
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Kumbukani Mzengereza,
Mzuzu University, Malawi

REVIEWED BY

Ngoc Tuan Tran,
Shantou University, China
Ramasamy Ramasubburayan,
Saveetha University, India
Maocang Yan,
Zhejiang Mariculture Research Institute, China

*CORRESPONDENCE

Kwaku Amoah

amoahk2010@yahoo.com

Huapu Chen

chenhp@gdou.edu.cn

RECEIVED 20 September 2024

ACCEPTED 11 November 2024
PUBLISHED 10 December 2024

CITATION

Fachri M, Amoah K, Huang Y, Cai J, Alfatat A,
Ndandala CB, Shija VM, Jin X, Bissih F and
Chen H (2024) Probiotics and paraprobiotics
in aquaculture: a sustainable strategy
for enhancing fish growth, health
and disease prevention-a review.
Front. Mar. Sci. 11:1499228.
doi: 10.3389/fmars.2024.1499228

COPYRIGHT

© 2024 Fachri, Amoah, Huang, Cai, Alfatat,
Ndandala, Shija, Jin, Bissih and Chen. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 10 December 2024

DOI 10.3389/fmars.2024.1499228
Probiotics and paraprobiotics in
aquaculture: a sustainable
strategy for enhancing fish
growth, health and disease
prevention-a review
Muhammad Fachri 1,2,3,4, Kwaku Amoah1,5,6,7,8*, Yu Huang1,5,6,7,8,
Jia Cai1,5,6,7,8, Alma Alfatat1, Charles Brighton Ndandala1,2,3,4,
Vicent Michael Shija1,5,6, Xiao Jin1,5,6,7,8, Fred Bissih1

and Huapu Chen1,2,3,4*

1College of Fisheries, Guangdong Ocean University, Zhanjiang, China, 2Agro-Tech Extension Center
of Guangdong Province, Guangzhou, China, 3Guangdong Research Center on Reproductive Control
and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang, China, 4Guangdong
Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals,
Zhanjiang, China, 5Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and
Healthy Culture, Guangdong Ocean University, Zhanjiang, China, 6Key Laboratory of Control for
Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China, 7Guangdong
Provincial Engineering Research Centre for Aquatic Animal Health Assessment, Shenzhen, China,
8Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
This review delves into the increasing interest in probiotics and paraprobiotics as

a viable alternative to antibiotics in aquaculture, highlighting their potential to

enhance fish health and prevent diseases. As the aquaculture industry continues

its global expansion, addressing the challenges associated with disease outbreaks

in high-density fish populations becomes imperative. The review underscores

the promising role of probiotics and paraprobiotics as a sustainable strategy to

mitigate these challenges. The diverse positive impacts of various probiotic

strains such as Arthrobacter, Bacillus, Lactobacillus, Bifidobacterium,

Clostridium, and others emphasize their roles in enhancing growth, resistance

to diseases (including bacterial, viral, and parasitic infections), stress reduction,

water quality management, and environmental sustainability. Challenges such as

stability, host specificity, and regulatory considerations must be addressed to

optimize the use of probiotics in aquaculture. Additionally, paraprobiotics, or

non-viable microbial cells, present a safer alternative to the criticized antibiotics

and even live probiotics in environments where microbial viability poses a risk.

These inactivated cells retain the ability to modulate the immune system and

improve gut health, offering a promising complementary approach to fish

disease prevention. The review advocates for a systematic approach

combining research, innovation, and collaboration to effectively integrate

probiotics and paraprobiotics into fish farming practices. Furthermore, the

mechanisms by which probiotics and paraprobiotics modulate gut microbiota,

produce antimicrobial compounds, and strengthen fish’s immune system have

been elucidated. Moreover, the practical applications of probiotics in fish

farming, including optimal administration methods and the challenges and

limitations faced by the industry, have been discussed. Emphasis on the

importance of continued research to explore new probiotic and paraprobiotic
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strains and develop innovative delivery systems to ensure the sustainability of

aquaculture has been discussed. By enhancing fish health, reducing the need for

antibiotics, and improving water quality, probiotics, and paraprobiotics

contr ibute to more sustainable and environmental ly responsible

aquaculture operations.
KEYWORDS

probiotics, paraprobiotics, bacteriocins, disease resistance, probiogenomics,
sustainable aquaculture, gut microbiota modulation
1 Introduction

Aquaculture stands as the swiftest expanding sector in animal

production globally, trading around 160 million tons of farmed fish

valued at US$80 billion annually (Loh et al., 2020). This trend

accelerates, notably with high-value demersal fish species such as

grouper, barramundi, snapper, and pompano (FAO, 2014). The

aquaculture industry faces a significant setback due to disease

outbreaks among aquatic species, resulting from the necessity of

high stocking densities to meet the escalating fish demand (Abarike

et al., 2018). Antibiotics, vaccines, and other prophylactic

mechanisms have been widely employed for disease management

in aquaculture. The widespread use of antibiotics in treating

infections creates selective pressure for antibiotic resistance, a trait

that could be transferred to other bacteria. It is widely acknowledged

that administering antibiotics to finfish and shellfish potentially

causes adverse effects on the host organisms and humans. This

understanding led the European Union to prohibit antibiotic use in

2003. As an alternative approach to using antibiotics, vaccines, and

chemicals in treating diseases, probiotics and paraprobiotics have

emerged due to their eco-friendly and immune-based prevention

attributes in aquaculture (Ringø, 2020). As antibiotics face limitations

as growth promoters in the livestock and aquatic industries across

many countries, the utilization of probiotics is rising, emerging as a

viable alternative (Kwoji et al., 2021).

Probiotics are recognized for their positive impacts on health

and have become established as dietary supplements, well-known

for their multitude of health benefits (Mishra et al., 2015). The

World Health Organization (WHO) and Food and Agricultural

Organization (FAO) defines probiotics as “live microorganisms

that, when taken in sufficient quantities, provide health

advantages to the host (Wang et al., 2019). Over time, a range of

probiotic species from the bacteria genus Arthrobacter, Bacillus,

Enterococcus, Lactobacillus, Lactococcus, Micrococcus, Pediococcus,

Aeromonas , Burkholderia , Enterobacter , Pseudomonas ,

Rhodopseudomonas, Roseobacter, Shewanella, and Clostridium

butyricum have been identified and applied to boost the growth

and immune capabilities of various aquaculture species

(Kuebutornye et al., 2019; Tran et al., 2020a). Probiotics

encompass nonpathogenic species like those from the
02
Saccharomyces, Streptococcus, and Lactococcus classes. Their

beneficial effects on the host can be either direct or indirect,

involving improved barrier function, modulation of the mucosal

immune system, synthesis of antimicrobial substances, bolstered

food digestion and absorption, and changes to the intestinal

microflora (Hemaiswarya et al., 2013). Meanwhile, microbial

organisms employed as probiotics or under assessment as

potential probiotics in Chinese aquaculture hail from diverse

taxonomic divisions, encompassing Actinobacteria, Bacteroidetes,

Firmicutes, Proteobacteria, and yeast (Wang et al., 2019). Probiotics

have shown an ardent ability to improve fish’s health and welfare by

aiding disease resistance, enhancing growth, reducing stress,

managing water quality, and improving reproduction (Indriyani

Nur, 2019) (Figure 1). The effectiveness of probiotics in fish can

vary based on factors such as the specific probiotic strain used, fish

species, environmental conditions, dosage, and method of

administration (Nayak, 2010).

Probiotics’ beneficial effects are not limited to their living cells.

Alongside probiotics, paraprobiotics (also known as ghost probiotics)

are non-viable microbial cells that confer health benefits to the host

(Taverniti and Guglielmetti, 2011; Monteiro et al., 2023). They have

recently gained much attention due to their potential role in

aquaculture. Paraprobiotics are considered a safer alternative to live

probiotics, especially in environments where the viability of

microorganisms may pose a risk. They retain the ability to

modulate the immune system, produce bioactive compounds, and

improve gut health, similar to live probiotics (Taverniti and

Guglielmetti, 2011; Vallejo-Cordoba et al., 2020; Monteiro et al.,

2023). The use of paraprobiotics can be particularly advantageous in

aquaculture settings where the stability and safety of microbial

supplements have critical concerns (Nayak, 2010). Paraprobiotics

are defined as “inactivated (non-viable) microbial cells, which, when

administered in sufficient amounts, confer benefit to consumers.”

This description resembles that of probiotics defined by the FAO/

WHO with slight adjustments (Aguilar-Toalá et al., 2018; Siciliano

et al., 2021). Numerous studies have demonstrated that dead

probiotic cells can also elicit various biological responses. Research

has consistently shown that products containing both viable and non-

viable cells can produce beneficial biological responses (Thakur et al.,

2016; Bajpai et al., 2018). Paraprobiotics, derived from heat-
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inactivated cells, can be utilized to boost immune responses and

exhibit immunomodulatory activities. The components of dead cells

have been found to exhibit anti-inflammatory properties in the

gastrointestinal tract (GIT). Interestingly, both live and dead

probiotics have been shown to exert specific actions (Adams, 2010;

de Almada et al., 2016; Akter et al., 2020). Probiotic bacteria can be

rendered inactive using various techniques, including sonication,

heat, chemicals, and gamma or ultraviolet (UV) radiation. The

most commonly used technique among them is heat inactivation.

In some circumstances, the heat-inactivation method may be safer

than other inactivation techniques like UV-inactivation. These

techniques kill microorganisms, and each one has a unique

inactivation mechanism. The probiotic microorganisms’ beneficial

qualities ought to be preserved in paraprobiotics through the

inactivation process (Choudhury and Kamilya, 2019; Tran et al.,

2022). Paraprobiotics’ health-promoting benefits are illustrated

in Figure 2.

Probiotics and paraprobiotics stand out as safe supplements

that enhance host health by boosting growth, offering nutrition,

regulating microbial presence, fortifying immune responses,

optimizing feed utilization, bolstering digestive enzyme activity

and efficiency, reducing stress, refining water quality, and

managing diseases (Selim and Reda, 2015) (Figure 1). Both

probiotics and paraprobiotics offer sustainable, environmentally

friendly solutions for enhancing fish health and disease resistance,

making them essential components in modern aquaculture

practices (Indriyani Nur, 2019).

The application of probiogenomics in aquaculture represents a

cutting-edge approach to enhance the effectiveness of both

probiotic and paraprobiotic strategies in fish health management.

This emerging field combines genomic technologies with probiotic

and paraprobiotic research to elucidate the molecular mechanisms

underlying probiotic-host interactions, facilitating the development

of more potent and targeted probiotic strains (Pérez-Sánchez et al.,

2014). Probiogenomics enables researchers to identify and screen
Frontiers in Marine Science 03
potential probiotic candidates more efficiently, focusing on strains

with specific genetic traits that confer beneficial effects on fish

health and growth (Ringø et al., 2018). This approach has also

revolutionized the development of commercial probiotics/

paraprobiotics by allowing for the selection of strains with

enhanced stability, functionality, and host-specificity. Then,

probiogenomics provides valuable insights into optimizing

probiotic dosages and formulations for different fish species, as

the efficacy of probiotics in disease prevention can vary significantly

depending on the concentration and the target species (Hoseinifar

et al., 2018). By leveraging probiogenomic approaches,

aquaculturists can develop more effective, species-specific

probiotic/paraprobiotic solutions to improve fish health, growth

performance, and disease resistance in aquaculture systems.

This review aims to explore the protective effects of probiotics

and paraprobiotics in fish, outline some of the main functions

performed by these beneficial microorganisms in aquaculture, and

discuss the advancements in probiogenomics that are shaping the

future of biotic applications in the aquaculture industry.
2 Candidate probiotics and
paraprobiotics and screening methods

2.1 Bacterial candidates commonly used as
probiotics and paraprobiotics

Probiotic candidates in fish are typically isolated from the fish’s

digestive system, rearing water, sediments in culture tanks, or other

sources. These candidates are then evaluated for their probiotic

properties via in vitro (such as antimicrobial activity, acid and bile

tolerance, and adhesion ability) and in vivo functional assays (Ringø

et al., 2018). The selection of probiotics varies greatly from one fish

species to another to properly maintain the good-to-bad ratio of

bacteria in the gut mucosal surface (Han et al., 2015). Unlike live
FIGURE 1

The benefits of probiotics in fish health.
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probiotics, paraprobiotics do not pose the same risks associated with

live bacteria, such as the potential for gene transfer or environmental

persistence. Paraprobiotics have been shown to elicit similar

beneficial effects as probiotics, including immune modulation,

enhancement of barrier function, and production of bioactive

compounds (Taverniti and Guglielmetti, 2011). These properties

make paraprobiotics a viable alternative, especially in conditions

where the stability and safety of live microorganisms might be

compromised. Several bacterial candidates have been tested for

probiotic and paraprobiotic potential, including Bacillus sp.,

Micrococcus sp., Enterococcus sp., Phaeobacter sp., Shewanella sp.,

Lactobacillus sp., and Pseudomonas sp (Lobo et al., 2014). These

microorganisms have been shown to improve fish health, growth

performance, and survival rates, as well as enhance the expression of

several immunological factors and reduce the pathogen load to the

gut mucus layer (Banerjee and Ray, 2017). They can also contribute to

nutrient enhancement in the host, such as increasing crude lipid, total

protein, and body weight in Nile tilapia (Oreochromis niloticus) fed

with the probiotic strain of Lactobacillus sp (Hamdan et al., 2016).

These microorganisms, whether viable or non-viable, have beneficial

effects on the gut of aquatic animals in the digestion of dietary

nutrients as well as in the production of energy (Ringø et al., 2018).

The integration of paraprobiotics into aquaculture is still emerging,

but their potential to control different physiological activities of

aquatic organisms and provide similar benefits to live probiotics is

promising. Several probiotics, such as Aeromonas media (e.g., strain

A199), B. subtilis, Lactobacillus helveticus, Enterococcus faecium,

Carnobacterium inhibens, are considered to be significantly effective

at present (Lakshmi et al., 2013). Apart from these discussed

laboratory-based probiotics, various experimentally approved

commercial probiotics, and paraprobiotics are also available on the

market that is also effective in aquaculture (Table 1).
2.2 Screening methods used in the
determination of potential probiotics

Screening probiotics for use in fish aquaculture is a crucial

process involving multiple steps to ensure the safety and efficacy of
Frontiers in Marine Science 04
the potential probiotic strains. The initial phase typically begins

with isolating microorganisms from various sources, including the

GIT of healthy fish, aquatic environments, and fermented products

(Amoah et al., 2024; Merrifield et al., 2010). These isolates are then

subjected to a series of in vitro tests to evaluate their potential

probiotic properties. Common screening criteria include the ability

to survive and grow under conditions similar to those found in the

fish gut, such as low pH and the presence of bile salts (Vine et al.,

2004). Additionally, potential probiotics and paraprobiotics should

exhibit antagonistic activity against known fish pathogens, which is

often assessed through methods like agar well diffusion or co-

culture assays (Newaj-Fyzul et al., 2014). Screening in vitro involves

evaluating the adherence capacity of the potential probiotics to fish

intestinal mucus or cell lines, as this property is considered essential

for colonization and persistence in the host gut (Balcázar et al.,

2008). In the case of paraprobiotics, the focus is on their ability to

modulate immune responses and produce bioactive compounds

even in their non-viable state (Adams, 2010). The production of

beneficial compounds, such as digestive enzymes, vitamins, or

antimicrobial substances, is also assessed during this stage. Safety

considerations are paramount, and potential probiotics are screened

for antibiotic resistance to ensure they do not contribute to the

spread of antibiotic-resistance genes in aquatic environments

(Pérez-Sánchez et al., 2014). The absence of virulence factors and

toxin production is verified to guarantee the safety of the probiotic

candidates for the host fish and human consumers.

Following successful in vitro screening, promising probiotic and

paraprobiotic candidates undergo in vivo evaluation in target fish

species. These trials assess their effects on fish growth performance,

feed utilization, immune response, and disease resistance (Ringø

et al., 2018). Growth parameters such as weight gain, specific

growth rate (SGR), and feed conversion ratio (FCR) are

commonly measured. Immune parameters, including lysozyme

activity, phagocytic activity, and expression of immune-related

genes, are evaluated to determine their immunomodulatory effects

(Hoseinifar et al., 2015b). Challenge tests against common fish

pathogens are conducted to assess the protective effects of the

probiotic treatment. Additionally, the impact of the probiotic on

gut microbiota composition and intestinal morphology is often
FIGURE 2

The benefits of paraprobiotics.
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TABLE 1 Commercial probiotics and paraprobiotics available on the market for aquaculture production.

Product
Name

Company
(Country)

Composition Beneficial Effects References

•Paraprobiotics

Hilyses® ICC (Brazilia) Saccharomyces cerevisiae

Enhanced immune response, improves digestive health,
boosts growth performance, reduces stress, increases

disease resistance, and supports gut microbiota balance
in fish

(Araújo et al., 2015)

LAC-

Shield™
Morinaga Milk
Industry (Japan)

Heat-killed Lacticaseibacillus
paracasei MCC1849

Modulated the fish’s immune system and helps fight
bacterial infections.

(Murata et al., 2018;
Lensch et al., 2024)

Staimune®
Ganeden

(United States)
Heat-killed Heyndrickxia coagulans
(previously Bacillus coagulans)

Enhanced growth, immune response, and disease
resistance in fish

(Endres et al., 2009; James
et al., 2021; Lensch et al.,
2024; Omar et al., 2024)

Lacteol®

diarrhEase™
Lacteol (French)

Heat-killed Lactobacillus acidophilus
LB cells

Improved growth performance, increased antioxidant
capacity, and strengthen the immune system in various

fish species

(Lievin Moal, 2016; Ringø
et al., 2018; Barui et al.,
2024; Lensch et al., 2024)

•Probiotics

Epicin

Epicore
Bionetworks Inc
(United States
of America)

Bacillus spp., Pediococcus spp.,
Enterococcus spp.

Improved water quality, enhanced growth, better
disease resistance

(Balcázar et al., 2006)

AlCare
Alpharma Inc
(United States
of America)

Bacillus licheniformis, B. subtilis
Enhanced growth, improved feed conversion, better

disease resistance
(Merrifield et al., 2010)

Levucell

Lallemand
Animal
Nutrition
(France)

Saccharomyces cerevisiae boulardii
Improved growth, enhanced immune response, better

stress tolerance
(Tovar-Ramıŕez
et al., 2010)

Sanolife
PRO-F

INVE
Aquaculture
(Belgium)

Bacillus subtilis, B. licheniformis,
B. pumilus

Improved feed conversion, enhanced survival rates, better
water quality

(van Hai and
Fotedar, 2010)

EcoProAqua
Keeton Industries
(United States
of America)

Bacillus subtilis, B. licheniformis, B.
megaterium, Pediococcus acidilactici

Improved growth, enhanced immune function, better
water quality

(Nayak, 2010)

Bioplus
Chr.

Hansen
(Denmark)

Bacillus subtilis, B. licheniformis
Enhanced growth performance, improved feed utilization,

better disease resistance
(Ridha and Azad, 2012)

Protexin
Aquatech

Probiotics
International Ltd

(United
Kingdom)

Multi-strain mix including Bacillus
subtilis, Lactobacillus rhamnosus,

Enterococcus faecium

Enhanced growth, improved disease resistance, better
water quality

(Mohapatra et al., 2012)

AquaStar Biomin (Austria)
Bacillus subtilis, Enterococcus faecium,

Lactobacillus reuteri,
Pediococcus acidilactici

Improved larval survival, enhanced immune response,
better growth performance

(Azimirad et al., 2016)

Bactocell

Lallemand
Animal
Nutrition
(France)

Pediococcus acidilactici
Improved feed efficiency, enhanced immune response,

better digestibility
(Hoseinifar et al., 2015a)

Efinol

Bentoli
Agrinutrition
(United States
of America)

Bacillus subtilis, Pediococcus acidilactici,
Saccharomyces cerevisiae

Enhanced growth, improved feed efficiency, better
stress tolerance

(Hauville et al., 2016)

Ecobiol
Evonik

(Germany)
Bacillus amyloliquefaciens CECT 5940 Improved gut health

(Casillas-Hernández
et al., 2023)

(Continued)
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examined using molecular techniques and histological analysis

(Carnevali et al., 2017).

The final stages of probiotic screening involve assessing the

technological properties of the selected strains, such as their ability

to survive processing conditions, storage stability, and ease of

administration in aquaculture settings (Merrifield et al., 2010).

Factors like temperature tolerance, oxygen requirements, and

compatibility with feed ingredients are considered to ensure the

practical application of the probiotic in fish farming. It is

important to note that the efficacy of probiotics can vary

depending on factors such as fish species, developmental stage,

and environmental conditions. Comprehensive evaluations under

different scenarios are necessary to determine the most suitable
Frontiers in Marine Science 06
probiotic strains for specific applications in aquaculture (Dawood

et al., 2018). Some studies have demonstrated that the

heterogeneous expression of probiotic bacteria in fish can

increase intraepithelial lymphocytes, acidophilic granulocytes,

and bactericidal activity specific to fish. As research advances,

new screening methodologies, including high-throughput

sequencing and omics approaches, are being incorporated to

provide a more comprehensive understanding of probiotic-host

interactions and identify novel probiotic candidates with

enhanced benefits for fish health and aquaculture production.

The strategy for selecting probiotics for commercial use is shown

in Figure 3. A list of probiotics and paraprobiotics currently

available on the market has been provided in Table 1.
TABLE 1 Continued

Product
Name

Company
(Country)

Composition Beneficial Effects References

•Probiotics

Biogut
Varsha

Group (India)

Lactobacillus sporogens, Lactobacillus
acidophilus, Bacillus subtilis, Bacillus

licheniformis and
Saccharomyces cervisiae

Improves survival, resistance to disease, and immune
system against white muscle disease.

(Pavadi et al., 2018)

Toyocerin Rubinum (Spain) Bacillus cereus var. toyoi
Encourage growth, boost specimen homogeneity, and

enhance intestinal mucosa
(Abdulmawjood
et al., 2019)

Agrimos

Lallemand
Animal
Nutrition
(Denmark)

Saccharomyces cerevisiae
Enhanced animal performance and balance of microbiota

while preserving gut integrity.
(Mohamed et al., 2017)
FIGURE 3

Strategy for selecting probiotics for commercial use in aquaculture.
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3 Mechanisms of action of probiotics
and paraprobiotics in fish

3.1 Gut microbiota modulation

Gut microbiota modulation refers to the alteration or

management of the microorganisms residing in the GIT to achieve

a desired outcome. This modulation can be achieved through various

means, including supplementing probiotics and paraprobiotics. The

supplementation of Bacillus cereus and Geotrichum candidum

probiotics in Labeo rohita fish resulted in the detection of a lower

relative abundance of Trichosporon and Cryptococcus and even an

absence of opportunistic pathogenic strains (Staphylococcus

saprophyticus and Sporobolomyces lactosus) in the gut as compared

to the control group (Ghori et al., 2022). Using paraprobiotics as a

food carrier in a carbohydrate matrix can be a far more promising

way to enhance gut modulation than incorporating them directly into

foods or protein-rich diets. Adding paraprobiotics increased the

prevalence of beneficial bacterial genera, including Lactobacillus,

Bifidobacterium, and Ruminococcus, which are known for their

positive roles in gut health. In contrast, the genera Corynebacterium

and Plesiomonas, which are less associated with gut health benefits,

were less prevalent after paraprobiotic supplementation (Yolmeh

et al., 2024).

Fish share a notably intimate connection with their surrounding

environment. Contrasts between land and water species are evident

in how their intestinal microbiota interacts with their surroundings.

Different fish species also have a wide range of GIT morphology

differences (Denev et al., 2009). Aquatic animals regularly

encounter potential pathogens during osmoregulation and

feeding. Unlike terrestrial animals, the bacterial makeup in the

GIT of aquatic animals spurred the development of the probiotic

concept. While humans and land-based livestock undergo

embryonic development protected within an amnion, fish and

shellfish release their larvae into the external environment early

in their life cycle. These vulnerable larvae, despite their

underdeveloped digestive tracts, begin feeding at an earlier age,

exposing them to a heightened risk of gastrointestinal microbiota-

related issues (Lara-flores, 2011). An imbalanced fish gut

microbiota with heightened bad bacteria can result in decreased

metabolism, stunted growth, stress, and the onset of diseases. The

influence of gut microbiota on fish physiology heavily relies on the

specific composition of microbial communities within the gut,

largely shaped by their diet (Ghori et al., 2022). In tilapia,

alterations in the gastrointestinal microbiota corresponded with

the stimulation of the endocrine system, leading to intensified

expression of insulin-like growth factor system genes, showcasing

the microbiota’s influence on fish development by regulating gene

expression and organ function in intestinal epithelial cells (Haque

et al., 2022; Luan et al., 2023). Understanding the intricate bacterial

makeup through advanced sequencing techniques is pivotal in

precisely modifying these communities and enhancing fish health

and productivity. Manipulating fish gut microbiota using prebiotics,

antibiotics, and probiotics offers a further exploration of their role.

Emerging dietary elements, particularly prebiotics, and synbiotics as
Frontiers in Marine Science 07
supplementary feeds aside from probiotics and paraprobiotics,

regulate fish physiology, growth, and overall health. Researchers

are increasingly focusing on these additives due to their direct

impact on the gut microbiome in fish (Ghori et al., 2022).

Some researchers have suggested that combining probiotics and

paraprobiotics might offer synergistic benefits to animals, including

fish. For example, a recent work by Yuhana et al. (2024) explored the

effects of euryhaline probiotic and paraprobiotic B. cereus BR2 on

African catfish. The experiment, which involved the supplementation

of 1% (w/w) dose of probiotics and paraprobiotics at a cell density of

108 and 1010 CFU/mL revealed a significant enhancement in the

growth performance (survival rate, final weight, FCR, and SGR),

digestive enzyme (protease, amylase, and lipase) activities, immune-

related genes (IL-1b and MHC-2b expression), and resistance to

Edwardsiella tarda ETS1.1 in the treated group contrast to the results

obtained in the control group. Another study by Meng et al. (2023)

showed that combining live and inactivated Lactobacillus rhamnosus

enhanced gut microbiota diversity and nutrient absorption in

common carp (Cyprinus carpio).

Probiotics actively colonize the gut and interact with the host’s

microbiome and immune system, whereas paraprobiotics modulate

the gut environment through their cellular components, such as

peptidoglycans, lipoteichoic acids, and metabolites, without

colonizing the gut.
3.2 Production of antimicrobial compound

In general, microbial populations release substances that can kill

or slow the growth of other microbes, shaping how they compete for

resources like chemicals and energy (Verschuere et al., 2000). These

substances in the host’s gut, surfaces, or environment create a

defense against opportunistic pathogens. The antibacterial effect

of bacteria is attributed to several factors, including the production

of antibiotics (Williams and Vickers, 1986), siderophores (Sugita

et al., 2012), bacteriocins (Vandenbergh, 1993), and changes in pH

through the release of organic acids (Sugita et al., 1997). For

example, according to Sugita et al. (2012), probiotic strains such

as Photobacterium leiognathi, Vibrio scophthalmi, and Enterovibrio

norvegicus were noted to produce siderophore inhibitory substances

against some pathogenic bacteria. Again, Banerjee and Ray (2017)

also reported that Bacillus subtilis strain LR1 produces bacteriocins

that inhibit pathogens, including Aeromonas hydrophila,

Aeromonas salmonicida, Bacillus mycoides, and Pseudomonas

fluorescens. Also, Feliatra et al. (2018) reported that Bacillus

thuringiensis as a probiotic strain H4, produces bacteriocins that

inhibit pathogens, including Pseudomonas stutzeri (Feliatra et al.,

2015). As shown in laboratory studies, bacteriocins (Table 2) can

inhibit pathogen replication using small-molecule compounds

(Cavera et al., 2015; Heilbronner et al., 2021; Soltani et al., 2021;

Retnaningrum, 2024). Leading this category are short-chain fatty

acids (SCFAs) like lactic acid, alongside hydrogen peroxide,

showing similar inhibitory effects. Within Lactobacilli, both low-

molecular-weight bacteriocins (LMWB) and high-molecular-

weight bacteriocins (class III) are produced. LMWB, classified as
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antimicrobial peptides, fall into three categories: class I lantibiotics

(featuring posttranslationally modified peptides with unique amino

acids like lanthionine), class II (heat-stable non-lantibiotics), and

class IV (cyclic antimicrobial peptides) (Maqueda et al., 2008;

Oelschlaeger, 2010). Acetic and lactic acid, among other organic

acids, exhibit potent inhibition against gram-negative bacteria,

making them key antimicrobial components in probiotics. These

acids penetrate bacterial cells in their undissociated form, where

they later dissociate within the cytoplasm. This process may cause a

decrease in intracellular pH or accumulation of the acid’s ionized

form, potentially resulting in pathogen death (Bermudez-Brito

et al., 2012). Several bacterial species including Blautia

spp., Bifidobacterium spp., and Clostridium spp. (Clostridium

butyricum and Clostridium lactatifermentans) are reported to be

involved in SCFA production (organic acids such as propionic and

butyric acid), significant in enhancing the growth performance,

intestinal health (enhancing the morphology (intestinal mucosal

thickness, goblet cell counts, villi length), and gut microbial

community and diversity), immune responses, and antioxidant

activities (such as increase in total-superoxide dismutase,

superoxide dismutase, glutathione peroxidase, and catalase) (Tran

et al., 2020b; 2023).

Lactic acid bacteria, known for producing bacteriocins, often

inhibit the growth of other microorganisms, primarily gram-

positive ones (Timothy et al., 2021; Fernandes and Jobby, 2022).

While most pathogens associated with aquaculture are gram-
Frontiers in Marine Science 08
negative, research has explored the potential role of lactic acid

bacteria as probiotics in aquaculture (Vandenbergh, 1993). So,

considering lactic acid bacteria’s minimal presence in fish gut

microbiota and their typically nonpathogenic nature, it’s

uncertain if their inhibition of related species significantly

contributes to the overall health of the host organism (Verschuere

et al., 2000).

While paraprobiotics do not produce active antimicrobial

compounds like live probiotics, they can still contribute to

antimicrobial effects through various mechanisms. First, the cell

wall components of paraprobiotics, such as peptidoglycan and

lipoteichoic acids, can stimulate the host’s immune system,

indirectly contributing to antimicrobial defense (de Almada et al.,

2016). Additionally, some paraprobiotics may contain preformed

antimicrobial compounds, such as bacteriocins or organic acids,

that were produced before inactivation, which can still exert their

effects despite the cells being non-viable (Nataraj et al., 2020).

Although they are not alive, paraprobiotics can occupy space in

the gut, potentially preventing the adhesion of pathogenic bacteria

to the intestinal epithelium, a mechanism known as competitive

exclusion (Zommiti et al., 2018). Certain studies have demonstrated

that paraprobiotics can disrupt existing biofilms formed by

pathogenic bacteria, indirectly contributing to antimicrobial

effects (Sharma et al., 2020). Lastly, they are known to modulate

the composition of the gut microbiota, potentially favoring the

growth of beneficial bacteria that produce antimicrobial
TABLE 2 Classes of bacteriocins.

Classes Characteristic
features

Bacteriocins produced Common producer
organism

References

Class I Post-translationally
modified peptides

Subclass I.1 Single-peptide,
elongated lantibiotics

Subtilin, ericin S, ericin A B. subtilis (Parisot et al., 2008)

Subclass I.2 Other single-
peptide lantibiotics

Sublancin 168, mersacidin, paenibacillin B. subtilis (Dubois et al., 2009)

Subclass I.3 Two-peptide lantibiotics Haloduracin, lichenicidin B. halodurans (Lawton et al., 2007)

Subclass I.4 Other post-translationally
modified peptides

Subtilosin A B. amyloliquifaciens (Sutyak et al., 2008)

Class II Non-modified peptides

Subclass II.1 Pediocin-like peptides Coagulin, SRCAM 37, SRCAM 602,
SRCAM 1580

B. coagulants (Le Marrec et al., 2000)

Subclass II.2 Thuricin-like peptides Thurincin H, thuricin S, thuricin 17,
bacthuricin F4, cerein MRX1

B. thuringiensis (Gray et al., 2006)

Subclass II.3 Other linear peptides Cerein 7A, cerein 7B, lichenin, thuricin 439 B. cereus (Oscáriz and Pisabarro, 2000)

Class III Large proteins Megacin A-216, megacin A-19213 B. megaterium (Kiss et al., 2008)

Class IV circular structure, unique and
versatile antimicrobial peptides

AS-48, Gassericin A, Reutericin 6, Acidocin
B, Butyrivibriocin AR10, Uberolysin,
Circularin A

Enterococcus faecalis S-48,
Lactobacillus gasseri LA39,
Lactobacillus reuteri LA6,
Lactobacillus acidophilus M46,
Butyrivibrium fibrisolvens
AR10, Streptococcus uberis 42,
Clostridium beijerinckii
ATCC 25752

(Galvez et al., 1986; Toba et al.,
1991; Leer et al., 1995;
Kalmokoff and Teather, 1997;
Kawai et al., 1998; Kawulka
et al., 2003; Kemperman et al.,
2003; Wirawan et al., 2007)
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compounds, thus supporting overall gut health (Chuah et al., 2019).

These mechanisms illustrate the multifaceted role of paraprobiotics

in enhancing host defenses against pathogens, even in the absence

of live cells.

While the mechanisms of action differ between probiotics and

paraprobiotics, both can contribute to antimicrobial effects in the

host. Probiotics primarily act through the direct production of

antimicrobial compounds, while paraprobiotics exert their effects

through preformed compounds, immune modulation, and physical

interactions with the gut environment.
3.3 Strengthening the immune system and
nutrient utilization

Probiotics, those beneficial microorganisms found in various

supplements or naturally in the environment, play a crucial role in

bolstering a fish’s immune system against diseases. A recent review

by Shija et al. (2023) showed that Bacillus probiotics offer a key

advantage by regulating mucosal and systemic immunity, leading to

decreased inflammation and heightened infection-fighting

capabilities. They play a significant role in enhancing the

absorption of essential vitamins and minerals from food, aiding

in the breakdown of proteins, carbohydrates, and fats, and ensuring

that the body receives vital nutrients for optimal growth and health

(Peng et al., 2020). When administered to fish, probiotics interact

with the fish’s gut microbiota, fostering a balanced and healthy

environment within the GIT. Selecting the appropriate probiotics is

critical, as incorrect choices can detrimentally affect nutrient

metabolism, immune regulation, resistance against colonization,

and defense against pathogens (Butt and Volkoff, 2019). Serum

immunoglobulins play a vital role in the humoral immune system of

fish and higher vertebrates, contributing significantly to disease

resistance (Sahoo et al., 2021). B lymphocytes produce antibodies

that attach to encountered antigens, effectively blocking disease-

causing agents from entering the body (El-Ezabi et al., 2011). Other

immune parameters, including lysozyme, acid phosphatase (ACP),

alkaline phosphatase (AKP), and catalase (CAT), play influential

roles in enhancing the immune response of fish. Various Bacillus

probiotics, including B. amyloliquefaciens, B. coagulans ATCC

7050, B. licheniformis ATCC 11946, B. tequilensis GPSAK2,

B. velezensis TPS3N, B. velezensis GPSAK4, P. polymyxa ATCC

842, B. subtilis TPS4, B. subtilis GPSAK9, and B. amyloliquefaciens

TPS1, whether used independently or in combination, demonstrate

the ability to elevate immunoglobulin levels, bolster leukocyte

counts, and enhance lysozyme, ACP, AKP, and CAT levels

(Amoah et al., 2021, 2023; Shija et al., 2023).

Probiotics play a significant role in improving nutrient utilization

in fish. Producing digestive enzymes is one of the primary

mechanisms by which probiotics enhance nutrient utilization.

Several probiotic strains can synthesize enzymes such as amylases,

proteases, and lipases, complementing the host’s digestive capabilities

(Merrifield et al., 2010). For example, a report by Mohapatra et al.

(2012) found that rohu (L. rohita) fingerlings fed with a multi-strain

probiotic supplement showed significantly higher intestinal amylase,
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protease, and lipase activities compared to the control group. This

enhanced enzymatic activity can lead to improved digestion and

absorption of nutrients from the feed, resulting in better growth

performance and feed conversion ratios. Probiotics and

paraprobiotics also contribute to nutrient utilization by modifying

the gut microbiota composition and metabolism. Beneficial bacteria

can create a more favorable gut environment for nutrient absorption

and even synthesize certain beneficial nutrients for the host. For

example, some probiotic strains have been shown to produce SCFAs

through fermentation of non-digestible carbohydrates. These SCFAs

serve as energy sources for intestinal epithelial cells and have various

beneficial effects on fish health (Hoseinifar et al., 2018). So, by

improving nutrient utilization, probiotics and paraprobiotics not

only promote better growth and health outcomes for fish but also

contribute to more efficient and sustainable aquaculture practices.

Table 3 shows examples of the beneficial effects of probiotics and

paraprobiotics on the immune system and nutrient utilization in

various fish species.
4 Strategies used by probiotics and
paraprobiotics in tackling
disease pathogens

4.1 Competitive exclusion

Probiotics and paraprobiotics deal with pathogens through

competitive exclusion, a mechanism where beneficial microorganisms

outcompete pathogens for resources and attachment sites. This process

involves the production of antimicrobial compounds, competition for

nutrients, and colonization of sites on the host’s mucosal surfaces

(Rahman et al., 2021). Similarly, heat-killed Lactobacillus plantarum (a

paraprobiotic) has demonstrated the ability to adhere to intestinal

mucus, potentially blocking pathogen attachment sites in fish (Soltani

et al., 2024). The competitive exclusion effect has also been observed

with probiotic yeasts, such as Saccharomyces cerevisiae, which can

reduce the colonization of A. hydrophila in the intestines of Nile tilapia

(de Moraes et al., 2022). Multi-strain probiotic formulations have also

shown enhanced competitive exclusion effects compared to single-

strain probiotics in various aquaculture species (Dawood et al., 2018).
4.2 Modulation of the immune system

Probiotics and paraprobiotics play a crucial role in modulating

the immune system of aquatic organisms, enhancing their

resistance to pathogens. These beneficial microorganisms

stimulate innate and adaptive immune responses, increasing

immune cell production, antibodies, and cytokines (Bruce and

Brown, 2017). For example, dietary supplementation with B.

amyloliquefaciens has been shown to upregulate the expression of

immune-related genes in the liver and intestine of Nile tilapia,

improving their resistance to Streptococcus agalactiae infection

(Van Doan et al., 2021). Paraprobiotics, such as heat-killed
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TABLE 3 Effects of Probiotics and Paraprobiotics on Immune System and Nutrient Utilization in Various Fish Species.

Probiotics

Probiotic
Used

Fish Species Immune System Effects Nutrient Utilization Effects References

Bacillus
subtilis

Asian seabass (Lates calcarifer)
Upregulation of immune-related genes (IL-1b,
TNF-a)

Enhanced apparent digestibility of
dry matter and protein

(Adorian
et al., 2019)

Lactobacillus
plantarum

Nile tilapia (Oreochromis niloticus) Increased lysozyme and phagocytic activity
Improved protein efficiency ratio and
feed conversion ratio

(Abou-El-Atta
et al., 2019)

Common carp (Cyprinus carpio)

Enhanced lysozyme and complement activity,
Enhancement of immune cell activity, and
increased production of antibodies
and cytokines

Increased weight gain and
performance, enhanced digestibility,
improved feed conversion ratio

(Zhang
et al., 2020)

Grouper (Epinephelus coioides)
Reduction of inflammatory responses,
Enhancement of immune gene expression,
improved antioxidant activity

Improved digestibility and
absorption, enhanced growth
performance, improved
protein utilization

(Liu
et al., 2021)

Lactobacillus
rhamnosus

Rainbow trout (Oncorhynchus mykiss)

Enhanced immune cell activity, upregulation
of immune-related genes, increased cytokine
production, and improved lysozyme and
complement activity

Enhanced protein utilization,
improved liver function and
detoxification, and improved feed
conversion ratio

(Hajirezaee and
Khanjani, 2023)

Red sea bream (Pagrus major)
Increased resistance against
Edwardsiella tarda

Enhanced nutrient digestibility and
feed utilization

(Dawood
et al., 2015a)

Lactobacillus
acidophilus

Zebrafish (Danio rerio)
Increased serum lysozyme and
complement activity

Improved growth performance and
feed efficiency

(Hoseinifar
et al., 2015a)

Pediococcus
acidilactici

Atlantic salmon (Salmo salar)
Modulation of intestinal microbiota and
improved barrier function

Improved feed efficiency and
growth performance

(Vasanth
et al., 2015)

Shewanella
putrefaciens

Gilthead seabream (Sparus aurata)
Increased lysozyme activity, Stimulation of
innate immune responses, enhanced cytokine,
modulation of mucosal immunity

Improved digestive enzyme activity,
Enhanced growth performance, gut
microbiota modulation

(Cámara-Ruiz
et al., 2020)

Heat-killed
Lactobacillus
plantarum

Nile tilapia (Oreochromis niloticus)
Increased lysozyme activity, enhanced
complement activity, and a boost in
respiratory burst activity

Increased protein efficiency ratio and
improved apparent digestibility of
dry matter.

(Van Doan
et al., 2020)

Heat-killed
Lactobacillus
acidophilus

Asian seabass (Lates calcarifer)
Increase in serum lysozyme levels, enhanced
alternative complement activity, and improved
phagocytic activity

Increased apparent protein
digestibility and improved apparent
energy digestibility.

(Nguyen
et al., 2017)

Heat-killed
Lactobacillus
rhamnosus

Zebrafish (Danio rerio)
Increased expression of immune-related genes,
including il1b, tnfa, and il10, as well as
enhanced neutrophil activity

Increased expression of nutrient
transporter genes and a greater
intestinal villi height.

(Zang
et al., 2019)

Heat-
inactivated
Bacillus
coagulans

Common carp (Cyprinus carpio)

Increased serum lysozyme activity, higher
complement C3 levels, and enhanced
superoxide dismutase activity

Increased apparent digestibility of dry
matter and crude protein, as well as
enhanced intestinal protease and
lipase activities.

(Xu et al., 2016)

Heat-killed
Lactococcus

lactis
Olive flounder (Paralichthys olivaceus)

Increased lysozyme activity, enhanced
myeloperoxidase activity, and a boost in
respiratory burst activity

Improved growth performance and
enhanced feed efficiency.

(Beck
et al., 2015)

Heat-
inactivated

Psychrobacter
sp.

Yellow croaker (Larimichthys crocea)

Elevated serum lysozyme activity, higher
complement C3 and C4 levels, and increased
IgM levels.

Increased weight gain rate, enhanced
specific growth rate, and improved
protein efficiency ratio.

(Sun
et al., 2011)

Heat-
inactivated
Lactobacillus

casei

Atlantic salmon (Salmo salar)

Increased expression of immune-related genes
in the intestine and head kidney, along with
enhanced serum lysozyme activity

Increased apparent digestibility
coefficients for dry matter and
protein, as well as enhanced intestinal
fold height.

(Vasanth
et al., 2015)
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Enterococcus faecalis, have demonstrated the ability to enhance the

activity of phagocytes and increase the production of lysozyme in

rainbow trout, leading to improved survival rates when challenged

with Aeromonas salmonicida (Rodriguez-Estrada et al., 2013).

Probiotic mixtures containing Lactobacillus and Bacillus species have

been reported to stimulate the production of pro-inflammatory

cytokines and enhance the activity of natural killer cells in various

fish species, contributing to improved disease resistance (Van Doan

et al., 2021). Additionally, the immunomodulatory effects of probiotics

and paraprobiotics have been noted to extend beyond direct pathogen

interactions, influencing aquaculture species’ overall health and stress

resistance (Dawood et al., 2020).
4.3 Production of
antimicrobial compounds

One of the key mechanisms by which probiotics and

paraprobiotics fight against disease pathogens is through the

production of antimicrobial compounds. These substances include

organic acids, hydrogen peroxide, bacteriocins, and biosurfactants,

which can directly inhibit or kill pathogenic microorganisms

(Banerjee and Ray, 2017). For example, B. subtilis isolated from a

healthy fish gut produced various antimicrobial peptides that

effectively inhibited the growth of V. anguillarum and A.

hydrophila (Kuebutornye et al., 2019). Lactic acid bacteria, such as

Lactobacillus plantarum, produced organic acids that lowered the pH

of the intestine, creating unfavorable conditions for pathogen growth

(Giri et al., 2018). Even in their non-viable form, paraprobiotics can

retain the ability to produce or release antimicrobial compounds.

Heat-killed L. acidophilus has been found to maintain its antibacterial

activity against fish pathogens due to the presence of stable

antimicrobial peptides (Ringø et al., 2018). The synergistic effects of

multiple antimicrobial compounds produced by probiotic consortia

have shown enhanced pathogen inhibition compared to single-strain

applications in various aquaculture systems (Puvanasundram

et al., 2021).
4.4 Biofilm formation and disruption

Probiotics and paraprobiotics deal with pathogens through the

formation of beneficial biofilms and the disruption of pathogenic

biofilms. Biofilms are complex communities of microorganisms

attached to surfaces, and their formation can significantly impact

the colonization and persistence of both beneficial and pathogenic

bacteria in aquaculture environments (Cai and Arias, 2017;

Muhammad et al., 2020). Bacillus species have been shown to

form protective biofilms on fish skin and intestinal surfaces,

creating a barrier against pathogen colonization (Benhamed et al.,

2014; Elsadek et al., 2023). These beneficial biofilms can also

produce extracellular polymeric substances (EPS) that have

antimicrobial properties and enhance the host’s immune response

(Watters et al., 2016; Singh et al., 2021). Conversely, probiotics and

paraprobiotics can disrupt existing pathogenic biofilms. For
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example, cell-free supernatants from L. plantarum have

demonstrated the ability to inhibit and disperse biofilms formed

by V. parahaemolyticus (Knipe et al., 2021; Shangguan et al., 2021).

Heat-killed B. subtilis paraprobiotic strain has also shown the

capacity to interfere with quorum sensing systems of pathogens,

thereby reducing their biofilm formation capabilities (Rajesh and

Rai, 2016; Mayer and Kronstad, 2017; Arjes et al., 2022). The

interaction between probiotics, paraprobiotics, and biofilms

represents a complex and dynamic process that plays a crucial

role in pathogen control in aquaculture systems (Cai and Arias,

2017; Arunkumar et al., 2020).
4.5 Host microbiome modulation

Probiotics and paraprobiotics significantly tackle disease

pathogens by modulating the host microbiome, which plays a

crucial role in maintaining aquatic organisms’ health and disease

resistance. By introducing beneficial microorganisms or their

components, these supplements can alter the composition and

diversity of the gut microbiota, creating an environment less

favorable for pathogen colonization (Choudhury and Kamilya,

2019; Vargas-Albores et al., 2021). For example, dietary

supplementation with L. rhamnosus has been shown to increase

the abundance of beneficial bacteria while reducing potentially

pathogenic species in the intestines of zebrafish, leading to

improved resistance against A. hydrophila infection (Zhong et al.,

2022; Zhou et al., 2022). Heat-killed Enterococcus faecium

paraprobiotics have demonstrated the ability to modulate the gut

microbiota of rainbow trout, promoting the growth of lactic acid

bacteria and inhibiting potential pathogens (Rodriguez-Estrada

et al., 2013; Ringø et al., 2018; Zhong et al., 2022; Zhou et al.,

2022). The modulation of the host microbiome by probiotics and

paraprobiotics extends beyond the gut, influencing the microbial

communities on the skin and gills of aquatic animals, which serve as

important barriers against pathogen invasion (Yeşilyurt et al., 2021;

Goh et al., 2023; Szydłowska and Sionek, 2023). Consequently, the

interaction between probiotics, paraprobiotics, and the host

microbiome has been shown to influence metabolic processes and

nutrient absorption, indirectly improving the host’s ability to resist

pathogen infections (Karthika Parvathy et al., 2022; Zawistowska-

Rojek and Tyski, 2022).
4.6 Quorum sensing interference

Probiotics and paraprobiotics deal with pathogens via the

interference with quorum sensing (QS) systems, which are cell-to-

cell communication mechanisms used by many pathogenic bacteria to

coordinate virulence factor production and biofilm formation (Lazar

et al., 2023; Rawal and Ali, 2023; Che et al., 2024). By disrupting these

communication systems, probiotics and paraprobiotics can effectively

reduce pathogens’ virulence and colonization ability in aquaculture

environments. For example, certain strains of B. subtilis have been

found to produce enzymes that degrade acyl-homoserine lactones
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(AHLs), key signaling molecules in the QS systems of many Gram-

negative pathogens like Vibrio species (Garg et al., 2014; Singh, 2015;

Shaheer et al., 2021; Monzón-Atienza et al., 2024). Probiotic

Lactobacillus strains have demonstrated the ability to inhibit the

QS-regulated production of virulence factors in A. hydrophila, a

common fish pathogen (Lu et al., 2023; Zhang et al., 2023). Heat-

killed Lactobacillus plantarum paraprobiotics have shown the capacity

to interfere with QS systems even in their non-viable state, suggesting

that cell components or metabolites play a role in this interaction

(Vallejo-Cordoba et al., 2020; Siciliano et al., 2021). The QS

interference mechanisms of probiotics and paraprobiotics extend

beyond direct pathogen interactions, influencing the overall

microbial ecology of aquaculture systems and potentially reducing

the spread of antibiotic resistance genes (Hernández, 2021; Srirengaraj

et al., 2023; Che et al., 2024). So, combiningQS interference with other

probiotic mechanisms, such as competitive exclusion and

immunomodulation, has shown synergistic effects in pathogen

control, highlighting the multifaceted nature of probiotic and

paraprobiotic interactions in aquaculture.
5 Effects of probiotics on fish health

The protective benefits of probiotics on fish health have gained

significant attention. These beneficial bacteria enhance fish

immunity to diseases, promote growth, and help reduce stress.

Below is an illustrative table demonstrating the protective impacts

of probiotics on fish health (Table 4).
5.1 Improved growth performance

Probiotics are vital in aquaculture, fostering enhanced growth,

increased feed efficiency, and overall health across diverse fish

species (El-Saadony et al., 2021). Probiotics also significantly

enhance growth performance in aquaculture by influencing

several key mechanisms. One primary mechanism is the

improvement of nutrient digestion and absorption. Probiotics can

enhance the digestive enzyme activity in the fish gut, leading to a

more efficient breakdown of feed components and increased

nutrient availability (Singh et al., 2011). This efficiency in nutrient

utilization translates into improved growth rates. Another crucial

mechanism is the modulation of gut microbiota. By promoting a

balanced microbial community, probiotics reduce the prevalence of

harmful bacteria that can compete with fish for nutrients (Dawood

et al., 2019). This balance helps maintain a healthier gut

environment, which supports better growth. A balanced

microbiota can also improve immune function, bolster disease

resistance, and promote overall health, consequently fostering

improved growth and performance (Tan et al., 2019; Wang et al.,

2020; Han et al., 2024).

Probiotics also contribute to improved feed conversion ratios by

optimizing nutrient absorption and reducing waste. This enhanced

feed utilization reduces feed conversion ratios and lowers

production costs (Hasan et al., 2023). Additionally, probiotics
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may mitigate stress responses by improving gut health, which

helps the fish allocate more energy toward growth rather than

coping with stress (Rueda-Robles et al., 2022).

Probiotics play a multifaceted role: they foster a healthier gut

environment, mitigating the impact of environmental stressors on

fish health and growth. This support frequently enhances growth

rates and overall performance (Ntakirutimana et al., 2023).

Improving digestion and absorption, probiotics can reduce excess

nutrient release into the water, thus aiding in the reduction of

environmental pollution associated with aquaculture practices

(Nathanailides et al., 2021). Overall, the enhanced growth

performance observed with probiotic use can be attributed to

their role in optimizing digestion, maintaining a balanced gut

microbiota, and improving feed conversion efficiency.
5.2 Stress reduction

Environmental changes or handling stress can significantly

affect fish’s health and overall well-being (Andrews et al., 2021;

Menon et al., 2023). Investigating the potential of probiotics in

mitigating these stress responses is a progressive approach.

Probiotics, known for their beneficial effects on gut health and

immunity, have shown promising results in various animal studies,

including fish, in reducing stress and enhancing resilience to

environmental stressors (Mohapatra et al., 2014). In fish, stress

responses often manifest through behavior, physiology, and

immune function changes. Probiotics might help modulate these

responses by promoting a healthy gut microbiota, which is crucial

to the fish’s overall health and stress tolerance (Luan et al., 2023).

Research indicates that the administration of specific probiotic

strains may enhance stress tolerance in fish through various

mechanisms, such as the regulation of stress hormones (Schreck

and Tort, 2016). In fish, the hypothalamic-pituitary-interrenal

(HPI) axis is the primary mediator of stress as it controls the

release of cortisol, a major stress hormone (Zhang et al., 2015).

According to Chowdhury et al. (2020), probiotics have been

demonstrated to affect this endocrine axis by modifying the

release and regulation of cortisol, which helps to promote a more

balanced and under-control stress response. For example, by

improving gut-brain axis communication, some probiotic strains

may lower cortisol levels, which in turn may lessen the activation of

the HPI axis during stressful situations (Herrera et al., 2019).

Studies have previously highlighted probiotics’ immunity boost

mechanisms (Ashaolu, 2020) and enhanced gut health

mechanisms (Hasan and Banerjee, 2020). A healthy gut

microbiome can improve the immune system, potentially making

fish more resistant to immunosuppression due to stress, and can

help nutrient absorption and reduce inflammation, which can

indirectly reduce stress levels in fish. As probiotics can potentially

alleviate stress-induced alterations in fish behavior by fostering a

healthier internal environment, the mitigation of behavioral change

mechanisms is significant (Naiel et al., 2022).

Despite promising initial results, further research is essential to

comprehend the specific mechanisms, identify the most effective
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TABLE 4 Protective effects of probiotics on fish health.

Aquatic
Species

Probiotic
species

Dose Duration Beneficial Effects Reference

Danio rerio,
Oncorhynchus
mykiss

B. subtilis and B.
licheniformis
(Bioplus2B)

2.24 × 109 4 weeks Improved growth performance (FCR, SGR, and PER) and
enhanced haematological parameters (haemoglobin, RBC, and
haematocrit values)

(Raida and
Buchmann,

2009;
Taherpour
et al., 2023)

O. niloticus B. subtilis and B.
licheniformis (Biogen)

3 g Kg-1 14 weeks Significant improvement in growth parameters (weight gain,
AWG, ADG, SGR, and FCR) and haematological parameters
(haemoglobin, RBC count, PCV, blood platelets, and WBC
count, plasma proteins)

(El-Haroun
et al., 2006;
Mehrim,
2009)

Epinephelus
fuscoguttatus♀ ×
Epinephelus
lanceolatus♂

Bacillus velezensis
GPSAK4, Bacillus
subtilis GPSAK9, and
Bacillus
tequilensis GPSAK2

1.0 × 109 CFU/g 6 weeks Enhanced growth performance, whole fish-body proximate
composition, blood haematological parameters, serum, liver,
intestinal biochemical indexes, intestinal health (morphology and
microbiota), and protection against V. harveyi pathogen

(Amoah
et al., 2024)

O. niloticus Biogen (Bacillus based)
hydrolytic enzymes)

0.5%, 1.0%, 1.5%
and 2.0%

12 weeks Improved growth parameters (weight gain, specific growth rate,
feed utilization, food conversion ratio, and protein
efficiency ratio)

(Soltan and
El-L, 2008;
Ibrahem,
2013;

Nayak, 2021)

O. niloticus B. subtilis and
Lactobacillus
acidophilus

B. subtilis (0.5 ×
107) +
Lactobacillus
acidophilus

60 days Enhanced blood indices (MCV, MCH, and MCHC), improved
growth parameters (weight gain), and boosted immunity
(gut immunity)

(Aly et al.,
2008b;
Ibrahem,
2013;

Nayak, 2021)

Labeo rohita B. subtilis and
Lactobacillus lactis/B.
subtilis, L. lactis and
S. cerevisiae

1011 CFU g-1 60 days Improved growth parameters (growth, protein efficiency ratio,
nutrient retention and digestibility, lower feed conversion ratio),
and microecology of gut

(Kumar et al.,
2006;

Mohapatra
et al., 2012)

O. niloticus B. subtilis and
B. licheniformis

3 g kg-1; 5 g kg-1; 7
g kg-1 & 10 g kg-1

4 weeks Enhanced immunity (lysozyme, protease, antiprotease, SOD,
immunoglobulin M level in both serum and skin mucus,
upregulation of C-lysozyme, HSP-70, b-defensin, transforming
growth factor-b in mid-intestines and head kidney)

(Abarike
et al., 2018)

O. niloticus B. subtilis and
L. plantarum

107 CFU g-1 60 days Improved immunity (phagocytic, lysozyme, phenoloxidase,
phosphatase activities and immunoglobulin)

(El-Ezabi
et al., 2011)

O. niloticus B. subtilis and Biogen – – Improved growth performance (Soltan and
El-L, 2008)

Oncorhynchus
mykiss

Bacillus species and
Aeromonas sobria

2 × 108 2 weeks Enhanced protection against multiple pathogens (Aeromonas
salmonicida, Streptococcus iniae, Yersinia ruckeri, Vibrio ordalii,
Vibrio anguillarum, and Lactococcus garvieae)

(Brunt
et al., 2007)

O. niloticus B. subtilis and
Lactobacillus
acidophilus

B. subtilis (0.5 ×
107) +

Lactobacillus
acidophilus

60 days Boosted immune system function (Aly et al.,
2008b;
Ibrahem,
2013;

Nayak, 2021)

O. niloticus B. subtilis and
S. cerevisae

1.5 g kg-1 6 weeks Improved growth performance (weight gain, feed conversion
ratio, and protein efficiency ratio)

(Marzouk et
al., 2008)

Lates calcalifer B. licheniformis, B.
subtilis and
B. amyloliquefaciens

1 × 103, 1 × 106

and 1 × 109 CFU
g-1

56 days Enhanced immune response (leucocytes, lysozyme, and liver
oxidative stress-related genes), improved growth performance,
and reduced oxidative stress

(Adorian
et al., 2019)

Lates calcalifer B. subtilis and
Bacillus species

B. subtilis (14.2 ×
107 CFU mL-1),
Bacillus sp. (2.9 ×
107 CFU mL-

1) (1:1)

30 days Improved growth performance (weight gain, survival), enhanced
gut microbiota (amylolytic and cellulolytic microbes), and
boosted immunity

(De
et al., 2015)
F
rontiers in Marine
 Science
 13
Where: FCR (feed conversion ratio); SGR (Specific Growth Rate); PER (Protein Efficiency Ratio); AWG (Average Weight Gain); ADG (Average Daily Gain); PCV (Packed Cell Volume); MCV
(Mean Corpuscular Volume); MCH (Mean Corpuscular Hemoglobin); MCHC (Mean Corpuscular Hemoglobin Concentration); SOD (Superoxide Dismutase); HSP-70 (Heat Shock Protein 70).
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probiotic strains for different fish species, determine appropriate

dosages, and establish optimal administration methods (Cai et al.,

2022). Environmental stressors vary widely, so investigating

probiotics’ efficacy across different stressors (temperature changes,

pollutants, handling stress) would be crucial to determining their

broader applicability (Bajagai et al., 2016). The potential use of

probiotics to reduce stress responses in fish holds significant

promise for aquaculture, fisheries, and conservation efforts (Vine

et al., 2006). It could lead to more sustainable practices and

healthier fish populations, ultimately benefiting the industry and

the environment.
5.3 Disease resistance

Research on probiotics and paraprobiotics in fish has shown

promising results in resistance to various diseases, including

bacterial, viral, and parasitic infections. In a review by Pandiyan
Frontiers in Marine Science 14
et al. (2013), the effects of probiotics in preventing common

bacterial infections in farmed fish were detailed. It was

demonstrated that specific probiotic strains, when added to the

fish diet, reduced the incidence of bacterial infections (Table 5) by

promoting a healthy gut microbiota, thus enhancing fish’s immune

response. Also, another research conducted by Kuebutornye et al.

(2019) provided important information on using probiotics to fight

bacterial infections in different fish species. The findings highlighted

that certain probiotic supplementation effectively suppressed the

growth of pathogenic bacteria in the fish gut, thereby lowering

infection rates. Infections caused by parasites, although very limited

regarding their information to researchers, have caused tremendous

damage to the aquaculture sector. Abdel-Aziz et al. (2020) research

on the impact of probiotics on parasitic infections in fish

highlighted that certain probiotic supplements altered the gut

environment, making it less favorable for parasite survival and

development, leading to a decrease in parasite infestation and

improved overall fish health. Mohapatra et al. (2013) also
TABLE 5 Probiotics’ role in the prevention of bacterial, parasitic, and viral infections in fish.

Probiotic Fish Species
Diseases or Causative
pathogenic agent

Effectiveness Reference

Lactobacillus
acidophilus

Nile tilapia
Pseudomonas fluorescens,
Streptococcus iniae

Improve immune function and disease resistance
(Al-Dohail
et al., 2011)

Lactobacillus sakei Rock bream Edwardsiella tarda
A non-significant decrease in the
cumulative mortality

(Harikrishnan
et al., 2011)

Lactococcus lactis Olive flounder Streptococcus iniae
Activated the innate immune system and
protection against pathogen infection

(Kim and
Austin, 2006)

Bacillus subtilis Red hybrid tilapia Streptococcus agalactiae Reduced mortalities (Ng et al., 2014)

Bacillus licheniformis Tilapia Streptococcus iniae Improved the disease resistance (Han et al., 2015)

Pseudomonas
aeruginosa

Zebrafish Vibrio parahaemolyticus
Protect fish by inhibiting biofilm formation and
enhancing defense mechanisms

(Vinoj et al., 2015)

Flavobacterium
sasangense

Common carp A. hydrophila Enhance immune response and disease resistance (Chi et al., 2014)

Lactobacillus
rhamnosus

Rainbow trout Furunculosis Immune modulation, pathogen inhibition
(Nikoskelainen
et al., 2003)

Lactobacillus
plantarum

Indian major carp Motile Aeromonas Septicemia Competitive exclusion, immune enhancement (Nayak, 2010)

Bacillus subtilis Nile tilapia Streptococcosis Competitive exclusion, immune enhancement (Aly et al., 2008a)

Pseudomonas
fluorescens

Atlantic salmon Enteric redmouth disease Competitive exclusion, pathogen inhibition (Gram et al., 1999)

Carnobacterium
maltaromaticum

Rainbow trout Lactococcosis Immune response stimulation, pathogen inhibition
(Kim and

Austin, 2008)

Lactobacillus casei Rainbow trout Infectious pancreatic necrosis virus Reduces viral load
(Mohammadi and
Tukmechi, 2015)

Bacillus subtilis Tilapia Spring viremia of carp virus Enhances immune response (Tang et al., 2021)

Lactobacillus
plantarum

Catfish Viral hemorrhagic septicemia virus Improves survival rate (Hai, 2015a)

Saccharomyces
cerevisiae

Carp
Infectious hematopoietic
necrosis virus

Reduces mortality rate (Nayak, 2010)

Bacillus spp Tilapia Tilapia lake virus (TiLV)
Strengthen tilapia immunity and resistance against
TiLV infections.

(Waiyamitra
et al., 2020)
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concluded that by modulating the host’s immune response and gut

microbiota, probiotics played a crucial role in preventing and

managing parasitic diseases among different fish species. Besides

that, several viral infections have been recorded in aquaculture,

stampeding the growth and development of the sector. In the works

of Chattaraj et al. (2022), where the role of probiotics in preventing

viral infections in aquaculture was elucidated, they observed that

probiotics containing specific strains enhanced antiviral immunity

in fish, reducing the susceptibility to viral pathogens and lessening

the severity of infections. Mondal et al. (2022) also explained the

efficacy of probiotics in controlling viral outbreaks in fish farms.

Their work indicated that regular administration of probiotics

reduced viral loads and enhanced the immune defense

mechanisms in the fish, lowering viral infection rates significantly.

Table 5 displays some other examples of the function of probiotics

in preventing bacterial, parasitic, and viral infection in fish.

These studies collectively emphasize the potential of probiotics

as a preventive measure against common diseases in fish,

demonstrating their effectiveness in reducing the incidence and

severity of bacterial, viral, and parasitic infections through their

beneficial effects on the fish’s immune system and gut health.
5.4 Promoter of reproduction

Probiotics have emerged as a promising area of aquaculture

research, particularly in their role in promoting reproduction in fish.

These beneficial microorganisms have been found to influence various

aspects of fish reproduction, from gamete quality to larval survival.

Applying probiotics in fish reproduction is a broader trend towards

more sustainable and environmentally friendly aquaculture practices.

One of the primary ways probiotics promote fish reproduction is

by improving broodstock’s overall health and immune function.

Gioacchini et al. (2010) demonstrated that probiotic supplementation

in the zebrafish (Danio rerio) diet increased fecundity and egg quality.

The researchers observed higher fertilization and hatching rates in eggs

from probiotic-fed females compared to the control group. They

attributed these improvements to the probiotics’ ability to modulate

the expression of genes related to reproduction and metabolism.

Probiotics have also been shown to enhance sperm quality in male

fish. A study by Hoseinifar et al. (2015b) on common carp (Cyprinus

carpio) found that dietary supplementation with Lactobacillus

plantarum significantly improved sperm motility, viability, and

concentration. The researchers suggested that these improvements

were likely due to the probiotics’ antioxidant properties and ability to

enhance nutrient absorption.

Beyond gamete quality, probiotics have been found to impact

larval development and survival positively. Research by Carnevali

et al. (2017) on European sea bass (Dicentrarchus labrax) showed that

probiotic treatment of larvae resulted in higher survival rates, which

could be linked to enhanced reproductive success in later stages. The

study also noted accelerated immune system development in

probiotic-treated larvae, which could benefit fish health and

reproduction in the long term. The mechanisms by which

probiotics influence fish reproduction are multifaceted. One key
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pathway is through the modulation of the gut-brain axis. Falcinelli

et al. (2016) demonstrated that probiotic administration in zebrafish

altered gene expression in appetite control and reproduction in the

brain, suggesting probiotics’ ability to influence reproductive

processes through neuroendocrine pathways.

Probiotics also play a role in enhancing the nutritional status of

fish, which indirectly supports reproductive processes. A study by

Mohammadian et al. (2019) on rainbow trout (Oncorhynchus

mykiss) found that probiotic supplementation improved protein

digestibility and amino acid absorption. This enhanced nutritional

status could improve gamete production and overall reproductive

performance. The impact of probiotics on fish reproduction extends

to stress reduction, which is crucial for optimal reproductive

performance. Stress can negatively affect reproductive processes in

fish, leading to reduced gamete quality and spawning success.

Research by Dawood et al. (2020) on Nile tilapia (O. niloticus)

showed that probiotic supplementation reduced cortisol levels and

oxidative stress markers, potentially creating a more favorable

physiological state for reproduction.
5.5 Improvement of water quality

Probiotics have emerged as a promising tool in aquaculture for

improving water quality via the reduction of harmful nitrogenous

compounds accumulation in aquatic environments. According to

Zhou et al. (2009), a mixture of Bacillus sp. has the capacity of

reducing the total nitrogen and phosphorus in grass carp culture

water. Verschuere et al. (2000) reviewed probiotics in aquaculture

and highlighted their potential to improve water quality by

competing with harmful bacteria for nutrients and space. Lalloo

et al. (2007) showed that multi-species probiotics could effectively

reduce ammonia, nitrite, and nitrate levels in ornamental fish

systems. As reviewed by Martıńez Cruz et al. (2012), probiotics

maintain water quality through the decomposition of undesired

organic substances. Gatesoupe (1999), in his discussion on

probiotics, also emphasized that they have the capacity to alter

the microbial composition in both the water and the digestive tract

of cultured aquatic species. Kesarcodi-Watson et al. (2008) reviewed

the use of probiotics in aquaculture and highlighted their potential

to inhibit the growth of pathogenic bacteria, thereby improving

water quality. Xie et al. (2013) found that a probiotic mixture could

significantly reduce the abundance of potential pathogens in the

water of grass carp culture systems. Thus, the ability of probiotics to

modulate microbial communities in aquatic environments

significantly contributes to improving water quality.

Soil probiotics have emerged as a promising approach to

improve water quality in aquaculture systems, indirectly

benefiting fish health and productivity (Flegel, 1998). These

beneficial microorganisms, typically applied to the sediment or

water column, can significantly impact water quality parameters

crucial for fish welfare. One of the primary ways soil probiotics

improve water quality is by reducing harmful nitrogenous

compounds. Bacillus species are noted to reduce ammonia and

nitrite levels in aquaculture ponds effectively. The researchers found
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that these probiotics enhanced the nitrogen cycle by promoting the

growth of nitrifying bacteria, thereby improving water quality and

creating a healthier environment for fish (Zhou et al., 2009).

Similarly, Kumar et al. (2016) reported that soil probiotics

containing B. subtilis significantly reduced ammonia levels in carp

ponds, improving fish growth and survival rates. Using probiotics in

aquaculture and highlighting their potential to break down organic

waste, minimize sludge accumulation, and improve overall water

clarity (Verschuere et al., 2000). This process enhances water

quality and helps maintain optimal dissolved oxygen levels, which

are critical for fish health. A group of Bacillus species applied to

pond soil was noted to effectively reduce organic matter and

improve water transparency in tilapia culture systems (Lalloo

et al., 2007). Soil probiotics were noted to maintain a balanced

microbial community in aquaculture environments, suppressing

the growth of pathogenic organisms that can deteriorate water

quality. Probiotics added to soil indirectly improved water quality

by reducing the bacterial load contributing to poor water conditions

(Martıńez Cruz et al., 2012).
5.6 Immune system enhancement

Probiotics have been shown to enhance the innate immune

response in various fish species. A study by Nayak (2010)

demonstrated that probiotic administration could stimulate the

production of antimicrobial peptides and increase phagocytic

activity in fish. Pérez-Sánchez et al. (2011) found that dietary

supplementation with Shewanella putrefaciens improved the

innate immune response in gilthead seabream. Giri et al. (2013)

reported that B. subtilis supplementation could enhance lysozyme

and respiratory burst activity in rohu fish (L. rohita). Hoseinifar

et al. (2015a) observed increased complement and lysozyme

activities in beluga (Huso huso) juveniles fed with L. acidophilus.

The adaptive immune system of fish can also be modulated by

probiotic supplementation. Research by Panigrahi et al. (2007)

showed that dietary L. rhamnosus supplementation could enhance

antibody production and expression of cytokine genes in rainbow

trout. Abid et al. (2013) found that a multi-strain probiotic mixture

increased serum immunoglobulin levels in tilapia. Salinas et al.

(2008) demonstrated that L. delbrueckii enhanced T-cell mediated

immunity in gilthead seabream. Again, Standen et al. (2013)

reported that probiotic Pediococcus acidilactici stimulated

intestinal T-cell proliferation and modulated cytokine expression

in tilapia.

There are several incidences recorded where probiotics

improved disease resistance in fish after enhancing their immune

status. Newaj-Fyzul et al. (2007) found that rainbow trout fed with

B. subtilis showed increased resistance against A. hydrophila

infection. Aly et al. (2008b) demonstrated that a mixture of B.

subtilis and L. acidophilus improved survival rates of tilapia

challenged with A. hydrophila and Pseudomonas fluorescens.

Nikoskelainen et al. (2003) reported enhanced resistance against

A. salmonicida in rainbow trout fed with L. rhamnosus.

Zorriehzahra et al. (2016) reviewed the immunomodulatory

effects of probiotics in fish and shellfish, highlighting their
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potential for disease prevention. The positive effects on disease

resistance was achieved via the probiotic’s ability to enhance fish

immunity. The impact of probiotics on fish immune systems

extends to stress tolerance and overall health. Taoka et al. (2006)

showed that probiotic-fed tilapia exhibited lower cortisol levels and

improved stress resistance. Carnevali et al. (2006) found that L.

delbrueckii supplementation enhanced growth and reduced stress-

related gene expression in sea bass larvae. Mohapatra et al. (2012)

demonstrated that probiotic supplementation improved rohu’s

growth performance and immunological parameters. Lastly,

Merrifield et al. (2010) reviewed the application of probiotics in

aquaculture, emphasizing their role in enhancing fish health and

immune function.
6 Beneficial effects of paraprobiotics

Paraprobiotics, as highlighted earlier, are nonviable microbial

cells, and using these bacteria has several benefits over using live

microorganisms (de Almada et al., 2018). The application of

paraprobiotics has not gained the same traction as the well-

established usage of probiotics in aquaculture (Choudhury and

Kamilya, 2019). Many paraprobiotic preparations have been tested

in fish and shellfish following the work of Villamil et al. (2002), who

reported the immunostimulatory potential of heat-killed

Lactococcus lactis in turbot. These investigations mainly aimed to

discover how paraprobiotics affect immunological responses,

growth, and disease resistance. According to numerous research

studies, paraprobiotics can modulate immunity and provide disease

resistance just as well as their viable counterparts (Dash et al., 2015;

Dawood et al., 2015a). Conversely, compared to their non-viable

counterparts, viable microorganisms have been shown to offer

greater health advantages (Muñoz-Atienza et al., 2015;

Choudhury and Kamilya, 2019). Paraprobiotics are derived from

probiotics that have been inactivated through methods such as heat,

pressure, or radiation (Lee et al., 2023). Although these cells are no

longer viable, they still offer important health benefits, including

resistance to antibiotic-resistant pathogens, promoting immune

health, and ensuring safety in industrial applications (Abd El-

Ghany, 2020; Siciliano et al., 2021). With stability and

effectiveness similar to live probiotics, paraprobiotics have a wide

range of uses in the food and pharmaceutical industries (Cuevas-

González et al., 2020; Vallejo-Cordoba et al., 2020) (See Figure 4).
6.1 Improved growth performance

The Indigenous microbiota is thought to play a crucial role in

maintaining the metabolic functions of the digestive tract in aquatic

animals (Choudhury and Kamilya, 2019). Feed probiotics, which are

viable beneficial microbes, have been shown to improve the appetite of

aquatic animals by enhancing digestibility through various

mechanisms. For example, they produce enzymes that break down

complex nutrients, making them more accessible to the animal’s

digestive system, leading to better nutrient absorption and utilization

and subsequently stimulating appetite (Dawood et al., 2015a).
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Paraprobiotics have been found to enhance aquatic animal’s growth

performance and feed utilization. Several studies have demonstrated

the positive impact of paraprobiotics on growth parameters in fish,

including improved growth rate, feed efficiency, weight gain, SGR, feed

grain, and protein efficiency ratio (Rodriguez-Estrada et al., 2013;

Dawood et al., 2015a, 2015b; Yan et al., 2016). However, not all

studies have reported positive results, as heat-killed probiotics (B.

subtilis, L. lactis, and S. cerevisiae) added to the diet of rohu did not

have a significant impact on growth, protein efficiency ratio, nutrient

retention, digestibility, FCR, or gut colonization (Mohapatra et al.,

2012). While paraprobiotics have been shown to positively impact

various growth parameters in fish, the underlying mechanisms behind

this beneficial effect remain unclear and require further investigation.
6.2 Disease resistance

Paraprobiotics are beneficial to the host because they increase the

host’s resistance to pathogenic infections. Although the exact

mechanisms by which paraprobiotics inhibit pathogens are unclear,

it is generally accepted that immunostimulation is the main

mechanism through which the host resists pathogenic

microorganisms (Fura et al., 2016; de Almada et al., 2018). Several

studies have demonstrated the ability of paraprobiotics to enhance

disease resistance in aquatic animals. For example, Villamil et al.

(2002) found that heat-killed lactic acid bacteria inhibited the growth

of pathogenic V. anguillarum in vitro. Feeding rainbow trout with

formalin-killed paraprobiotics reduced mortality after A. salmonicida

infection (Irianto and Austin, 2002; Rodriguez-Estrada et al., 2013).

Other studies have shown that paraprobiotics can improve resistance

to various pathogens, including Edwardsiella tarda in Nile tilapia

(Taoka et al., 2006), Aeromonas sp. in rainbow trout (Newaj-Fyzul

et al., 2007), V. anguillarum and A. hydrophila in Chinese Drum
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(Leong, 2008; Pan et al., 2008), V. harveyi in Japanese pufferfish

(Biswas et al., 2013b), Flavobacterium psychrophilum in rainbow trout

(LaPatra et al., 2014), and A. hydrophila inM. rosenbergii (Dash et al.,

2015). Most of these studies also found that paraprobiotics not only

enhanced disease resistance but also stimulated the immune system,

implying that the immunostimulatory effects of paraprobiotics

contribute to their ability to protect against disease.
6.3 Stimulation of the immune system

The function of paraprobiotics in boosting the immune system

has been thoroughly studied, especially in models of higher

vertebrates (Taverniti and Guglielmetti, 2011; de Almada et al.,

2016). Studies conducted in vitro have consistently shown how

effective paraprobiotics are at boosting immune responses. For

example, it has been demonstrated that exposure to paraprobiotic

preparations dramatically increases the myeloperoxidase

concentration, phagocytic activity, nitric oxide production, and

respiratory burst activity in fish head-kidney leukocytes (Villamil

et al., 2002; Kamilya et al., 2015; Choudhury and Kamilya, 2019). In

response to paraprobiotic stimulation, the expression of several

immune-related genes has been markedly up-regulated. This

involves the overexpression of COX-2 and pro-inflammatory

cytokines such as IL-1, IL-6, IL-8, IL-17A/F-3, TNF-a, and TNF-

b. Furthermore, there has been an upregulation of TGF-b1, IL-2, IL-
7, IL-15, IL-21, IL-10, and other regulatory cytokines, as well as cell-

mediated immune regulators such as IL-12p35, IL-12p40, and IL-

18, and antiviral cytokines such as IFN-a and IFN-g. There has been
a notable up-regulation of defense and antibacterial genes,

including granzyme A/K, g-type lysozyme, catalase, phospholipid-

hydroperoxide glutathione peroxidase, non-specific cytotoxic cell

receptor protein-1, and BPI/LBP, indicating a strong immune
FIGURE 4

The concept of paraprobiotic.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1499228
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Fachri et al. 10.3389/fmars.2024.1499228
response to paraprobiotic stimulation (Caipang et al., 2010; Lazado

et al., 2010; Biswas et al., 2013a, 2013b; Román et al., 2013; Sun et al.,

2014; Giri et al., 2016). The immune-stimulatory effects of

paraprobiotics have been consistently demonstrated across

various studies. The up-regulation of immune-related genes and

defense genes suggests that paraprobiotics play a crucial role in

enhancing the immune system’s response to pathogens.

Furthermore, the significant increase in respiratory burst activity,

myeloperoxidase content, phagocytic activity, and nitric oxide

production in fish head-kidney leukocytes exposed to

paraprobiotic preparations in vitro highlights the potential of

paraprobiotics as a therapeutic agent in disease prevention and

treatment (Choudhury and Kamilya, 2019).

Paraprobiotics can cause a variety of humoral and cellular

immunological responses in different fish species, according to in

vivo research. Increased levels of serum and gut lysozyme activity,

peroxidase content, oxygen radical production, myeloperoxidase

activity, alkaline phosphatase activity, natural hemolytic

complement activity, a1-antiprotease, immunoglobulin levels, and

total serum protein are among these reactions (Taoka et al., 2006;

Dash et al., 2015; Dawood et al., 2015a, 2015b; Singh et al., 2017;

Choudhury and Kamilya, 2019). Besides that, studies have

demonstrated that dietary paraprobiotics improve neutrophil

migration, plasma bactericidal activity, phagocytic activity,

respiratory burst activity, and cytotoxic activity. They also

increase the number of macrophages, lymphocyte populations,

acidophilic granulocytes, and gut IgM+ cells (Taoka et al., 2006;

Pan et al., 2008; Salinas et al., 2008; Choudhury and Kamilya, 2019).

It has been discovered that paraprobiotics stimulate the expression

of several immune-relevant genes, such as TLR2, C3, and iNOS

genes, as well as pro-inflammatory cytokines, cell-mediated

immune regulators, antiviral cytokines, and other regulatory

cytokines (Biswas et al., 2013a, 2013b; Yan et al., 2016; Singh

et al., 2017). Studies have shown that paraprobiotics can

considerably improve immunological parameters in aquatic

animals. These results imply that paraprobiotics may be

advantageous for immunostimulation on a molecular and cellular

level. Several structural elements of the bacterial cell, which have

been demonstrated in earlier research to elicit immunological

responses, may be responsible for the immunostimulatory

qualities of paraprobiotics (Kataria et al., 2009; Adams, 2010;

Taverniti and Guglielmetti, 2011; de Almada et al., 2016).
7 Probiogenomics in aquaculture

Probiogenomics, a term coined to describe the application of

genomic technologies to probiotic research, has emerged as a powerful

approach in aquaculture to enhance our understanding of probiotic

mechanisms and to develop more effective probiotic strains. This field

combines genomics, transcriptomics, proteomics, and metabolomics

to elucidate the molecular basis of probiotic effects in aquatic

organisms by enhancing host health (Pérez-Sánchez et al., 2014).

One of the primary applications of probiogenomics in

aquaculture is the genomic characterization of potential probiotic

strains. Whole-genome sequencing of probiotic candidates provides
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valuable insights into their metabolic capabilities, stress resistance

mechanisms, and potential for producing bioactive compounds

(Elshaghabee et al., 2017). For instance, a report by Pérez-Sánchez

et al. (2011) utilized comparative genomics to identify genes related to

adhesion factors, bacteriocin production, and immunomodulatory

compounds in L. plantarum strains isolated from fish. This genomic

information not only aids in enhancing our understanding of the

molecular basis of probiotic effects but also facilitates the

development of genetic markers for rapid screening and

identification of promising probiotic strains in aquaculture settings.

Probiogenomics also enables the study of host-microbe

interactions at a molecular level, providing insights into how

probiotics influence fish health and physiology. Transcriptomic

analyses of fish intestinal tissue following probiotic administration

have revealed modulation of genes involved in immune response,

metabolism, and stress tolerance (Hoseinifar et al., 2018). For

example, a report by Giri et al. (2018) employed RNA-seq

technology to investigate the effects of dietary B. subtilis on the

intestinal transcriptome of rohu (L. rohita), identifying significant

changes in the expression of genes related to innate immunity and

lipid metabolism. Such studies contribute to understanding the

mechanisms underlying probiotic benefits and help optimize

probiotic applications in aquaculture.

The integration of multi-omics approaches in probiogenomics

research is paving the way for a systems biology perspective on

probiotic function in aquaculture. Combining genomics with

proteomics and metabolomics allows for a comprehensive

assessment of probiotic effects on host metabolism and the gut

microbiome (Chauhan and Singh, 2019). For instance, Xia et al.

(2018) employed a multi-omics approach to investigate L.

plantarum’s effects on tilapia’s intestinal health, revealing

coordinated changes in microbial community structure, host gene

expression, and metabolite profiles. The field of probiogenomics is an

emerging field, and its relevance in aquaculture is yet to be established

(Lazado and Caipang, 2014). As probiogenomics continues to

advance, it promises to revolutionize aquaculture research by

enabling next-generation probiotics with enhanced specificity and

efficacy, ultimately contributing to improved fish health and growth,

and the application of probiogenomics is poised to become a

cornerstone in advancing the aquaculture industry. For example,

studies have shown that probiotics such as Lactobacillus and Bacillus

strains improve immune response and survival rates in fish like

rainbow trout, shellfish and other finfish species, which transcends to

enhancing their disease resistance (Pérez-Sánchez et al., 2014; Ringø

et al., 2020). These advancements provide robust evidence of

probiotically enhanced diets benefiting aquaculture (Hai, 2015).
8 Practical applications in fish farming

8.1 Optimal administration methods for
probiotics and paraprobiotics in
fish farming

Using probiotics and paraprobiotics in aquaculture requires

effective administration methods to ensure they achieve the desired
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outcomes. Various administration methods have been developed,

including incorporating probiotics into fish feed for dosage control

(Brunt and Austin, 2005), dissolving probiotics in water (Rakhfid

et al., 2020), immersion or bath treatments for specific applications

(Hang, 2021), injection (LaPatra et al., 2014), coating probiotics on

fish feed pellets for controlled delivery (Zulhisyam et al., 2020), and

encapsulation for prolonged release (Huang et al., 2021).

Incorporation into feed whis is one of the most common and

practical ways to administer probiotics in fish feed, allows for

controlled dosing and ensures that fish receive the probiotics

throughout the feeding process. Feed-based administration has

been shown to improve growth performance, enhance gut health,

and increase disease resistance (Liao and Nyachoti, 2017; Salaheen

et al., 2017; Amit et al., 2022). Recent advancements include

microencapsulation techniques that protect probiotics during feed

processing and ensure their survival in the GIT (Liu et al., 2019; Yao

et al., 2020). Microencapsulation also enables a more controlled

release of the probiotic organisms, optimizing their effects over time

(Sarao and Arora, 2017; Frakolaki et al., 2021; Kowalska et al.,

2022). Then, dissolving probiotics into the water or using

immersion/bath treatments is particularly effective for larval or

juvenile stages of fish, where feeding routines may not be well

established (Luz and Favero, 2021; Vargas-González et al., 2024).

Recent studies suggest that water-based probiotic administration

can enhance immune responses and reduce pathogen load in fish-

rearing systems (Yazhiniprabha et al., 2022; Yaslikan et al., 2023).

Immersion methods are often used during the early stages of fish

development to prevent disease outbreaks (Mohd-Aris et al., 2019;

Mondal and Thomas, 2022; Oliveira et al., 2022).

Paraprobiotics, being inactivated microbial cells or cell

fractions, often leverage similar administration routes but with

specific considerations. Recent studies have shown promising

results with heat-killed probiotics incorporated into feed,

demonstrating improvements in growth performance, immune

function, and disease resistance in various fish species (Dawood

et al., 2018; Van Doan et al., 2020). Novel techniques such as spray-

drying have been employed to create stable, powder forms of

paraprobiotics for easy incorporation into feed or water (Talpur

et al., 2014). Importantly, research has begun to explore the co-

administration of probiotics and paraprobiotics, revealing potential

synergistic effects that could enhance overall fish health and

productivity (Azimirad et al., 2016). As the field evolves, there is

a growing focus on optimizing dosages, developing targeted delivery

systems, and conducting long-term studies to fully understand the

impacts of these microbial-based interventions on fish health,

growth, and environmental sustainability in aquaculture settings

(Hoseinifar et al., 2018).

Nonetheless, the effectiveness of each administration method can

be influenced by factors such as the probiotic strain used, fish species,

water quality, and environmental conditions (Sayes et al., 2018). So,

further research is needed to determine the most appropriate and

efficient administration method for a particular aquaculture

operation. Several studies have shown that different probiotic

administration methods can affect fish’s immune response. For

example, a study conducted by Simón et al. (2021) showed that

administering probiotics through injection can improve the immune
Frontiers in Marine Science 19
response of fish better than administering probiotics through feed.

On the other hand, Rodrigues et al. (2020) showed that encapsulation

of probiotics can improve fish survival and reduce stress. In recent

years, several new technologies for probiotic administration in

aquaculture have been developed, such as using nanoparticles

(Qiao et al., 2022) and microencapsulation (Gyawali et al., 2023).

Nanoparticles, for example, allow for better bioavailability of

probiotics and can target specific areas of the GIT, improving the

overall health of fish (Gómez-Guillén and Montero, 2021; Nasr-

Eldahan et al., 2021; Vijayaram et al., 2024). Another promising

technology is the use of biofilms, where probiotics are embedded into

biofilm matrices, allowing them to colonize surfaces in aquaculture

systems and provide continuous probiotic effects (Ashrafudoulla

et al., 2021; Li et al., 2022). These technologies can improve the

effectiveness of probiotic administration and reduce production costs.

Thus, further research is necessary to identify the most suitable and

efficient probiotic administration methods for specific aquaculture

operations, as well as to develop new technologies that can enhance

the effectiveness of probiotic administration.
8.2 Challenges and limitations

Overcoming challenges in applying probiotics and

paraprobiotics in fish farming involves addressing various issues,

including stability (Terpou et al., 2019), host specificity, response,

and regulatory considerations. Several challenges are associated

with the application of probiotics in fish farming, each requiring

distinct solutions (Ishthiaq et al., 2021).

First, ensuring probiotic and paraprobiotics stability is critical

for their effectiveness, with factors like temperature, moisture, and

oxygen sensitivity impacting their viability (Dinkçi et al., 2019).

Formulating probiotics with stabilizers, employing encapsulation

techniques, and storing them under optimal conditions, such as

through microencapsulation, can enhance stability, safeguarding

their viability until administration (Sun et al., 2023).

Another challenge lies in the host specificity of probiotics, where

the efficacy of a particular strain in one fish species may not be

replicated in others (Fontana et al., 2013). Research efforts are needed

to identify probiotic strains with broad-spectrum benefits or species-

specific formulations, tailoring applications to the unique microbiota

of different fish species in aquaculture systems (Das et al., 2022).

Variations in individual fish responses pose another challenge,

stemming from differences in microbiota, genetics, and

environmental conditions within a species (Adamovsky et al.,

2018). Thorough trials and individual fish monitoring can help

identify these variations. Customizing probiotic formulations or

dosages based on individual or population-specific needs can

enhance overall efficacy (Lowe et al., 2020).

The regulatory landscape presents challenges as the use of

probiotics and paraprobiotics in fish farming is subject to varying

frameworks across regions (Lulijwa et al., 2020). Engaging with

regulatory authorities, staying informed about guidelines, and

conducting research to provide scientific evidence on safety

and efficacy are essential steps for navigating these challenges and

obtaining regulatory approval. Concerns about the environmental
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impact of releasing probiotics into aquatic environments, including

ecological impacts and resistance development, present challenges.

Mitigating risks involves implementing best management practices,

such as targeted delivery methods and environmental impact

monitoring. Responsible probiotic use, coupled with adherence to

environmental regulations, is crucial in addressing these concerns

(Hancz, 2022). While paraprobiotics may pose fewer environmental

risks due to their inactivated nature, their long-term effects on

aquatic ecosystems still need to be studied.

Optimizing dosage and application methods is another challenge,

considering factors like feed conversion, water quality, and fish

behavior (Yildiz et al., 2017). Conducting controlled studies to

determine optimal dosage and application methods based on

specific aquaculture conditions is crucial (Bregnballe, 2022).

Tailoring probiotic administration to suit the feeding habits and

environment of the fish species in question enhances overall efficacy

(Wuertz et al., 2021). Addressing these challenges collectively will

contribute to the sustainable and effective integration of probiotics in

fish farming practices. By addressing these challenges systematically

through scientific research, innovation in formulation and

application methods, and collaboration with regulatory bodies, the

effective integration of probiotics in fish farming can be realized,

promoting sustainable and healthy aquaculture practices.
9 Future perspective

Research on the application of probiotics in fish has undergone

significant advancements, with a notable evolution in approaches

over the years. A thorough examination of published research on

probiotics reveals several key trends: firstly, the use of probiotics has

emerged as a viable and sustainable strategy for disease control;

secondly, there is an ongoing quest to discover new probiotic

candidates; and thirdly, the applications of probiotics have

expanded beyond disease control, demonstrating a broader range

of benefits (Lazado and Caipang, 2014). In certain situations when

probiotics are harmed and/or rendered inert during processing and/

or shelf life, the creation of paraprobiotics as supplements and their

incorporation into meals and beverages provide a significant

substitute. Paraprobiotics will, therefore, have several uses in

situations where adding probiotics ought to solve a technological

problem. Parapobiotic products, as opposed to live probiotic goods,

do enable the creation of safer and more stable products.

Consequently, the use of paraprobiotics in food, medicine,

supplements, and fodder is rapidly growing, and soon, their use

will be widespread. Recent research has indicated that the biogenic

and paraprobiotic properties of dead cells, microbial fractions, or

cell lysates can preserve the host’s health.

Envisioning the future of probiotics in fisheries necessitates

comprehensively exploring research gaps, novel strains, and

innovative delivery systems (Vieira et al., 2021). Addressing

research gaps is pivotal in understanding fish microbiomes to

identify bacterial strains beneficial for different species. The focus

should extend to characterizing the gut microbiota of various fish

and comprehending how probiotics interact with existing microbial
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communities over time (Legrand et al., 2020). Investigating the

long-term effects of probiotic administration is equally crucial,

delving into sustained benefits, potential host microbiota

adaptation, and any unintended consequences.

Exploring new strains is vital for enhancing the spectrum of

benefits offered by probiotics. This involves isolating unique

microbial strains with superior properties, including stress

tolerance, antimicrobial activity, and positive effects on growth

and immune responses (Kwoji et al., 2021). Customizing

probiotic formulations for different fish species is essential,

requiring research to understand species-specific requirements

and preferences.

Innovative delivery systems play a key role in shaping the future of

probiotics. Advancements in microencapsulation techniques can

enhance stability and targeted delivery, with research exploring new

materials and methods to improve probiotic survival in the digestive

system (Vivek et al., 2023). Exploring nanotechnology applications

offers innovative possibilities, as well as investigating nanoencapsulation

methods to improve bioavailability and controlled release (Chadha,

2021). Developing precision delivery systems, such as smart feed

formulations or site-specific administration, can optimize distribution,

minimize environmental impact, and enhance overall effectiveness

(Karunathilake et al., 2023).

Ecosystem-level studies are paramount for sustainable

aquaculture practices. Assessing the broader ecological impact of

probiotics on aquatic ecosystems is vital in understanding

interactions with non-target species and environmental factors

(Ibrahem, 2013). Investigating the potential for antibiotic resistance

and horizontal gene transfer among probiotic strains and native

microorganisms ensures responsible probiotic use (Rossi et al., 2014).

Integrating omics technologies (Kwoji et al., 2023), including

genomics, metagenomics, and proteomics, provides comprehensive

insights into the genetic makeup of probiotic strains, host

responses, and microbial interactions. This integrative approach

enhances our understanding of the mechanisms underlying

probiotic functionality, paving the way for informed and

sustainable advancements in probiotics within fisheries.
10 Conclusion

To summarize, probiotics and paraprobiotics are increasingly

recognized as valuable alternatives to antibiotics in aquaculture,

offering numerous benefits for fish health and disease prevention.

These beneficial microorganisms help modulate the gut microbiota,

enhancing digestion, nutrient absorption, and immune responses in

fish. Probiotics, which are live microorganisms, produce

antimicrobial compounds such as bacteriocins and organic acids

that inhibit the growth of pathogens. At the same time,

paraprobiotics, composed of inactivated cells, provide similar

benefits through their bioactive components. Both probiotics and

paraprobiotics strengthen the immune system, improving disease

resistance against bacterial, viral, and parasitic infections.

Additionally, probiogenomics enables the development of more

targeted and effective probiotic strains tailored to specific fish
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species and environmental conditions. Commercially available

products utilizing these microorganisms already show promising

results in improving fish growth, survival rates, and water

quality, making them essential components in sustainable

aquaculture practices.
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Pérez-Sánchez, T., Balcázar, J. L., Merrifield, D. L., Carnevali, O., Gioacchini, G., de
Blas, I., et al. (2011). Expression of immune-related genes in rainbow trout
(Oncorhynchus mykiss) induced by probiotic bacteria during Lactococcus garvieae
infection. Fish Shellfish Immunol. 31. doi: 10.1016/j.fsi.2011.05.005
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