton layers. Traits such as FL

elongation and the spread of elongated-curled forms become more

pronounced. Understanding these changes is crucial for interpreting

how external physical variations and diatom life cycles evolve during

algal bloom development. These findings suggest that diatom

morphology, rather than species-specific differences, is more

responsive to environmental factors, reinforcing the idea that coastal

ecosystem functions are shaped by the functional traits of organisms

rather than their taxonomic composition (Martini et al., 2021).
FIGURE 12

A conceptual diagram illustrates the particle distribution during the (A) early stage (Stage E) and (B) late stage (Stage L) of the typhoon-induced algal
bloom. In both stages, diatom FL increases, and CR decreases with depth. For flocs, ECD increases while DF2 decreases with increasing depth.
During Stage E, enhanced turbulent mixing facilitates the settling and downward extension of diatoms, driven by tidal mixing. At this stage, the mean
ECD and density of flocs are greater, with higher concentrations compared to Stage L. In Stage L, strong stratification of the water column leads to
the formation of diatom layers near the surface, with Chl-a diffusion extending beyond the diatom distribution range. These variations in particle
morphology and distribution reflect the distinct characteristics of each developmental stage of the typhoon-induced algal bloom.
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Similarly, aggregate morphology and distribution provide valuable

insights into environmental changes that traditional particle size

distribution analyses, such as laser diffraction, may not fully capture.

As aggregate morphology is strongly influenced by turbulence intensity

and algae-aggregate interactions, understanding these factors requires

more than conventional methods. In our research, analyzing image-

derived parameters provides foundational data for calculating key

metrics. When integrated with empirical studies, these metrics can

further advance the assessment of parameters such as three-

dimensional fractal dimension (Tang and Maggi, 2015), particulate

organic carbon influx (Durkin et al., 2021), and settling velocity (Many

et al., 2019). This approach holds potential to uncover broader

relationships between particles and ecological processes, including

trophic interactions, carbon cycling, and nitrogen cycling.

In this study, FL and CR were identified as cross-taxon traits

applicable across species, while ECD and DF2 demonstrated

measurable responses of aggregate morphology to environmental

changes. These traits offer an efficient and valuable approach to

analyzing estuarine ecosystems and algal bloom evolution. Since

functional traits transcend species classifications, they help mitigate

the negative impacts of taxonomic inconsistencies in diatom data

(Riato et al., 2022). Extracting these morphological parameters from

images offers a more convenient and cost-effective alternative to genetic

sequencing. Despite these advances, the extraction and quantification

of particle functional traits remain underexplored (Trudnowska et al.,

2021). The scarcity and diversity of particle images present challenges

in building comprehensive relationships between particle morphology

and environmental interactions from large datasets. Future research

will require more advanced image detection techniques and

morphology extraction models. The methods and findings from this

study provide valuable references for future research into aquatic

particle morphology. As in situ imaging technology and artificial

intelligence continue to advance, expanding the collection of particle

image data is crucial, as the wealth of information embedded in particle

morphology remains largely untapped. Research on particle functional

traits suggests that using a few key variables to predict environmental

changes holds significant potential.
5 Conclusion

When a typhoon disrupts the stratified structure of coastal

waters, it generates a mixed water column. This column, driven by

tidal forces and runoff, creates a complex hydrodynamic

environment profoundly influences the distribution and behavior

of suspended particles. Analyzing and detecting these particles

under such dynamic conditions using high-resolution in situ data

is essential for understanding the evolution of estuarine ecosystems.

In this study, two consecutive mooring observations were

conducted in the PRE following Typhoon Cempaka in 2021,

capturing holographic images of particles and collecting

hydrological data during different stages of an algal bloom. Based

on these data, we developed an effective algorithm to process the
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holographic images, generating CFIs with clear target contours, that

are ideal for building datasets for object detection models. Using a

trained object detection model, we efficiently collected and analyzed

various particle classes and morphological traits. Statistical analysis

of these data demonstrates that holographic imaging provides more

precise hydrological data than traditional methods, including

particle morphology, concentration, classification, and

vertical distribution.

The study revealed that elongated-curled diatoms tend to settle

into mid-bottom layers under strong mixing conditions but

concentrate in the surface phytoplankton layer in stratified

waters. In contrast, short-straight diatoms exhibit minimal

sensitivity to physical dynamics and remain concentrated near the

surface. Loose aggregates, primarily composed of algal

agglomerates, are closely associated with elongated-curled

diatoms, distributing in both the surface and bottom layers under

strong mixing but concentrating in the surface layer in stratified

waters. Compact aggregates, mainly composed of flocs, are

primarily distributed near the bottom, with their concentration

linked to sediment resuspension caused by turbulence. Their size

and density are influenced by biologically mediated flocculation

processes related to diatom concentration. The study also found an

increase in overall filament length of diatoms, with the

concentration of elongated-curled diatoms rising while that of

short-straight diatoms declined. These functional trait changes

reflect diatom life cycles at various stages of algal bloom

development. The decrease in floc concentration, along with the

reduction in particle size and density, mirrors the fluctuating

strength of external physical forces and shifts in diatom

concentration. These findings suggest that the in situ functional

traits of particles can serve as indicators of environmental changes

in estuarine ecosystems, with the in situ statistical results providing

valuable validation references for water sample analysis and

laboratory research. These functional traits hold considerable

ecological research value. Moving forward, the full potential of

intelligent holographic technology in in situ particle detection

should be harnessed to enhance data collection and build a more

comprehensive classification and statistical database for

suspended particles.
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