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melanostictus) high abundance
fishing grounds based on
interpretable machine
learning approach
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Shenglong Yang1, Wei Fan1, Haibin Han1* and Yang Dai1*
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Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China, 2Key Laboratory
of Sustainable Utilization of Open-sea Fishery, Ministry of Agriculture and Rural Affairs, South China
Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
The construction of accurate and interpretable predictive model for high

abundance fishing ground is conducive to better sustainable fisheries

production and carbon reduction. This article used refined statistical maps to

visualize the spatial and temporal patterns of catch changes based on the 2014-

2021 fishery statistics of the Japanese sardine Sardinops melanostictus fishery in

the Northwest Pacific Ocean. Three models (XGBoost, LightGBM, and CatBoost)

and two variable importance visualization methods (model built-in (split) and

SHAP methods) were used for comparative analysis to determine the optimal

modeling and visualization strategies. Results: 1) From 2014 to 2021, the annual

catch showed an overall increasing trend and peaked at 220,009.063 tons in

2021; the total monthly catch increased and then decreased, with a peak of 76,

033.4944 tons (July), and the catch was mainly concentrated in the regions of

39.5°-43°N and 146.75°-155.75°E; 2) Catboost model predicted better than

LightGBM and XGBoost models, with the highest values of accuracy and F1-

score, 73.8% and 75.31%, respectively; 3) the overall importance ranking of the

model’s built-in method differed significantly from that in the SHAP method, and

the overall importance ranking of the spatial variables in the SHAP method

increased. Compared to the built-in method, the SHAP method informs the

magnitude and direction of the influence of each variable at the global and local

levels. The results of the research help us to select the optimal model and the
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optimal visualization method to construct a prediction model for the Japanese

sardine fishing grounds in the Northwest Pacific Ocean, which will provide a

scientific basis for the Japanese sardine fishery to achieve environmental and

economically sustainable fishery development.
KEYWORDS

Sardinops melanostictus, model prediction performance, SHAP visualization, fishery
management, Northwest Pacific Ocean
1 Introduction

Oceans, from regional to global scales, are essential sources of

animal protein and provide significant economic and employment

benefits (Li et al., 2024; Muñoz et al., 2023; Sun et al., 2023).

Commercial fishing is vital for supplying fish protein to a growing

population. However, it is highly fuel-intensive, with fuel costs

accounting for up to 60% of total fishing expenses. This makes

commercial fishing is one of the major sources of global carbon

dioxide emissions (Basurko et al., 2013; Devi et al., 2021; Greer et al.,

2019). In recent years, overexploitation of many target species has

led to stagnating fish landings globally. Despite this, the energy

demand and CO2 emissions from ocean fishing have continued to

rise (Muñoz et al., 2023). Diesel fuel, a major source of greenhouse

gas emissions in marine capture fisheries, highlights the urgent need

to improve fuel efficiency to achieve sustainable development in

both environmental and economic terms (Devi et al., 2021; Dıáz-

Secades, 2024; Sala et al., 2022).

The Northwest Pacific Ocean (NWPO) is one of the world’s

most productive fishing grounds, where the Oyashio cold current

from the north meets the Kuroshio warm current from the south.

This convergence brings an abundance of zooplankton, creating

vital spawning and feeding ground for many small pelagic fish

(Yang et al., 2023a; Liang et al., 2024). Due to its significant

economic value, the NWPO has attracted considerable attention

from neighboring countries. Major fishing nations in this region

include China, Japan, Russia, and South Korea, with key

commercial catches being Chub mackerel (Scomber japonicus),

Neon flying squid (Ommastrephes bartramii), Pacific saury

(Cololabis saira), and Japanese sardine (Sardinops melanostictus)

(Han et al., 2023b; Shi et al., 2022; Yang et al., 2023b). The Japanese

sardine, a warm-temperate, short-lived (typically 6-7 years old)

species with high aggregation and abundant resources, ranks among

the most heavily caught pelagic species globally (Yang, 2023).

Ecologically, it plays a crucial role in the NWPO by controlling

zooplankton populations and supporting higher trophic levels (Ma

et al., 2023). However, the stock biomass of the Japanese sardine has

fluctuated significantly over time due to environmental changes and

fishing pressures. After peaking in the 1980s and sharply declining

in the 1990s, the biomass began to recover slowly after 2010, though

it has not yet reached its previous peak (Watanabe et al., 2023; Yang
02
et al., 2023a). Given its increasing ecological and economic

importance, the Japanese sardine has been listed as a priority fish

by the North Pacific Fisheries Commission (NPFC). The

management and utilization of this resource have garnered

widespread attention (Shi et al., 2023b), particularly as its annual

catch in the NWPO surpassed that of the Chub mackerel in 2020

(Secretariat, 2024). While small-scale pelagic fisheries are often

considered to have lower environmental impacts, and purse seine is

regarded as one of the most energy-efficient fishing methods

(Sandison et al., 2021), the recent increase in Japanese sardine

catches on the high seas has not been matched by the development

of accurate and reliable fishing ground prediction techniques.

Without these tools, indiscriminate exploration of fishing grounds

will raise production costs and carbon emissions, hindering

progress toward carbon neutrality and sustainable fisheries

development, while also contributing to other environmental

impacts (Yang et al., 2023a; Sandison et al., 2021).

Fishing ground prediction is a crucial area of fishery research,

leveraging historical fishing data, marine environmental variables,

geographic locations, and time-related factors to forecast the status

offishery resources in specific areas and periods (Chen, 2022; Gong,

2021). Accurate predictions are vital for ensuring food security,

optimizing protein supply, enhancing fuel efficiency, and reducing

production costs, particularly in developing countries (Armas et al.,

2022; Lamine et al., 2022; Yang et al., 2023b; Kakehi et al., 2020).

Recently, the growing volume of fishery data has led to a shift from

traditional models, such as generalized additive models, to machine

learning approaches for fishing ground forecasts (Alfatinah et al.,

2023; Han et al., 2023a; Qin et al., 2022; Shang et al., 2023; Yoshida

et al., 2024). While machine learning models offer improved

predictive performance, they have been criticized for their lack of

interpretability, often being described as “black box” models (Li

et al., 2023; Politikos et al., 2021; Yang et al., 2021). Given the

importance of effective fishing practices for both economic and

environmental goals, relying solely on these opaque models is

problematic. Therefore, enhancing the transparency and

understanding of these models’ decision-making processes is

essential for increasing their credibility and usefulness.

In 2017, Lundberg and Lee introduced a Python package that

computes SHAP values for various techniques, including Light

Gradient Boosting Machine (LightGBM), Categorical Boosting
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Algorithm (CatBoost), Extreme Gradient Boosting (XGBoost), and

Scikit-learn models. This package provides a robust metric for

assessing the importance of variables within a model (Parsa et al.,

2020). SHAP, which stands for SHapley Additive exPlanations, uses

the Shapley value from game theory to combine optimal credit

allocation with local interpretability (Wen et al., 2021). It has been

effectively applied across several fields, including fishing effort

prediction (Kawaguchi, 2024), aquaculture (Khan and Byun,

2023; Khiem et al., 2023), species distribution (Cha et al., 2021;

Effrosynidis et al., 2020), river ecological quality prediction

(Politikos et al., 2024), transportation safety (Parsa et al., 2020;

Yang et al., 2021), and medicine (Datta et al., 2023). SHAP has

successfully clarified the internal logic of prediction models in these

areas, enhancing their credibility and transparency. Despite the

widespread application of SHAP in various domains, it has not yet

been used to elucidate the spatiotemporal and environmental

variables that are critical to predicting Japanese sardine fisheries.

There is no prior research combining SHAP with forecasting

models for Japanese sardine fishing grounds. This study addresses

this gap by using three prominent tree-based models known for

their integration with SHAP: XGBoost, LightGBM, and CatBoost

(Cakiroglu et al., 2024; Parsa et al., 2020; Politikos et al., 2021; Shi

et al., 2024; Wang and Jiang, 2023; Wen et al., 2021; Xiao et al.,

2023; Yang et al., 2021). These models are among the most popular

gradient boosting libraries available today (So, 2024).

Due to the importance of fisheries management to the climate

and fisheries economy, fisheries management should aim to

minimize fuel use (Bastardie et al., 2022). To better understand

the patterns of Japanese sardine catch changes in the Northwest

Pacific Ocean (NWPO) and to develop a highly accurate forecast

model for high-abundance fishing grounds with explanatory power,

this study aims to: (1) Analyze the spatio-temporal patterns of

Japanese sardine catch in the NWPO from 2014 to 2021. (2)

Compare and validate the forecasting performance of LightGBM,

CatBoost, and XGBoost models to identify the most effective high-

abundance fishing grounds forecast model. (3) Integrate the SHAP

algorithm with the selected forecasting model to quantify the

specific contributions of each spatio-temporal and environmental

variable, and to interpret the machine learning model results both

globally and locally, enhancing the model’s credibility and

transparency. The findings will provide technical support for

efficient production and scientific management of the Pacific

sardine fishery in the NWPO.
2 Materials and methods

2.1 Preparation and description of
fisheries datasets

The data for this study on the Japanese sardine fishery were

obtained from the fishing logbooks of Chinese commercial lighting

purse seine vessels, covering the period from April to December,

2014-2021. The research focused on the high seas of the Northwest

Pacific Ocean (NWPO), within the coordinates 30°-45°N and 144°-

166°E, as illustrated in Figure 1. Figure 2 shows the annual fishing
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effort during these years. The dataset consists of 3, 346 records of

fishing vessel operations, with a temporal resolution by month and

a spatial resolution of 0.25° × 0.25°. Each record includes the date,

time, and geographic coordinates of the start and end of operations,

the number of nets used, as well as the species composition and

quantity of the catch.
2.2 Definition of low abundance and high
abundance fishing grounds

High-seas fisheries often face limitations due to the high

economic costs of fishery resource surveys, making it challenging

to cover entire fishing seasons and areas comprehensively. As a

result, catch, effort, and catch per unit effort (CPUE) are commonly

used as indices of resource abundance in fishery production (Xie

et al., 2023). When captains search for fishing grounds before

production, they rely on marine environmental maps (e.g., sea

surface temperature) and scientific echo sounders to exclude a

significant number of non-productive areas (Han et al., 2023b).

Consequently, this study focuses on analyzing the spatio-temporal

distribution of low- and high-abundance fishing grounds, using the

highest recorded catches as the primary criterion for distinguishing

between them.

The classification method used in this study takes into account

the significant fluctuations in annual Japanese sardine resources

(Han et al., 2023b) and the changes in fishing strategies: (i) the

increased fishing activity due to the decline in chub mackerel

resources (Cai et al., 2023; Hong and Kim, 2021), and (ii) the

notable variations in fishing effort (Figure 2). For each year

analyzed, the study conducted a binary classification, defining

fishing grounds with annual abundance equal to or greater than

the median (with a temporal resolution of months and spatial

resolution of 0.25° × 0.25°) as high-abundance fishing grounds,

while the remaining areas were classified as low-abundance

fishing grounds.
2.3 Selection and overview of
predictor variables

Temporal, spatial, and environmental factors are key predictor

variables for developing fishing grounds forecasting models (Gong

et al., 2021; Luan et al., 2020; Shang et al., 2023). Considering the

highly dynamic variation in the catch of the Japanese sardine at

different temporal and spatial scales (Cui et al., 2022; Yang et al.,

2023a), we selected year, month, longitude, and latitude as the

spatio-temporal predictor variables for our analysis.

The Japanese sardine is highly sensitive to changes in the

marine environment, making it crucial to quantify and assess the

environmental factors that influence its distribution for effective

management and sustainable exploitation of its fisheries (Bai et al.,

2022). Previous studies have demonstrated that sea surface

temperature (SST), sea surface salinity (SSS), chlorophyll a (Chla),

sea surface height (SSH), current velocity (CV), dissolved oxygen

(DO), and mixed layer depth (MLD) significantly impact the
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abundance and spatial-temporal distribution of Japanese sardine

resources (Liu et al., 2023a; b; Okunishi et al., 2009; Sarr et al., 2021;

Shi et al., 2023a; Sogawa et al., 2019). Although SST, SSS, Chla, and

SSH are the primary environmental variables typically used in

studies on Japanese sardine, CV, DO, and MLD have received

less attention. However, the distribution of fishing grounds is

notably influenced by CV, with Japanese sardines more likely to

aggregate in water layers with high DO and fast flow rates, and the

MLD plays a key role in affecting bait availability (Gong et al., 2021;

Zhao et al. , 2022; Sogawa et al. , 2019). Therefore, to

comprehensively understand the environmental drivers of spatial

and temporal variability in Japanese sardine fishing grounds, this

study incorporates SST, SSS, Chla, sea level anomaly (SLA), CV,

DO, and MLD in construc t ing the fi sh ing grounds

prediction model.

The marine environmental data used in this study were

obtained from the Copernicus Marine Service (https://

resources.marine.copernicus.eu/products). These data were

aligned in temporal and spatial resolution with the fisheries data.

The dataset includes variables such as SST (°C), Chla (mg/m³), SLA

(m), SSS (‰), DO (mmol/m³), surface geostrophic northward sea

water velocity (Vgos, m/s), surface geostrophic eastward sea water

velocity (Ugos, m/s), and MLD (m).

Among them, Vgos and Ugos were used to calculate the

environmentally derived variable CV with the following formula

(Han et al., 2023a):
Frontiers in Marine Science 04
CV =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Vgos)2 + (Ugos)2

q
(1)

The average monthly range values for each environmental

variable matched to fishery data in this study were as follows: SST

(1.62~27.46°C), Chla (0~2.99 mg/m3), MLD (10.77~116.05m), DO

(206.21~331.80 mmol/m3), SSS (32.34~34.86‰) , SLA

(-0.28~1.04m), CV (0.002~0.945 m/s).
2.4 Model overview and
hyperparameter optimization

2.4.1 Overview of three tree modeling algorithms
In 2016, Chen and Guestrin introduced the XGBoost model, an

enhancement of the gradient boosting tree algorithm (Chen and

Guestrin, 2016). This model increases the accuracy of residual

estimation by employing a second-order Taylor expansion of the

objective function and incorporating a regularization term to

prevent overfitting. These improvements make the algorithm both

precise and computationally efficient (Deng et al., 2024; Xu et al.,

2024). XGBoost reduces prediction error by iteratively generating

new regression trees, which progressively narrow the gap between

actual and predicted values, thereby enhancing model accuracy (Li

et al., 2023). The fundamental approach involves assembling

multiple weak prediction models to create a more accurate overall

model, a technique that has been widely adopted in fishery
FIGURE 1

Spawning and feeding grounds of the Japanese sardine in the NWPO (A) (Bai et al., 2022) and the distribution of Japanese sardine fisheries in the
study area (B).
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abundance prediction research (Effrosynidis et al., 2020; Liu et al.,

2023a; Xu et al., 2024; Zhang et al., 2023a).

LightGBM and CatBoost are advanced variants of gradient

boosting algorithms that have become increasingly popular in

recent years, particularly in the field of fisheries research, where

they are used to construct models for forecasting fishing grounds

(Gong, 2021; Xu et al., 2024). The LightGBM model, introduced by

Microsoft in 2017, utilizes gradient-based one-side sampling

(GOSS), parallel learning, and exclusive feature bundling (EFB)

within an integrated learning framework. This approach effectively

manages large-scale data and high-dimensional variables by

combining multiple weak learners into a single strong predictor

(Cakiroglu et al., 2024; Wang and Jiang, 2023; Wen et al., 2021).

While LightGBM offers significant improvements in computational

speed and prediction accuracy, its complex internal structure poses

challenges for interpretability. Although it can assess variable

importance through the frequency of variable splits or gains from

splits, its local interpretability remains limited, making it difficult

for researchers to fully understand how specific variables influence

prediction outcomes (Wang and Jiang, 2023). CatBoost, developed

by Yandex in 2018, is another machine learning algorithm based on

the boosting strategy. It integrates weak learners by minimizing the

loss function to create an optimal model (Xiao et al., 2023).

CatBoost is recognized for its strong performance, particularly in

handling categorical variables and missing data, and features a

simplified parameter set (Joo et al., 2023). It addresses overfitting

through ordered boosting and target encoding while resolving

issues of gradient and prediction bias, thereby enhancing both

accuracy and generalization capabilities (Cakiroglu et al., 2024;

Lin et al., 2023; Shi et al., 2024; Xiao et al., 2023).
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2.4.2 Hyperparameter optimization
The effectiveness of classification using models like LightGBM,

XGBoost, and CatBoost can be significantly influenced by the

choice of hyperparameters (Shakeel et al., 2023; Altaf and Kaul,

2024; Joo et al., 2023). Proper hyperparameter tuning enhances

model robustness, reduces complexity, and prevents overfitting.

However, the vast number of possible hyperparameter

combinations makes manual selection both time-consuming and

inefficient, often failing to guarantee optimal results. To address

this, we utilized the GridSearchCV function from Scikit-learn in this

study to optimize and evaluate the tree model parameters, aiming to

prevent overfitting and improve predictive accuracy (Mishra et al.,

2024; Sun et al., 2024).

GridSearchCV is a widely used hyperparameter search method

that systematically determines the optimal hyperparameter values

by exploring various combinations and comparing the resulting

error values, akin to a manual trial-and-error process (Hidayat

et al., 2024). The technique combines grid search for parameter

combinations with cross-validation (CV) to reduce the likelihood of

random error. In this study, we used 5-fold cross-validation, with

the specific hyperparameters for each model detailed in Table 1.
2.5 Model visualization - SHAP
interpretive approach

SHAP (Shapley Additive exPlanations), introduced by

Lundberg and Lee (2017), is a method for interpreting machine

learning models using principles from game theory. In SHAP, each

explanatory variable is assigned a value, known as the Shapley value,
FIGURE 2

Number of lighting purse seine vessels in the NWPO from 2014 to 2021.
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that reflects its contribution to the model’s output in terms of both

magnitude and direction (positive or negative). This approach

balances accuracy with interpretability, offering clear and

meaningful explanations for the decisions made by machine

learning models. The core concept of SHAP involves breaking

down the importance of each variable into a weighted sum of

Shapley values, which represent the contribution of different

variable values. By approximating complex machine learning

models with multiple linear models, SHAP calculates the

contribution of each variable during the prediction process. The

calculation of Shapley values follows the equation provided by

Khiem et al. (2023) and Li et al. (2023).

∅i = o
S⊆N(i)

Sj j ! (M − Sj j !−1)
M !

½fx(S ∪ if g) − fx(S)� (2)

∅i denotes the contribution of the ith variable; N denotes the

set of all variables; S denotes the subset of the given predicted

variables; and fx(S ∪ if g) and fx(S) stand for the model results that

include or exclude the ith variable, respectively. SHAP

approximates the complex model by the superposition of multiple

linear models, and is defined for the output model withM variables,

g(z0) as a linear sum of input variables (Cha et al., 2021; Li et al.,

2023; Zhang et al., 2023b):

g(z0) = f0 +oM
i=1fiz

0
i (3)

where g(z0) is the value of the model, f0 is a constant that

explains the model (i.e., the predicted mean of all training samples),
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and fi is the interpolated value of each variable (Shapley value); z
0
i

denotes that it is equal to 1 when the ith variable is selected, and it is

equal to 0 otherwise.

The SHAP interpretation method is locally accurate, handles

missing data, and maintains consistency, making it effective for

interpreting machine learning model outputs through both global

and local analyses. It precisely quantifies the extent and direction in

which each sample’s metrics influence the model’s predictions

(Jovanovic et al., 2023; Kim and Kim, 2022). SHAP offers various

visualization tools, including variable importance plots, individual

force plots, SHAP summary plots, and SHAP heatmaps (Politikos

et al., 2021).
2.6 Model construction and predictive
performance evaluation

Variable selection is an important step in machine learning, as it

helps to reduce training time, simplify the model, and enhance

prediction performance (Hu et al., 2021a). When variables have a

high correlation, close to 1 or -1, it indicates redundancy, making

some variables less useful for model training (Caponi et al., 2023; Li

and Misra, 2021). In this study, the Pearson correlation coefficients

for all fitted variables were below 0.9, so all variables were

retained (Figure 3).

To quantitatively assess the model’s performance, the data in

this study were randomly split into a training dataset (70%) for

model development and a test dataset (30%) for performance
TABLE 1 Hyperparameter settings for XGBoost, LightGBM and CatBoost models.

Models Hyperparameter Range of values for hyperparameters

XGBoost

n_estimators: the number of trees 100, 150, 200, 250, 300, 350, 400, 450, 500

learning_rate: learning rate 0.01, 0.05, 0.1

max_depth: Maximum depth of tree 4, 6, 8, 10

Subsample: subsample ratio of the training instance 0.6, 0.8, 1.0

colsample_bytree: subsample ratio of columns when
constructing each tree

0.6, 0.8, 1.0

LightGBM

n_estimators 100, 150, 200, 250, 300, 350, 400, 450, 500

learning_rate 0.01, 0.05, 0.1

max_depth 4, 6, 8,10

num_leaves: Number of leaf nodes in the base
decision tree

20, 30, 40

subsample 0.6, 0.8, 1.0

colsample_bytree 0.6, 0.8, 1.0

CatBoost

Iterations: Maximum number of iterations 100, 150, 200, 250, 300, 350, 400, 450, 500

learning_rate 0.01, 0.05, 0.1

Depth: depth of tree 4, 6, 8, 10
frontiersin.org

https://doi.org/10.3389/fmars.2024.1503292
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Shi et al. 10.3389/fmars.2024.1503292
evaluation. The confusion matrix is a key metric for accurately

assessing the model’s classification efficiency and can be used for

monitoring (Krishnamoorthy and Lakshmanan, 2024). In this

study, true positive (TP), false positive (FP), true negative (TN),

and false negative (FN) values were utilized to calculate accuracy,

precision, recall, and F1-score. The formulas for these metrics are

provided below (Chen et al., 2023).

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1 − score =
2� recall � precision
recall + precision

(7)

Where TP refers to cases where the actual value is positive, and

the prediction is also positive. TN indicates that both the actual and

predicted values are negative. FP occurs when the actual value is

negative, but the prediction is positive. FN arises when the actual

value is positive, but the prediction is incorrect and negative.

Given the inherent trade-off between precision and recall, the

F1-score is often used to balance these two metrics (Abdalla

et al., 2023; Chen et al., 2023; Krishnamoorthy and Lakshmanan,

2024). Therefore, this study utilizes accuracy and F1-score as the

p r imary ev a l ua t i on me t r i c s t o a s s e s s th e mode l ’ s

predictive performance.
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3 Results

3.1 Variation in catch of Japanese sardine
at different spatial and temporal scales

In terms of inter-annual variation (Figure 4A), the annual catch

of Japanese sardine in the NWPO from 2014 to 2021 showed an

overall increasing trend, and reached a peak of 220,009 tons in 2021.

Regarding inter-monthly variation (Figure 4B), the total monthly

catch from April to December showed a “peak” distribution trend,

with the catch increasing and then decreasing, reaching a maximum

of 76,033 tons in July.

The distribution of catches by latitude and longitude showed

that the total catches from 2014 to 2021 were concentrated in the

39.5°N -43°N and 146.75°E -155.75°E regions (Figure 5).
3.2 Comparison results of the prediction
performance of the three models

More accurate models can typically predict high and low

abundance fishing grounds better, and in this article, XGBoost,

LightGBM and Catboost models were constructed for comparative

analysis. As shown in Figure 6, the Catboost model outperformed the

LightGBM and XGBoost models in terms of prediction, achieving the

highest values of Accuracy and F1-score at 73.8% and 75.31%,

respectively. What’s more, LightGBM model (Accuracy=73.21%, F1-

score=74.01%) outperformed XGBoost model (Accuracy=72.31%, F1-

score=73.17%) in terms of prediction performance.
FIGURE 3

Pearson correlation coefficient test plot between different variables.
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3.3 Optimal model interpretation and
visualization - SHAP and built-in
interpretation methods

In this study, we employed two methods to assess the

importance of each variable: the model’s built-in (split) method

and the SHAP summary plot method. The importance rankings

derived from these methods are presented in Figure 7. The overall

rankings of variable importance differed significantly between the

two methods (Figure 7). According to the built-in method, the

variables were ranked in the following order: CV, SLA, SST, year,

SSS, MLD, longitude, DO, latitude, Chla, and month. In contrast,

the SHAP method ranked the variables as follows: longitude, SSS,

latitude, SLA, SST, CV, year, MLD, DO, Chla, and month.

Compared to the built-in method, the SHAP method assigned

greater importance to spatial variables, while temporal (year) and

environmental variables were ranked lower. However, when

examining the rankings from the perspectives of temporal, spatial,

and environment separately, the differences between the two
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methods were only apparent in the environmental variables.

Compared to the built-in method, the SHAP method assigned

greater importance to spatial variables, while temporal (year) and

environmental variables were ranked lower.

In contrast to the model’s built-in importance approach, the

SHAP method offers a more detailed visualization of model

decisions, providing both global and local interpretability.

Figure 8 highlights global interpretability, where variables like

longitude, SSS, latitude, SLA, and SST emerge as the most

influential. In Figure 8, red sample points indicate higher SHAP

values for a given indicator, while blue points signify lower SHAP

values. Indicators with a positive contribution appear as blue on the

left, purple in the middle, and red on the right. Conversely, those

with a negative contribution are shown as red on the left, purple in

the middle, and blue on the right. Among the five most important

variables, longitude, SSS, and SLA have significant negative

contributions, while latitude and SST contribute positively. This

indicates that higher values of longitude, SSS, and SLA negatively

impact the prediction of central fishing grounds, whereas lower
FIGURE 5

Changes in the distribution of total catch of Japanese sardine by longitude and latitude from 2014 to 2021.
FIGURE 4

Changes in total inter-annual (A) and (B) inter-monthly catch of the Japanese sardine from 2014 to 2021.
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values of latitude and SST also play a negative role. While Figure 8

provides an overall view of each variable’s contribution to the

prediction, a more comprehensive understanding of how variables

influence each sample is needed. To achieve this, we used the SHAP

heatmap plot (Figure 9), which offers a composite view of all test

samples, illustrating the extent to which each variable is utilized in

the model’s prediction process.

Figure 10 presents two random examples of localized

explanations generated by the SHAP force plot, which highlight

the specific contributions and relationships influencing the model’s
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outputs. In these figures, red areas indicate variables that positively

contributed to predicting the Japanese sardine center fishing

grounds, while blue areas show variables that had a negative

impact. In Figure 10A, most variables fall within the red area,

indicating a positive contribution to the prediction. The model’s

output, f(x), was 1.16, higher than the base value, with the largest

positive contributions coming from latitude (latitude = 40.25) and

SSS (SSS = 33.68‰). The largest negative contribution was from

longitude (longitude = 149.25). In contrast, Figure 10B shows a

different pattern, where most variables are in the blue region. The
FIGURE 7

Plot of differences in ranking the importance of different variables based on the model built-in and the SHAP approach.
FIGURE 6

Comparison chart of four evaluation indicators for three models (%).
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most significant negative contributions were from DO (DO =

255.09 mmol/m³) and SST (SST = 14.23°C), while the largest

positive contributions came from SLA (SLA = 0.04m) and

longitude (longitude = 149.5).
4 Discussion

4.1 Analysis of the change in annual catch
of the Japanese sardine from 2014 to 2021

The annual catch of the Japanese sardine showed an increasing

trend from 2014 to 2021, with only a slight decrease in 2019. In

particular, the most pronounced rise was in 2020 and 2021, with
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increases of 192.58% (2020) and 202.39% (2021), respectively

(Figure 4). This was mainly due to the fact that: (1) the resources

of the Japanese sardine have been in a recovery phase in recent years

(Han et al., 2023b; Yang et al., 2023a). It is worth noting, however,

that although the Japanese sardine stock has recovered, it has not

yet recovered to its peak (1980) (Watanabe et al., 2023; Yang et al.,

2023b). Ma et al. (2023) pointed out that high fishing pressure

during periods of low abundance can severely limit the recovery of

the Japanese sardine stock, and thus scientifically sound fishing

strategies must be developed. (2) Compared to 2014, fishing effort

has risen significantly in recent years. In contrast, the decline in

catch in 2019 was mainly influenced by the decline in fishing effort

(Figure 2). (3) In recent years, affected by the decline of Chub

mackerel resources and catch (Cai et al., 2023; Han et al., 2023b;
FIGURE 9

SHAP Heatmaps from the CatBoost model are used to predict the high abundance of fishing grounds for Japanese Sardines. [(B) groups samples
with similar explanations based on (A)].
FIGURE 8

SHAP summary plot for predicting the Japanese sardine high abundance fishing grounds in the CatBoost model.
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Hong and Kim, 2021), the Japanese sardine has gradually risen in

status and is becoming one of the major species fished by the

lighting purse seine vessels (Liu et al., 2023b). This further

highlights the significance of research on Japanese sardine fishing

ground forecasting.

The monthly catch of the Japanese sardine in 2014-2021 was

mainly concentrated in July-August, which is mainly due to: (1) The

substantial clustering of Japanese sardines during July and August

reduces the time required for fishing vessels to locate the fish, thereby

enhancing fishing efficiency. (2) The variation in catch from

September to November, besides being influenced by the number

offishing days, may be attributed to differences in the operational sea

areas each month, the less pronounced clustering of Japanese

sardines, and variations in resource abundance. 3) Japanese

sardines exhibit slower growth in the spring compared to the fall,

with the fish reaching their peak plumpness in the fall. In addition, on

the one hand, the fishing days in summer and fall was longer than

that in spring. On the other hand, the primary spawning period for

the Pacific Group Japanese sardine spans from mid-March to early

June, during which new cohorts continuously join the population,

leading to a higher replenishment of Japanese sardine resources in the

summer and fall compared to the spring (Cui et al., 2022).
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Based on the information from the light falling net survey

conducted in the NWPO from August 23 to September 26, 2018,

Cui et al. (2022) pointed out that the Japanese sardine was mainly

distributed in the 43°N region during the fall of 2018, which was in

agreement with the results of this study. Based on the 2019-2020

North Pacific lighting purse seine net fishery data, Yang et al.

(2023b) identified that the operational fishing grounds of Japanese

sardine were mainly concentrated in 149°-153°E, 40°N-42°N. These

findings, derived from a short-term dataset, align with the results of

the current study, which also suggests that the high-abundance

areas in the NWPO exhibit greater stability.
4.2 Predictive performance analysis of
three models on the Japanese
sardine dataset

Given the vastness of the ocean and the uneven distribution of

fish populations, the location offishing grounds plays a crucial role in

fishery activities (Wang et al., 2023). Since there is no universally

optimal model for all datasets (Han et al., 2023a), fishery researchers

often compare the prediction accuracy and performance of different
FIGURE 10

SHAP force plots from the CatBoost model predicting high-abundance fishing grounds for Japanese sardines. The plots display two random samples:
(A) a positive sample and (B) a negative sample. The model output, shown as a probability, represents the average prediction across the training set. The
bold black value, f(x), indicates the model’s prediction for each specific instance, considering the combined influence of key variables.
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models on specific datasets to identify the optimal forecasting model

in order to ensure the accuracy and reliability of fishery production

guidance and management (Abdul Azeez et al., 2021; Han et al.,

2023a). The XGBoost, LightGBM, and Catboost models have

demonstrated robust predictive performance for a variety of

complex models that show strong prediction performance for high-

dimensional data, with high accuracy and fast learning speed, and can

be better adapted to various classification tasks (Ahn et al., 2023).

However, existing studies indicate that the performance of these three

models may vary depending on the specific dataset and problem

(Cakiroglu et al., 2024; Ge et al., 2024; Harumy et al., 2024; Jaiswal

and Gupta, 2022; Saber et al., 2022; Wang et al., 2024; Xu et al., 2024),

and no model has shown overwhelming advantages across

all datasets.

The above situation also exists in fishery research, unlike in this

study, where the CatBoost model was the optimal prediction model

for constructing the Japanese sardine high abundance fishing

grounds. Xu et al. (2024) predicted the spatial and temporal

distribution of yellowfin tuna (Thunnus obesus) abundance based

on Random Forest (RF), XGBoost, LightGBM, and Catboost

models. They found that: (1) LightGBM and Catboost models

exhibited higher accuracy and shorter fitting time than XGBoost

and RF. (2) LightGBM model achieved the optimal prediction

performance, and its results were closer to the observed CPUEs.

Consequently, it is essential to select the most appropriate machine

learning model based on the specific fish species.

In previous studies, the prediction accuracy of high abundance

fishing grounds for small pelagic fishes in the NWPO were around

70-80% accuracy (Han et al., 2023b; Yoshida et al., 2024). The

performance of the optimal CatBoost model in the present study

aligns with these findings, indicating that the fishing grounds

prediction model developed here can effectively meet the

production needs for Japanese sardines. However, it is worth

noting that although the CatBoost model can avoid overfitting by

adding an algorithm to compute leaf nodes when choosing the tree

structure (Luo et al., 2021) and can take less training time and

produce higher accuracy (Zahid et al., 2024), it is more sensitive to

hyperparameters (Hancock and Khoshgoftaar, 2020; Lin et al.,

2023). Therefore, careful tuning of hyperparameters and the

selection of optimal hyperparameter search algorithms are crucial

when constructing the model.
4.3 Visual comparative analysis of two
methods for ranking the importance
of variables

With the increasing availability of environmental data and the

trend towards big data, identifying valid environmental data is

becoming increasingly important. Xu et al. (2024) used the

Recursive Feature Elimination with Cross-Validation (RFECV)

method for feature visualization. Although a tree model based on

the optimal explanatory variables selected by the RFECV method

effectively predicted the spatial and temporal distribution of

yellowfin tuna and identified the most influential variables, it did
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not adequately visualize how the model made decisions both

globally and locally. It is noteworthy that although the method by

Xu et al. (2024) visualized the contribution of each predictor

variable to the study, similar to the built-in model method in this

study, it only provided bar charts indicating the importance of

global variables. This approach does not sufficiently explain how

different variables affect the prediction success rate or visualize their

impacts. However, the SHAP approach can provide insights into

the magnitude and direction of each variable’s influence at both the

global and local levels, thereby enhancing and broadening the

understanding of the model’s decision-making behavior (Cha

et al., 2021; Hu et al., 2021b).

In this study, there was a significant difference in the overall

importance ranking between the model built-in method and the

SHAP method, which is mainly due to the fact that, unlike the

model built-in splitting method, the SHAP algorithm considers

the predicted value of the model as a result of the cooperation of the

input features. Thus the contribution of each feature to the

prediction result can be obtained based on the SHAP value of

each feature in each sample (Deng et al., 2024). Although the overall

importance rankings of the two methods differed significantly, there

were notable similarities when considering temporal, spatial, and

environmental perspectives. The differences in importance between

the built-in and SHAP methods were primarily in the ranking of

environmental variables. It is noteworthy that the four most

important environmental variables identified by both methods

were SSS, SLA, SST, and CV.

Xu et al. (2020), using the 2016-2017 North Pacific high seas

lighting purse seine fishery data and Generalized Additive Models

(GAM), discovered that latitude and SST had a highly significant

effect on the distribution of Japanese sardine. In contrast, longitude

and Chla did not have significant effects. Yang et al. (2023b) found

that SST and Chla were more important than SSH for the CPUE of

the Japanese sardine, and latitude had a more significant effect on

the distribution of the central fishing grounds than longitude.

Similarly, Cui et al. (2022) concluded that the fishery dynamics of

Japanese sardine were mainly affected by SST, and Chla was not the

most important cause of fishing grounds formation. In constructing

a potential habitat model, Shi et al. (2023b) identified SSH and SST

as more influential than Chla and SSS, deeming them important

environmental variables affecting the distribution of Japanese

sardine habitats. Liu et al. (2023b) analyzed the habitat changes of

Japanese sardines using 2017-2021 NWPO fishery data, integrating

variables such as SST, SSS, SSH, Chla, EKE, and various water layer

temperatures. They found that key factors influencing suitable

habitat changes in June and August-October were SSH, SST, and

Chla. Specifically, the key variables were SSH, EKE, and SST in May;

SSH, SST, and Chla in July; and EKE, SST, and Chla in November.

Compared to previous studies, this article provided a more

comprehensive analysis of variables such as MLD and DO, and

the results were similar to previous results with high confidence in

the outcomes. Since this study employed categorical prediction, the

results differ slightly from prior regression studies, but the overall

similarity is high, and the findings are credible. Meanwhile,

comparing the previous studies reveals that the importance
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ranking built into the model was more similar to the previous

results, and SHAP provided a fresh perspective.

In this study, Figures 8–10 provided a clearer visualization of how

the model makes decisions. Specifically, (1) The spatio-temporal

variables enable us to better understand Figures 4, 5. Spatially, larger

longitude values and smaller latitude values negatively affect the

prediction of high abundance fishing grounds. Temporally, the

month variable was more pronounced compared to the year variable,

which is mainly due to the fact that the production of the Japanese

sardine is mainly concentrated after July (Cui et al., 2022; Yang et al.,

2023b), so the early months can have a negative impact. (2) Identifying

which environmental variables drive species occurrence and

distribution is crucial for ecological studies (Cha et al., 2021). In

terms of SST, CV, SSS and SLA, which were the most important

variables in this study. Japanese sardine is warm-temperate fish, and

previous studies have suggested that its optimum water temperature

ranges from 11 to 19.3 °C, SSH from 0.2 to 0.7 m, current flow rate

from 0.3 to 1.2 m/s (where the flow rate is fast) and SSS from 26 to 40

(Cui et al., 2022; Liu et al., 2023c; Xu et al., 2020; Yang et al., 2023b).

When viewed in conjunction with the range of environmental variables

in this study, it further highlights the plausibility of the SHAP

visualization results, such as the fact that lower values of both SST

and CV adversely affect the high abundance fishing grounds prediction.

It is worth noting that although this study better visualizes the

degree of contribution of each predictor variable of the model to the

study object, and improves and broadens the understanding of

the decision-making behavior of the model, only small-scale

environmental variables are considered in this study. The study of

large-scale marine environmental variables such as El Niño and La

Niña (Liu et al., 2023b) should be strengthened at a later stage.
4.4 Management recommendations for the
Japanese sardine fishery in the NWPO

To effectively manage the Japanese sardine fishery in China, it is

essential to consider resource recovery, fishing intensity,

environmental changes, and socio-economic factors, ensuring the

sustainable development of the fishery and the stability of

the ecosystem. The following are specific management

recommendations: Firstly, the regional and seasonal management

of fishing activities should be strengthened. Given the spatio-

temporal distribution characteristics of Japanese sardine

resources, it is necessary to further refine fishing ground

management by designating key habitats and protecting areas

with high Japanese sardine abundance. Particularly during the

resource recovery and spawning periods, fishing activities in these

areas should be restricted. Moreover, based on the dynamic changes

in fishing grounds, seasonal fishing plans should be formulated to

avoid excessive fishing during periods when resources are

vulnerable. Secondly, the management authorities should promote

the use of environmentally friendly fishing gear and techniques to

minimize the negative impact on the marine ecosystem. For

instance, selective fishing gear should be encouraged to reduce

bycatch rates of non-target species. Additionally, fishing vessels

should be guided to optimize operation times and methods to
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reduce fuel consumption and carbon emissions, thereby mitigating

the environmental pressure caused by fishing activities. Thirdly,

data collection and analysis of fishing activities should be enhanced

to improve data-driven management capabilities. By incorporating

modern monitoring technologies and predictive models, the

changes in Japanese sardine resources can be tracked in real time.

Big data analytics should be employed to optimize fishing ground

forecasts and fishing plans, thus increasing production efficiency.

Furthermore, a comprehensive data-sharing platform should be

established to facilitate information exchange between research

institutions, government agencies, and fishers, ensuring the

scientific basis and transparency of decision-making. In addition,

international cooperation and exchange should be strengthened.

The NWPO is a region with shared fishery resources among

multiple countries. Establishing communication mechanisms with

neighboring countries and jointly implementing consistent

management measures can prevent adverse impacts on Japanese

sardine resources due to transboundary fishing activities. Moreover,

active participation in relevant international organizations and

cooperative projects can allow China to learn from the successful

experiences and technologies of other countries, thereby enhancing

its international influence in Japanese sardine resource

management. Finally, managers should pay attention to the long-

term impacts of climate change on Japanese sardine resources,

particularly large-scale marine environmental variables such as El

Niño and La Niña phenomena. Through long-term monitoring and

scientific research, the effects of these environmental factors on the

distribution and abundance of Japanese sardine should be assessed,

and management strategies should be adjusted accordingly. This

will ensure that fishing activities are aligned with environmental

changes, providing a scientific foundation for the sustainable

management of Japanese sardine.
5 Conclusion

Our study comprehensively visualized the spatial and temporal

changes in the catch of the Japanese sardine in the NWPO from

2014-2021: (1) the annual catch showed an overall increasing trend,

peaking at 220,009.063 tons in 2021; (2) the total monthly catch

increased and then declined, mainly concentrated in July-November,

peaking at 76, 033.4944 tons (in July); and (3) the catch was mainly

concentrated in the areas of 39.5°-43°N and 146.75°-155.75°E.With high

accuracy and fewer ground parameters, Catboost was better adapted to

the task of the Japanese sardine high abundance fishing grounds

prediction than the XGBoost and LightGBM models. However, it is

worth noting that although it has fewer parameters, it is more sensitive to

hyperparameters. Hence, we need to carefully set the hyperparameters

and choose the optimal hyperparameter search algorithm when

constructing the model. Instead of traditional model-built importance

visualization methods, the SHAP visualization tool provides a better

global and local visualization of how the model makes decisions,

informing the magnitude and direction of each variable’s influence at

the global and local levels, improving and broadening the understanding

of themodel’s decision-making behavior. However, only spatio-temporal

small-scale environmental variables were considered in this study, and
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the study of large-scale marine environmental variables such as El Niño

and La Niña should be strengthened at a later stage. Meanwhile, future

research could enhance the integration of the SHAP method with

machine learning models with a view to improving the interpretability

of predictive models for high abundance fishing grounds.
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