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The changes in the Antarctic sea ice area are directly related to the changes in the

atmosphere and oceans. Determining the Antarctic sea ice distribution is of great

significance to the global climate change analysis. The ant colony algorithm

adopts a positive feedback mechanism to continuously converge the search

process and ultimately approaches the optimal solution, making it easy to find

the optimal segmentation threshold for detecting the sea ice distribution.

However, the ant colony algorithm has the problems of high computational

complexity and easy getting stuck in local optima. In order to better apply the ant

colony algorithm to sea ice distribution detection, an improved ant colony

algorithm was proposed, which improves the selection of initial clustering

centers and the update of pheromone volatilization factors in the ant colony

algorithm. We compared the improved ant colony algorithm with iterative

algorithm, maximum entropy algorithm, and basic global threshold algorithm,

and the results showed that the proposed algorithm is feasible. To further validate

the accuracy of the improved ant colony algorithm, we compared the results

obtained from MODIS data with the improved ant colony algorithm, iterative

algorithm, maximum entropy algorithm, and basic global threshold algorithm for

sea ice detection, and the results showed that the accuracy of the proposed

algorithm was 4.99%, 3.66%, and 5.46% higher than the other three

algorithms, respectively.
KEYWORDS
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1 Introduction

The changes in Antarctic sea ice extent have significant impacts on global heat balance,

water-air circulation and climate changes (Zhang and Deser, 2024). In recent years, global

warming trends has become more and more obvious, and major natural disasters occur

frequently, and extreme weather occurs repeatedly (Piñones et al., 2024). The Antarctic sea

ice region is one of the largest seasonally varying regions, and it has been used as an
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important indicator to observe and study global climate changes

(Wang et al., 2024). Since the 1960s, people have been studying sea

ice (Zhao et al., 2021). Early sea ice studies mainly relied on radar,

sonar or artificial surveying methods, and the cost was high, and the

range was small, and the large area of sea ice information could not

be obtained. With the improvement of spatial resolution of satellite

remote sensing data, it is particularly important to extract the sea ice

distribution and morphological parameters using satellite remote

sensing data, which can provide long time series basic data for the

analysis of sea ice change characteristics (Duspayev et al., 2024).

Therefore, it is very important to automatically obtain large-scale

sea ice distribution from satellite remote sensing data.

In recent years, many researchers have used various methods to

extract sea ice distribution from remote sensing images (Kern, 2004;

Spreen et al., 2008; Tikhonov et al., 2015). Generally speaking,

remote sensing image classification algorithms can be roughly

divided into two categories (supervised classification and

unsupervised classification). In terms of supervision classification,

David (2016) used Advanced Scatterometer (ASCAT) and Special

Sensor Microwave Imager Sounder (SSMIS) data to derive a

probabilistic model based on a multivariate Gaussian distribution

to obtain sea ice distribution. Liu et al. (2015) used SVM algorithm

combining backscattering coefficient, Gray-level Co-occurrence

Matrix(GLCM) to classify sea ice. Zakhvatkina et al. (2017) used

texture features in conjunction with SVM to distinguish sea ice

from open water. Tan et al. (2018) used the feature selection method

based on random forest to determine the optimal selection features

of sea ice image interpretation. Zakhvatkina et al. (2013) used

backscatter histogram and GLCM texture information to classify

sea ice for synthetic aperture radar (SAR) images based on Bayesian

and neural network algorithms. In terms of unsupervised

classification, Haverkamp et al. (1993) developed and

implemented a local thresholding technique for sea ice

classification, which provides accuracy and flexibility compared to

standard global thresholding methods. Yang and Clausi (2012)

presented a new approach to sea ice segmentation in SAR

intensity images by combining an edge-preserving region (EPR)-

based representation with region-level MRF models. Yu and Clausi

(2008) and Dawoud and Netchaev (2012) incorporated boundary

strength into multilevel logistic (MLL) to improve SAR image

segmentation. Leigh et al. (2013) developed a sea ice classification

system using the IRGS and SVM classification results combining

the IRGS approach with a modified energy function to

accommodate the SVM pixel-based information. In summary,

many scholars have been combining different algorithms to

obtain the sea ice distribution based on its different

characteristics. Among them, the threshold method has the

advantages of simplicity, ease of operation, and high

computational efficiency. However, the adaptability of threshold

settings in the current sea ice distribution detection methods is

poor, and the results are usually not satisfactory when dealing with

complex sea ice distribution. The ant colony algorithm is an

unsupervised method that has the advantages of parallelism,

robustness, and autonomy, making it more suitable for complex

image problems. But it has problems such as poor adaptability in

threshold settings, high computational complexity in ant colony
Frontiers in Marine Science 02
optimization, and susceptibility to getting stuck in local optima

(Dorigo et al., 1996; Zhang et al., 2016).

In order to improve the accuracy of sea ice distribution

detection using the ant colony algorithm, we proposed a sea ice

distribution detection method based on an improved ant colony

algorithm. Firstly, use the dissimilarity matrix to calculate the initial

clustering centers of the ant colony algorithm. Secondly, calculate

the Euclidean distance and heuristic information from each pixel to

the initial threshold, and update the pheromone volatilization factor

and its concentration. Again, calculate the probability of each pixel

being included in the threshold set and calculate the mean of the

threshold set. Finally, the mean of the threshold set is used as the

new threshold to obtain the detection results of polar sea ice

distribution, and the feasibility and effectiveness of the proposed

algorithm are verified using the detection results of other algorithms

and the MODIS results.
2 Data

2.1 SSMIS data

This paper uses the F17 equipped multi band microwave

radiation imaging detector SSMIS, which generates data once a day

(Cavalieri and Parkinson, 2012). SSMIS is carried on the DMSP series

satellites and has 24 frequency bands of data, providing global three-

dimensional microwave detection data from 2005 to the present. The

processing method of data is detailed in Section 4. The data can be

downloaded through https://search.earthdata.nasa.gov.
2.2 MODIS data

The Moderate Resolution Imaging Spectroradiometer (MODIS)

is a detection sensor mounted on the Earth Observing System (EOS)

series of satellites developed by National Aeronautics and Space

Administration (NASA). As an important instrument for observing

global biophysical processes in the EOS project, MODIS can obtain

atmospheric, oceanic, and terrestrial observation information once

every 24-48 hours during Earth observation. In addition, the sensor

has 36 channels with resolutions of 250m, 500m, and 1000m,

respectively. MODIS data can simultaneously monitor

characteristic information including land, cloud layers, aerosol

edges, ocean water color, phytoplankton, atmospheric temperature,

ozone, and cloud top height (Li, 2005). In addition, images of ocean

temperature, surface cover, clouds, aerosols, water vapor, and fires

can also be provided. This paper uses MODIS data with a resolution

of 500m for verification. The data can be downloaded through

https://ladsweb.modaps.eosdis.nasa.gov/search.
3 Improved ant colony algorithm

The ant colony algorithm is an intelligent heuristic search

method based on population optimization (Dorigo et al., 1996).
frontiersin.org
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The idea of the ant colony algorithm originates from the principle

that the ants find the shortest path when searching for food in

nature. When the ants search for food, they release a secretion called

pheromones, which can be detected by other ants within a certain

range and affect their future behavior. As the number of the ants

passing through a certain path increases, the amount of information

also increases, making the path easier to choose. Over time, the

amount of information on the path gradually decreases (Wen,

2004). This positive feedback further increases the intensity of

pheromones along the way, the process known as self-catalytic

behavior. The ants cooperate with each other during foraging to

find the shortest distance between their nest and food sources. The

ant colony algorithm has the characteristics of distributed

computation, easy implementation, positive feedback, simple

structure, easy integration with other algorithms, and easy to find

the optimal solution to problems.

However, the arbitrary selection of initial clustering centers and

the fixed pheromone volatilization factor in the ant colony

algorithm can lead to high computational complexity and

susceptibility to local optima. In order to better apply the ant

colony algorithm to sea ice distribution detection, this paper

improved the selection of initial clustering centers and

pheromone volatilization factor of the ant colony algorithm. The

specific content is as follows.
3.1 Improve the initial clustering center

Clustering algorithms are often sensitive to initial conditions,

and different initial choices can directly affect the final results and

convergence speed. The selection of initial clustering centers in the

traditional ant colony algorithms is usually random, and this

selection method is not representative in the data distribution,

resulting in some clusters being too large or too small. Too large

clusters may obscure the details, leading to important features being

ignored, while too small clusters may contain noise, which cannot

accurately represent data, and require more iterations and

computational resources to adjust too large or too small clusters,

increasing the running time of the algorithm. In addition, randomly

selecting initial clustering centers may cause the algorithm to get

stuck in local optima and unable to find the global best cluster,

which directly affects the experimental results. Therefore, this paper

selected the data point with the highest mean dissimilarity among

the data points as the initial clustering center for algorithm

iteration. This selection method not only ensures that the initial

center better represents the different distribution of the data,

thereby helps the algorithm to avoid local optima faster and

converge towards a better global solution, but also reduces the

number of iterations and improves the convergence speed of the

algorithm. The calculation of mean dissimilarity is as follows.

Adis(xi) =
1
no

n
j=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
om

k=1(xik − xjk)
2

q
, 1 ≤ i, j ≤ n (1)

which, m and n are the number of rows and columns of the

data, respectively.
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3.2 Improve the pheromone
volatilization factor

A suitable pheromone volatilization factor can enable

algorithms to find high-quality solutions faster and reduce search

time. Because it can balance local search and global search, thereby

help algorithms escape from local optima and find better global

solutions. The pheromone volatilization factor of the ant colony

algorithm is often a fixed value, which cannot be adjusted according

to environmental changes and lacks adaptability. If the volatility

factor is too small, the update of pheromones will be slow, resulting

in a slower convergence speed of the algorithm. Conversely, if it is

too fast, it may miss the potential optimal solutions. In addition,

fixed volatility factors may lead to algorithms getting stuck in local

optima, especially in the complex solution spaces, lacking flexibility

to escape from these local optima. Levy flight is a random walk

model characterized by step sizes following the Levy distribution,

where most step sizes are small but occasionally very large. Its main

advantage lies in its ability to effectively explore vast spaces,

combining short and long-distance movements to optimize the

search process. The characteristics of Levy flight enable the

algorithm to perform local searches in a short period of time, as

well as long-distance jumps, which can more effectively explore the

solution space and avoid getting stuck in local optima. By

introducing Levy flight, the pheromone volatilization factor can

be dynamically adjusted during the search process to better adapt to

the current search state. This adaptability can improve the flexibility

of the algorithm. Therefore, this paper combined Levy flight with

the pheromone volatilization factor r, and continuously updated

the pheromone volatilization factor as the algorithm iterates. The

update of volatile factors is as follows.

r(t+1)i = r(t)i −
n
m

( ∂⊕L( l)) (i = 1, 2,⋯, n) (2)

L( l) =
G(1 +  l)� sin( pl2 )

G( 1+ l2 )� l � 2( l−12 )

�����
�����
1
l

(3)

which, r is the pheromone volatilization factor, ⊕ represents

point-to-point multiplication, which is a constant, and ∂ is the

control variable for step size.
4 Sea ice distribution detection based
on improved ant colony algorithm

The ant colony algorithm adopts a positive feedback

mechanism to continuously converge the search process and

ultimately approach the optimal solution, making it easy to find

the optimal segmentation threshold for seawater and sea ice. In

addition, its self-organizing mechanism eliminates the need for the

ant colony algorithm to have a comprehensive and detailed

understanding of sea ice information. Therefore, the ant colony

algorithm can be used for detecting sea ice distribution. However,

the arbitrary selection of initial clustering centers and the fixed
frontiersin.org
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pheromone volatilization factor in the ant colony algorithm can

lead to high computational complexity and susceptibility to local

optima. In order to better apply the ant colony algorithm to sea ice

distribution detection, this paper improved the initial clustering

center selection and pheromone volatilization factor of the ant

colony algorithm. And based on the Antarctic SSMIS 19.3GHz

horizontal polarization bright temperature data during 2014-2024,

the Antarctic sea ice distribution was obtained. The flow chart is

shown in Figure 1.

The steps of the improved ant colony algorithm in sea ice

extraction are as follows.
Fron
1. Initialize threshold (Give the initial threshold of the ant

colony algorithm, that is, select the initial clustering

center.). The ants searching for food is the process of

continuous clustering, and the clustering center is the
tiers in Marine Science 04
food source that the ant colony algorithm is looking for

(Yang and Hou, 2005). The ants walking in the ant colony

algorithm is random, so giving the initial clustering center

accurately and guiding the ants to go directly near the

clustering center can greatly reduce the blindness of the

search process, the computational load and speed up the

clustering process. Unlike the traditional ant colony

algorithms, this paper uses the data point with the

highest mean dissimilarity as the initial clustering center

for algorithm iteration. The calculation of mean anisotropy

is shown in Equation 1. In addition, the cluster radius needs

to be set, which determines the search range of the ants and

the computational complexity of the algorithm. This paper

gives a cluster radius of 20.

2. Calculate heuristic information h. The Euclidean distance

di from each pixel to the initial threshold is calculated

as follows.
di =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Xi − T)2

q
(4)

which, Xi is the gray value of each pixel and T is the initial

threshold or the threshold obtained by the last iteration.

Heuristic value is h = 1
di
. Heuristic value reflects the similarity

between the pixel in the image and the clustering center. If the gray

distance between the pixel and the clustering center becomes closer,

di becomes smaller. With the increase of heuristic value, the

similarity between the pixel and the clustering center increases.
3. Calculate the concentration of pheromones on each path.

Update rules for pheromone is one of the core rules of the

ant colony algorithm, and it also reflects the intelligence of

the ant colony algorithm. The pheromone concentration is

initialized before the first iteration, and the pixel values with

Euclidean distance less than cluster radius r are assigned an

initial pheromone concentration of 1, and the pixel values

greater than r is 0. The initialization rules are as follows.
Phi =
1

0
    

di ≤ r

di > r

(
(5)

Starting from the second iteration, the formulas for calculating

pheromone concentrations along each path are as follows.

Phi(t) = (1 −
n
m

r) Phi(t) + rDPhi (6)

which, m and n are the number of rows and columns of the

data, respectively, and r is defined as the volatile variable of the

pheromone over time, which represents the degree of attenuation

of the pheromone over time. The larger the value is, the faster the

attenuation is. If it is too large, it will easily cause premature

convergence and fall into local optimum. To solve this problem,

we combine Levy flight with the pheromone volatilization factor r,
and as the algorithm continues to iterate, the pheromone

volatilization factor r is constantly updated. The update of r is

shown in Equations 2, 3. DPhi is the increment of the pheromone

in the last cycle and the current cycle, and the formula is as

follows.
FIGURE 1

Flow chart of sea ice detection based on the improved ant
colony algorithm.
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DPhi =on
k=1DPh

k
i (7)
Fron
4. Calculate the probability value Pi of each pixel into the

threshold set. Equation 8 reflects the possibility that the

gray-level of a pixel may be the best threshold in

this iteration.
Pi =
Phai (t)h

b
i

oPhai (t)h
b
i (t)

, j ∈ s (8)

which, a is the heuristic factor of pheromone, which represents

the importance of pheromone in algorithm iteration. The larger its

value, the more the algorithm is affected by the pheromone. b is the

heuristic factor of expectation, which represents the importance of

path length in algorithm iteration. The larger its value, the more the

algorithm is affected by the Euclidean distance. Here, we set the

information heuristic factor a = 2 and heuristic factor b=4.
5. Determine whether Pi obtained in the previous step meets

the iteration end condition. If the condition is met, the

corresponding gray value is included in the threshold set,

and then the threshold set is averaged to get a new

threshold. If the conditions for the iteration end are met,

the new threshold is output and the image is split, otherwise

the second step is returned to continue the iteration. The

conditions for the end of iteration of the algorithm is |T-T1|

<e. That is, if the threshold value obtained by this iteration

is less than a certain range from that obtained by the last

iteration, the threshold obtained by this iteration is

considered to be the best global threshold.

6. The optimal threshold obtained in step (5) is used to classify

sea ice and seawater.

7. To verify the feasibility and effectiveness of the proposed

algorithm, we compared the sea ice distribution results

obtained by the proposed algorithm with those of other

algorithms and the results based on MODIS data. MODIS

data determines sea ice based on the difference in

reflectance between sea ice and seawater in the red and

near-infrared bands. The specific formula is as follows.
Band1 − Band2 > a

Band1 > b

(
(9)

which, Band1 and Band2 are the reflectance values of MODIS

bands 1 and 2, a=0.014 and b=0.067, respectively.
5 Results and verification

This paper used the improved ant colony algorithm to obtain

the Antarctic sea ice distribution on January 9, 2018, as shown in

Figure 2A. To verify the feasibility of the improved ant colony

algorithm, we obtained the Antarctic sea ice distribution results on

the same day based on iterative algorithm, maximum entropy
tiers in Marine Science 05
algorithm, and basic global threshold algorithm, as shown in

Figures 2B–D. From Figures 2A–D, it can be seen that the

Antarctic sea ice spatial distribution obtained by the proposed

algorithm, iterative algorithm, maximum entropy algorithm, and

basic global threshold algorithm is basically consistent. To further

verify the feasibility of the improved ant colony algorithm, this

paper obtained the Antarctic sea ice distribution results from

January 15, 2014 to January 15, 2024 based on the above four

algorithms, and counted the number of sea ice pixels. The statistical

results are shown in Figure 3. From Figure 3, it can be seen that the

results of the above four algorithms are basically consistent. In

summary, it is feasible to use the improved ant colony algorithm to

detect the Antarctic sea ice distribution.

In order to verify the high accuracy of the improved ant colony

algorithm, this paper compared the sea ice distribution results

obtained from MODIS data with the results obtained from the

proposed algorithm, iterative algorithm, maximum entropy

algorithm, and basic global threshold algorithm. The results are

shown in Figures 4–6. Among them, the dates in Figures 4–6 are

January 9, 2018, January 15, 2021, and January 15, 2024,

respectively. From Figures 4–6, it can be seen that the sea ice

distribution results are basically consistent in the most regions

except for the red box.

In order to further verify the accuracy of the improved ant

colony algorithm, this paper used the sea ice distribution results

obtained from MODIS data as the standard, and calculates the sea

ice distribution detection accuracy for January 9, 2018, January 15,

2021, and January 15, 2022 based on the proposed algorithm,

iterative algorithm, maximum entropy algorithm, and basic global

threshold algorithm (Figures 4–6 only shows a partial display of

these results). The results are shown in Table 1.

From Table 1, it can be seen that the improved ant colony

algorithm has the highest accuracy. The improved ant colony

algorithm in the three selected regions in this paper has an

average accuracy 4.99% higher than the iterative algorithm, 3.66%

higher than the maximum entropy algorithm, and approximately

5.46% higher than the basic global threshold algorithm.

We used the improved ant colony algorithm to obtain a

superimposed map of sea ice distribution from January 15, 2014

to January 15, 2024, as shown in Figure 7. From Figure 7, it can be

seen that sea ice is mainly distributed around Antarctica, and the

most stable sea ice regions are mainly distributed above the

Antarctic Peninsula. The further away from Antarctica, the more

unstable the sea ice state becomes.
6 Discussion

The ant colony algorithm treats each pixel in remote sensing

images as an ant. During the cyclic search process, the ants use

pheromones with positive feedback characteristics as decision

points, and model the pheromones left by each ant through the

pheromone update mechanism. Then, from a global perspective,
frontiersin.org
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FIGURE 3

Statistical results of sea ice pixels based on proposed algorithm, iterative algorithm, maximum entropy algorithm, and basic global
threshold algorithm.
FIGURE 2

Results of different sea ice distribution detection algorithms (A) Improved ant colony algorithm, (B) Iterative algorithm, (C) Maximum entropy
algorithm, (D) Basic global threshold algorithm (White represents sea ice regions, while black represents non sea ice regions).
Frontiers in Marine Science frontiersin.org06
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the algorithm calculates the probability of distance and path

selection between each ant near the clustering center and the

clustering center, and selects the optimal threshold for image

segmentation after multiple cycles.

When using the ant colony algorithm to detect the Antarctic sea

ice distribution, the initial clustering center selection of the ant

colony algorithm is crucial. The initial clustering center selection of

the traditional ant colony algorithm is arbitrary, which can lead to
Frontiers in Marine Science 07
slow convergence speed of the algorithm, requires more iterations

to find suitable solutions, which may cause the algorithm to fall into

local optima rather than global optima. In this study, we used the

point with the highest mean dissimilarity among the data points as

the initial clustering center. Data points with high mean

dissimilarity usually represent different regions of the data

distribution, which makes the initial clustering centers we selected

representative. This enables the algorithm to converge to a
FIGURE 4

Sea ice distribution detection results on January 9, 2018 (A) MODIS data, (B) Improved ant colony algorithm, (C) Iterative algorithm, (D) Maximum
entropy algorithm, (E) Basic global threshold algorithm (The white area is sea ice, and the black area is sea water).
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reasonable solution faster and reduces the deviation of the initial

clustering centers, thereby reducing the risk of falling into local

optima. In addition, the pheromone volatilization factor (r) of the
traditional ant colony algorithms is fixed, which may result in the
Frontiers in Marine Science 08
algorithm being unable to adapt to dynamic changes in different

regions, which makes pheromone updates less flexible and the

algorithm difficult to escape from local optima, and limits its

ability to explore global optima. In this study, we combined Levy
FIGURE 5

Sea ice distribution detection results on January 15, 2021 (A) MODIS data, (B) Improved ant colony algorithm, (C) Iterative algorithm, (D) Maximum
entropy algorithm, (E) Basic global threshold algorithm (The white area is sea ice, and the black area is sea water).
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FIGURE 6

Sea ice distribution detection results on January 15, 2024 (A) MODIS data, (B) Improved ant colony algorithm, (C) Iterative algorithm, (D) Maximum
entropy algorithm, (E) Basic global threshold algorithm (The white area is sea ice, and the black area is sea water.).
TABLE 1 Sea ice detection accuracy of different algorithms.

Improved ant
colony algorithm

Iterative algorithm Maximum entropy
algorithm

Basic global threshold
algorithm

Figure 4 95.79% 89.53% 91.72% 89.52%

Figure 5 97.25% 92.67% 93.04% 92.33%

Figure 6 95.27% 91.13% 92.57% 90.09%
F
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flight with pheromone volatilization factor, and as the algorithm

iterates, the pheromone volatilization factor also changed

accordingly. The dynamically updated the pheromone

volatilization factor can better balance global and local search

during the search process, improving the overall efficiency of the

algorithm. Specifically, the updated pheromone volatilization factor

can be adjusted according to the current search state, which makes

the pheromone update more in line with the actual situation, and

helps the algorithm converge to the global optimal solution faster,

and dynamically adjusting pheromone volatilization factor can

prevent pheromones from prematurely concentrating on the local

optimal solutions, thereby increasing the chance of escaping from

local optima. We compared the sea ice detection results obtained

based on the improved ant colony algorithm with those of other

algorithms, and the results showed that the proposed algorithm

achieved the higher accuracy in sea ice detection.

However, there are still some shortcomings in this study that

(1) Due to the scarcity of on-site data in polar regions, MODIS

data was used in this paper to verify the accuracy of the proposed

algorithm. However, optical data is susceptible to interference

from clouds and fog, which limits the verification regions. (2)

There is a time difference in the acquisition of SSMIS data and

MODIS data, which may lead to errors in the sea ice distribution

results obtained from the two types of data. In future study will

consider combining on-site data and SAR data for more

comprehensive validation. (3) Although selecting the point with
Frontiers in Marine Science 10
the highest average dissimilarity can increase the diversity of

initial centers, the presence of noise or outliers in the data may

still result in the initial clustering centers being unrepresentative,

thereby affecting the final clustering results. (4) The improved ant

colony algorithm only extracts the sea ice distribution

information and cannot obtain the one-year ice and multi-year

ice distribution information.
7 Conclusion

This paper improved the ant colony algorithm by accurately

setting the clustering center and dynamically updating the global

pheromone concentration, and utilized its ability to find the

shortest path for optimization. The threshold for sea ice

distribution detection is regarded as the optimal solution to the

problem, and a sea ice distribution detection method based on the

improved ant colony algorithm is proposed. Compare the sea ice

detection results obtained by the proposed algorithm in this paper

with those obtained by the iteration algorithm, maximum entropy

algorithm, and basic global threshold algorithm, and validate them

with MODIS data. The results indicate that the proposed algorithm

detects the least number of sea ice pixels and produces the most

accurate results. The detection method can also be applied to other

sea regions, which provides methodological support for the sea ice

distribution detection based on microwave radiometer data.
FIGURE 7

Spatial changes of Antarctic sea ice distribution (Unit: days).
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