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In dense anchorage areas, the challenge of navigation for Unmanned Surface

Vehicles is particularly pronounced, especially regarding path safety and

economy. A Risk-Aware Path Optimization Algorithm is proposed to enhance

the safety and efficiency of Unmanned Surface Vehicle navigating in anchorage

areas. The algorithm incorporates risk assessment based on the A* algorithm to

generate an optimized path and employs a Dual-Phase Smoothing Strategy to

ensure path smoothness. First, the anchorage area is spatially separated using a

Voronoi polygon, the Risk-Aware Path Optimization Algorithm includes a grid

risk function, derived from the ship domain and Gaussian influence function, in

the path evaluation criteria, directing Unmanned Surface Vehicle to successfully

bypass high-risk areas and as a result. Then the Dual-Phase Smoothing Strategy is

used to decrease path turning points and boost path continuity, which in turn

improves path economy. Simulation results demonstrate that this method

significantly reduces the path length and the number of turning points,

enhancing Unmanned Surface Vehicle navigation safety and economy in

anchorage areas.
KEYWORDS

unmanned surface vehicles, anchorage areas, risk-aware path optimization, ship
domain, Gaussian influence function, dual-phase smoothing strategy
1 Introduction

Ships need to anchor in anchorage waters for quarantine, waiting for berths, tide

waiting (Yin et al., 2023), unloading at anchorage, or sheltering from typhoons. Anchorage

areas are typically densely populated, with ships varying in size and type, as illustrated in

Figure 1. Navigating vessels are typically needed to avoid these waters to prevent collisions.
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The application of intelligent ships is becoming increasingly

common (Zhou et al., 2024). For example, USVs could decrease

the risk of collisions for tasks such as maritime monitoring and

transporting materials in complex navigation environments. USVs

are autonomous surface vessels capable of navigating without

onboard personnel (Specht et al., 2017). Generally, USV is smaller

in size and do not require human operation, which can significantly

enhance safety when navigating through anchorage areas, improve

operational efficiency, and reduce labor costs. USVs can keep an eye

on the marine environment and the status of anchored vessels in

real time, which effectively boosts the efficiency of safety

management (Wang et al., 2023). Also, USVs can effectively carry

materials in a range of weather and sea conditions, which makes

them especially fit for high-risk environments or those not suitable

for human operations (Bae and Hong, 2023).

The core task of path planning is to design a collision-free route on

a map from the starting point to the endpoint (Yin and Wang, 2021).

Path planning is crucial in the navigation systems of USVs (Liu and

Bucknall, 2015). It involves devising the optimal route for USVs from

a starting point to a destination, primarily considering navigational

safety and path efficiency. The goal of path planning is to minimize

navigational risks and path costs as much as possible while ensuring

mission completion by the USVs (Shu et al., 2023). Currently, various

path planning algorithms can be applied in different scenarios, such as

the A* algorithm, Dijkstra’s algorithm, Artificial Potential Field (APF),

Rapidly-Exploring Random Tree (RRT), Genetic Algorithm (GA),

and Particle Swarm Optimization (PSO).
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The Dijkstra algorithm is a traditional shortest path search

algorithm (Dijkstra, 1959). This algorithm identifies the shortest

route from an origin to a destination, and finding paths using it is

quite simple (Cover and Hart, 1967). Dijkstra’s algorithm, however,

computes all nodes during path searches, which leads to poor

efficiency. Improving computational efficiency involves the

selection of the nearest nodes and the exclusion of unnecessary

ones (Julius Fusic et al., 2018), which greatly reduces computational

load and speeds up the path planning process. The optimal path can

be found by calculating the number of turns and travel time through

the introduction of a travel time calculation function and in

complicated environments, the best route may still not be

achievable (Qing et al., 2017).

The A* algorithm, as a heuristic search algorithm (Sang et al.,

2021), finds the shortest path between two points. It evaluates the

cost from the current node to the target using a heuristic function

and expands the most promising nodes. A poorly designed heuristic

function can adversely affect the smoothness and continuity of the

path (Julius Fusic et al., 2018). Traditional A* can only generate

piecewise linear paths, which often results in unsmooth trajectories

(Dolgov et al., 2010). Dynamic simplification of the A* algorithm

can reduce computation time (Lima et al., 2019). However, the

adaptability of the algorithm is insufficient; especially in different

scenarios, multiple adjustments of algorithm parameters are

required to adapt to changing environments. To obtain safer

paths, methods incorporating safe distance maintenance and

heuristic function optimization were introduced (Singh et al.,
FIGURE 1

Anchorage area layout and ship distribution.
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2018). However, manual adjustment of safe distance parameters is

required in different scenarios. Additionally, three path smoothing

techniques were integrated into the A* algorithm (Song et al., 2019),

generating smoother paths with fewer turns. However, the

smoothing effect of this algorithm depends on parameter

selection and lacks adaptability to different environments.

The basic idea of the APF method is to construct repulsive

potential fields around obstacles and an attractive potential field at

the target point. The attraction pulls the USVs toward the target,

while the repulsion pushes the USVs away from obstacles. This

method has a simple computational principle and fast operation

speed but easily falls into local optima (Peng et al., 2024).

Incorporating Genetic Algorithms into the APF method can

effectively alleviate local minima and oscillation problems

(Pan et al., 2022). However, the generated paths exhibit frequent

turns, and parameter tuning becomes complex, with the design of the

fitness function depending on the task scenario. Introducing the

temperature parameters of a deterministic annealing strategy into the

APF method (Wu et al., 2023) allows the system to increase the

temperature when trapped in local minima to escape them. However,

this method relies on the initial setting of temperature parameters

and cooling rate; improper settings may lead to excessively long paths

or failure in obstacle avoidance.Combining Model Predictive Control

(MPC) with the APF forms the Model Predictive Artificial Potential

Field (MPAPF)method (He et al., 2023). This approach considers the

vessel’s kinematic constraints and incorporates the International

Regulations for Preventing Collisions at Sea (COLREGs), effectively

solving the local optimum problem of the traditional APF. However,

the path changes direction frequently, affecting the vessel’s

operational stability.

The RRT is a sampling-based path planning algorithm proposed

by LaValle in 1998 (LaValle, 1998). This algorithm takes the starting

point as the root node and performs searches in the space using

random sampling, continuously adding leaf nodes to form a random

tree until it reaches the endpoint. Although this algorithm is highly

effective, the process of randomly generating nodes consumes a

significant amount of time, and the resulting path is not smooth. By

integrating AIS information and Douglas-Peucker (DP) compression

to improve the traditional RRT algorithm (Gu et al., 2023), the

convergence speed is increased, redundant turning points are

reduced, and path smoothness is optimized. However, performance

may be limited in areas with insufficient AIS data. By combining

Voronoi diagrams to improve the Artificial Potential Field (APF)

method (Chi et al., 2022), it guides the sampling of RRT, solves the

local optimum problem, and enhances efficiency. However, in

environments with fewer obstacles, the path may become longer due

to detours. The improved heuristic bidirectional RRT algorithm

(Zhang et al., 2022) uses a heuristic biased sampling strategy to

reduce ineffective random sampling and increase convergence speed.

It also reduces unnecessary turning points through path reorganization.

However, in uncertain environments, inaccurate heuristic information

may cause the path planning to deviate from the optimal route.

The GA is a bioinspired algorithm for optimisation that identifies

the best solution to a problem by mimicking biological processes such

as natural selection, inheritance, crossover, and mutation but can act
Frontiers in Marine Science 03
as a general search technique to address path planning problems (Niu

et al., 2022). The Genetic Algorithm, however, results in a high

computational load, a slow convergence speed, and a tendency to fall

into local optima. The addition of a new genetic mutation operator to

the GA (Qu et al., 2013) can successfully stop the algorithm from

reaching local optima and boost its convergence speed. The GA still

raises computational complexity when dealing with extensive data

and thus the combination of Voronoi diagrams with the GA (Niu

et al., 2020) can markedly reduce the number of redundant nodes in

the path, which helps to lower energy consumption and improve path

smoothness. However, the algorithm is sensitive to parameter

selection. Path planning can be considered a multi-objective

optimization problem. By introducing different fitness functions for

various objectives (Cheng et al., 2020), the feasibility of the path is

ensured, and optimization is performed in terms of time, smoothness,

and safety. However, its generality in different environments requires

further verification. Using a heuristic median insertion method to

generate a high-quality initial population (Li et al., 2021) and

optimizing the Genetic Algorithm through multi-objective fitness

functions (path length, safety, energy consumption) improved the

convergence speed and shortened the path length. However, this

method did not perform detailed optimizations on path smoothness.

The PSO (Kennedy and Eberhart, 1995) is another biologically

inspired algorithm. It was originally designed to simulate the

movement of particles in a solution space, iteratively updating

their positions and velocities to search for the optimal solution to

a function. The AquaFeL-PSO algorithm (Jara Ten Kathen et al.,

2024), which integrates multimodal PSO, Gaussian Processes (GP),

and Federated Learning (FL), reduces the likelihood of getting

trapped in local optima, while improving both convergence speed

and algorithm robustness. However, the Gaussian Process modeling

may lead to high computational complexity. Traditional PSO-based

path planning algorithms typically assume a static environment,

making them less effective in complex dynamic scenarios. To

address this limitation, the OkayPlan algorithm (Xin et al., 2024)

combines dynamic obstacle motion modeling, Dynamic Priority

Initialization (DPI), and a relaxation strategy, significantly

enhancing both the safety and real-time performance of path

planning. However, the conservative planning strategy of

OkayPlan may compromise the optimality of path length. ACO-

based path planning, through parameter optimization and

adjustment of its search strategies (Heng et al., 2024), can identify

the shortest obstacle-free path while ensuring safety. However, in

complex environments, ACO is prone to falling into local optima,

failing to achieve a truly global optimal path.

In anchorage areas, the high density of anchored vessels

complicates traditional path planning, making it difficult to guarantee

both safety and efficiency. The close proximity between vessels

increases the collision risk for USVs. Therefore, an algorithm that

can recognize and avoid risk areas while maintaining path efficiency is

proposed. In this paper, a modified A* algorithm, named RAPO, is

introduced, which incorporates risk awareness andmodels the risk field

using a Gaussian influence function. After the path is optimized, the

DPSS is applied to smooth the path, ensuring its smoothness and

feasibility. The main contributions of this paper are as follows:
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• The RAPO is proposed, which effectively incorporates the

risk characteristics of anchorage areas, thus improving both

path safety and economic efficiency.

• AGaussian influence function is used to model the risk field

in the anchorage area, addressing the limitations of the

traditional A* algorithm in complex environments.

• The DPSS is applied to smooth the optimized path,

ensuring its navigability and smoothness, thereby

enhancing its applicability in real-world scenarios.
2 Methodology

2.1 Traditional A* algorithm

The A* algorithm is one of the most widely used methods in

path planning. The basic idea involves define the starting point S as

the parent node, to estimate the cost to the surrounding nodes n,

and selecting the node with the lowest cost as the next parent node

until the target node G is identified. Commonly used search

directions consist of 4-connected and 8-connected grid searches.

The 4-connected mode considers only horizontal and vertical

movements, whereas the 8-connected mode additionally accounts

for diagonal movements. Due to the complex movement

characteristics of USVs in anchorage areas, this paper uses an 8-

connected grid search to support more flexible and efficient

navigation and thus the node evaluation function consists of two

components, as shown in Equation 1:

f ðnÞ = gðnÞ + hðnÞ (1)

where f(n) is the total cost of the current node, g(n) represents

the minimum path cost from the starting point S to the current

node n and h(n) represents the estimated minimum cost from the

current node n to the target node G.

The traditional A* algorithm typically uses heuristic functions

such as the Euclidean distance and the Manhattan distance. This

paper employs the Euclidean distance, which calculates the straight-

line distance between two points to provide an accurate estimation

of the path cost. The direct use of the straight-line distance between

two points allows for the estimation of movement cost in path

planning. Thus the Euclidean distance in the A* algorithm

effectively directs the search process to favour paths that are

physically nearer to the target, thereby improving search

efficiency and reducing computational costs. The heuristic

function h(n) is shown in Equation 2, the actual cost g(n) is

shown in Equation 3, and the path cost is shown in Equation 4:

 h(n) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xn − xG)

2 + (yn − yG)
2

q
(2)

 g(n) =o
n

i=1
cost(i − 1, i) (3)

cost(i − 1; i) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xi − xi−1)

2 + (yi − yi−1)
2

q
(4)
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where xn is the x-coordinate of any node n, yn is the y-

coordinate of node n, xG is the x-coordinate of the target node G,

yG is the y-coordinate of the target node G, and i is the index of the

nodes in the path.
2.2 Risk-aware path optimisation algorithm

The RAPO algorithm was proposed to improve the safety and

efficiency of USVs navigation through anchorage areas. The RAPO

integrates risk assessment with a dual-phase smoothing strategy.

Risk assessment guides the A* algorithm to avoid high-risk areas by

evaluating each grid based on a ship domain model and Gaussian

influence function. The DPSS smooths the path in two phases. First,

Bresenham’s algorithm is used to reduce the number of sharp turns.

Second, cubic B-spline path smoothing is applied to enhance

path continuity.

2.2.1 Risk assessment
The ship domain (Pietrzykowski and Uriasz, 2009) is a concept

used to represent the safe area around a vessel. It is typically defined

as a two-dimensional area surrounding the vessel, which other ships

should avoid to prevent collisions. The size and shape of this

domain can vary on the basis of the vessel’s size, speed, and

navigational environment. The ship domain is usually quantified

by boundary radii in four directions around the vessel: forwards

(bow), aft (stern), left (port side), and right (starboard side),

expressed in multiples of the ship’s length (L). The establishment

of an unnavigable zone around a ship prevents collision accidents.

A typical ship domain representation is illustrated in Figure 2,

where the boundary radii in each direction are used to depict the

safe zones around the vessel in different orientations.

A reasonable establishment of unnavigable zones can

significantly reduce collision risk, improve navigation efficiency,

and enhance overall safety (Goerlandt and Kujala, 2014). A

dodecagonal forbidden zone model (Kundakçı et al., 2023), which

closely approximates an elliptical shape, was proposed by Kundakçı

et al. As shown in Figure 3, the dark purple area represents the

forbidden zone. In this paper, an elliptical shape was directly adopted

for the forbidden zone. Using an elliptical shape for the unnavigable

zone around the anchored ship has significant advantages. The long

axis of the elliptical unnavigable zone aligns with the longitudinal axis

of the ship, providing greater fore-and-aft safety distance. The short

axis provides the lateral safety distance, preventing other ships from

approaching the sides of the anchored ship and reducing the collision

risk. In this paper, elliptical unnavigable zones were set up on the

basis of the captain’s navigational experience. If the ship’s length is L,

then the semimajor axis would be 1.2L; if the ship’s width isW, then

the semiminor axis would be 2W. The risk value for grids within the

unnavigable zones is set to infinity.

When a USV navigates through an anchorage area, the

anchored ships pose a certain risk to the USV. This risk can be

characterised by the Gaussian function (Liu and Ma, 2023). The

Gaussian function was introduced by the German mathematician

Carl Friedrich Gauss. It was first introduced in his work in the early

19th century and has been widely applied in probability theory and
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statistics, especially in normal distributions. The normal

distribution is one of the most important distributions in statistics

and describes the distributions of many natural phenomena and

experimental data. The standard form of the Gaussian function is

shown in Equation 5, and the graph of the Gaussian function is

shown in Figure 4:

 f (x) =
1ffiffiffiffiffiffi
2p

p
s
e�

(x�m)2

2s2 (5)
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In Equation 5, m is the mean, indicating the central position of

the Gaussian distribution. It is the symmetric centre of the Gaussian

curve, determining its position and controlling the peak position of

the curve, which reaches its maximum at x = m. The s is the

standard deviation, representing the width of the Gaussian

distribution, which determines the degree of data dispersion: the

larger the standard deviation is, the wider and flatter the curve; the

smaller the standard deviation is, the narrower and steeper the

curve. In statistics, the normal distribution has an important

property known as the three-sigma rule (68-95-99.7 rule), which

states that in a normal distribution, approximately 68.27% of the

data lie within one standard deviation of the mean [m − s, m + s],
approximately 95.45% of the data lies within two standard

deviations [m − 2s, m + 2s], and approximately 99.73% of the

data lies within three standard deviations [m − 3s, m + 3s].
The Gaussian influence function is a variant of the Gaussian

function and is used mainly to describe the exponential influence of

a quantity with distance or time. Its form is shown in Equation 6.

The three-sigma rule of the Gaussian function also applies to the

Gaussian influence function. In the Gaussian influence function, the

values range from (0, 1), which aligns with the typical range of risk

values.

 f (x) = e�
x2

2s2 (6)

The Gaussian influence function is used to describe the ship

domain and assess risks (Im and Luong, 2019), this method is

highly reliable and effective. In risk assessment, the Gaussian

influence function represents the attenuation of risk with

distance, providing an intuitive and computationally simple

model for path planning and obstacle avoidance. Its smoothness

and symmetry ensure continuity and uniformity in risk

distribution, making it especially effective for representing the

high risk near anchored ships, where risk diminishes gradually

with increasing distance.

In this paper, the map is divided into Voronoi polygons. The

distance from each ship to the Voronoi polygon boundary is half of

the ship spacing, the risk posed by each anchored ship is confined to

the area within its assigned Voronoi polygon. For example, a

Gaussian influence function with a parameter of s = 80 can be

used to depict the risk values, as shown in Figure 5.

The Gaussian influence function ensures that the risk gradually

decreases with distance, naturally simulating the risk posed by the

anchored ship to its surroundings. By calculating the distance d

from a point to the boundary of the unnavigable zone and applying

the Gaussian influence function, precise risk assessments can be

provided for path planning, thus enhancing navigation safety and

the effectiveness of path selection. The map is converted to grids,

with d being the distance from the centre of the grid to the boundary

of the unnavigable zone, which is calculated as shown in Equation 7.

Every grid outside the unnavigable zone has a risk value with the

range set to [1,2), and the grid risk function derived from the

modified Gaussian influence function is shown in Equation 8.

 d =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x� xedge)

2 + (y� yedge)
2

q
(7)
FIGURE 3

Distribution of ship domain with forbidden and avoidance areas.
FIGURE 2

Ship domain.
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In Equation 7, x and y are the 2-dimensional coordinates of the

grid centre, whereas xedge and yedge are the 2-dimensional

coordinates of the corresponding point on the ellipse boundary.

 D(n) =
1 + e�

d2

2s2 ,   d > 0

∞  ,   d ≤ 0

8<
: (8)

In Equation 8, n represents the index or identifier of the

current grid point, which is used to indicate its position within the

overall risk matrix. D(n) is the grid risk degree function, and d

represents the distance from a point to the boundary of the

unnavigable zone. When d > 0, the point is outside the

unnavigable zone, and the risk decreases as the distance

increases. When d = 0, the point lies on the boundary, and the

risk is set to infinity (∞). When d< 0, the point is inside the

unnavigable zone, and the risk is also set to infinity (∞).

The risk caused by a single ship to its surroundings is displayed

on the grid map, with white representing the forbidden zone, and
Frontiers in Marine Science 06
yellow to purple indicating gradually decreasing risk levels, as

shown in Figure 6.

The traditional A* algorithm uses only path length as its

heuristic function, causing planned paths to often approach

obstacles and fail to guide USVs to navigate safely and smoothly.

To address this issue, the RAPO incorporates the ship domain and

Gaussian influence function to determine the risk zones formed by

anchored ships for other vessels. The risk degree function is

included as part of the RAPO evaluation function for path planning.

The evaluation function is shown in Equation 9:

 f (n)¼ p(n) + h(n) (9)

 p(n) =o
n

i=1
cost(i − 1; i)� D(i) (10)

 h(n) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xG − xn)

2 + (yG − yn)
2

q
(11)
FIGURE 4

Gaussian function plot.
FIGURE 5

Gaussian influence function plot (s = 80).
frontiersin.org

https://doi.org/10.3389/fmars.2024.1503482
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wang et al. 10.3389/fmars.2024.1503482
where f(n) is the total cost of the current node D(n) is the grid

risk degree function, p(n) represents the path cost from the start

point S to the current point n after including the risk, h(n)

represents the estimated minimum cost from the current point n

to the goal node G, xG is the x-coordinate of the target node G, and

yG is the y-coordinate of the target node G.

The superiority of Equation 9 over Equation 3 lies in its better

consideration of potential collision risks. By introducing the grid

risk degree function D(n), USVs can effectively avoid entering

unnavigable zones.

2.2.2 Dual-phase smoothing strategy
2.2.2.1 Bresenham-based path smoothing

The RAPO, which incorporates risk assessment, is limited by

the heuristic search principle, which does not allow cross-grid

search, resulting in many redundant turning points in the

planned path. Path smoothing aims to improve the continuity

and feasibility of the USV path and lower the energy

consumption. In practical applications, path smoothing can

significantly enhance the navigation performance and task

execution efficiency of USVs. By introducing a path smoothing

strategy, the path length can be optimised, removing redundant

nodes and unnecessary turns.

The initial path, generated by the RAPO, which incorporates risk

assessment, may contain many redundant nodes and turns. To

optimise this path, the Bresenham line algorithm (Wang et al.,

2024) is used to check the connections between every pair of

adjacent nodes, and a schematic of Bresenham line path smoothing

is shown in Figure 7. If the risk values of all intermediate nodes

between the current node and a distant node are within an acceptable

range (below the set threshold), these nodes can be directly

connected. By doing so, intermediate redundant nodes are skipped.

The pseudocode for the initial smoothing is shown in Algorithm 1.
Frontiers in Marine Science 07
2.2.2.2 Cubic B-spline-based path smoothing

After the initial smoothing by the Bresenham algorithm,

although redundant nodes and sharp turns have been partially

reduced, significant angular changes may persist. These changes can

lead to large turning angles, increasing energy consumption and

operational difficulty for USVs during actual operation. To further

optimise the smoothness and continuity of the path, a path

smoothing method based on cubic B-splines (Muñoz, 2008) was

introduced in the second stage of the DPSS. The mathematical

definition of the B-spline curve is shown in Equation 12:

C(u) =o
n

i=0
Ni,k(u)Pi (12)

In Equation 12, C(u) represents the point on the curve at

parameter u, Pi is the ith control point, and Ni,k(u) is the B-spline

basis function, with k=3 indicating a cubic B-spline.

The recursive definition of the cubic B-spline basis function

Ni,3(u) is as follows:

For the zeroth-degree B-spline basis function, as shown in

Equation 13:

Ni,0(u) =
1 if     ui ≤ u < ui+1

0 otherwise

(
(13)

For higher-degree B-spline basis functions, as shown in

Equation 14:

Ni,k(u) =
u − ui
ui+k − ui

Ni,k−1(u) +
ui+k+1 − u
ui+k+1 − ui+1

Ni+1,k−1(u) (14)

To generate smooth B-spline curves, uniformly distributed knot

vectors were adopted. If there are n+1 control points, the knot

vectors are typically defined as:

u = u0, u1,…, uk−1, uk,…, un, un+1,…, un+kf g (15)
FIGURE 6

Risk distribution around an anchored ship.

FIGURE 7

Schematic diagram of Bresenham-based path smoothing.
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Fron
Algorithm: BresenhamLineSmoothPath

Input: path - a list of points forming the initial path

risk_matrix - a 2D grid representing risk values of

the area

threshold - maximum acceptable risk value for a

path to be

considered safe

Output: smoothed_path - a list of points forming the

smoothed path

1: Initialise smoothed_path with the first point

of path

2: Set skip to 0

3: For each point i from 1 to the second last point

of path

4: If skip is not zero then

5: Decrement skip

6: Continue to the next iteration of the loop

7: End If

8: For each point j from end of path down to i + 1

9: Generate all points on the line from the last point

o f s m o o t h e d _ p a t h t o p a t h [ j ] u s i n g t h e

BresenhamLine function

10: If all points on the line have a risk value<=

threshold Then

11: Add path[j] to smoothed_path

12: Set skip to j - i - 1

13: Break the inner loop

14: EndIf

15: EndFor

: If no suitable connection point was identified Then

17: Add path[i] to smoothed_path

18: End If

19: End For

20: Return smoothed_path
ALGORITHM 1 Bresenham-based path smoothing pseudocode..

These uniformly distributed knot vectors ensure a smooth

transition between control points in the B-spline curve.

In accordance with the standards set forth in the U.S. Navy’s “Navy

USVMaster Plan”, USVs with lengths ranging from 3 to 11 metres are

widely employed in various mission scenarios. In this paper, a typical

10-metre USV with a turning radius of approximately 30 metres was

selected. The 30-meter insertion interval not only meets the

requirements for path smoothing but also aligns with the

maneuvering characteristics of the USV, ensuring that the generated

path is both operationally stable and feasible. Consequently, control

points were inserted every 30 metres. A schematic of the second

smoothing is shown in Figure 8. The pseudocode for the second path

smoothing is shown in Algorithm 2.

The cubic B-spline method significantly improved path

smoothness, reduced the number of sharp turns, enhanced the

navigational stability of the USV, and optimised the path’s continuity

and length. As a result, the economic efficiency and safety of the

generated path in complex environments were effectively improved.
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3 Simulation experiments

3.1 Experimental environment setup

All simulations were conducted on a computer with Microsoft

Windows 11 as the operating system, an Intel i5 3.10 GHz twelve-

core CPU, and 16 GB of RAM. To validate the rationality and

efficiency of the RAPO algorithm proposed in this paper,

simulations were carried out on a 2D static grid map with

PyCharm as the development environment.
3.2 Anchorage area model construction

3.2.1 Ship positioning and Voronoi
polygon partitioning

In this paper, anchorages and anchored ships in Beibu Gulf

waters were referred to. The simulated anchorage size was set to

5.5 km × 4.8 km. Sixty anchored ships, each with lengths ranging

from 90 to 150 m, were included. The distance between ships was

set to 500 to 750 metres. The heading of each ship was uniformly

distributed within the range of 135° to 165°. The coordinates of the

anchored ships were set to determine their positions. Thirteen ships

with lengths of 90 to 110 m are represented by green dots. Twenty-

four ships with lengths of 110 to 130 m are represented by blue dots.

Twenty-three ships with lengths of 130 to 150 m are represented by

red dots. The anchored ships were used as points Pi to partition the

anchorage area via the Voronoi polygon. This process prepares for

the introduction of risk from the anchored ships. With Voronoi

polygon partitioning, the distribution of the simulated ships in the

defined anchorage area is shown in Figure 9.

3.2.2 Grid-based processing and risk evaluation
When processing environmental maps, grid-based maps are the

most commonly used form of representation and processing, as they

effectively convey spatial information and support the application of
FIGURE 8

Schematic diagram of the path smoothing process using cubic
B-Splines.
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various algorithms. The grid size was set to 30 m × 30 m, considering

that the normal length of a USV is approximately 10 m. The resulting

grid map used in the risk assessment is shown in Figure 10.

Before the simulation experiments, risk values were assigned to

each grid on the basis of the Gaussian influence function. Each

anchored ship formed a risk area. The anchored ships were used as

seed points for the Voronoi polygons. Each polygon was a risk

assessment unit. It was assumed that each anchored ship affected

only the navigable waters within its corresponding Voronoi

polygon. The distance between anchored ships ranges from 500

to 750 m, and the shortest distance from an anchored ship to the

boundary of its Voronoi polygon is approximately 250 m.

Considering that the main influence range of the Gaussian

distribution is concentrated within [−3s,+3s], corresponding to

an actual risk range of 250 m, 3s =250 is set, yielding s ≈ 80. So, the

parameter s in the Gaussian influence function was set to 80.
Fron
Algorithm: B-SplineSmoothPath

Input: smoothed_path: A list of points forming the

smoothed path after the first smoothing. interval:

The distance interval for inserting control points along

the smoothed path (set to 30 metres). degree: The

degree of the B-Spline (set to 3).

Output: b_spline_path: A list of points forming the

final smoothed B-Spline path.

1: Initialise control_points as an empty list.

2: For each pair of consecutive points (start_point,

end_point) in smoothed_path:

3: Calculate the segment_length between start_point

and end_point.

4: If segment_length > 0:

5: Calculate the number of control points to insert

(num_points = segment_length//interval).

6: For each j from 0 to num_points:

7: Calculate the interpolated point between

start_point and end_point using linear interpolation.

8: Add the interpolated point to control_points.

9: Else:

10: Skip the segment (if start_point and end_point

are identical).

1 1 : A d d t h e l a s t p o i n t o f s m o o t h e d _ p a t h

to control_points.

12: Generate a uniform knot vector based on the number of

control_points and the degree of the B-Spline.

13: Create a B-Spline curve using the control_points and

the knot vector.

14: Generate a dense set of points along the B-Spline curve

to represent the final smoothed path (b_spline_path).

15: Return b_spline_path.
ALGORITHM 2 B-Spline-based path smoothing pseudocode..

After the map was converted to grids, each grid was assigned a

risk value. The risk value for unnavigable zones was set to infinity.

Grids in this area are displayed in white. The risk values for risk
tiers in Marine Science 09
zones ranged from 1 to 2, with colours representing the risk value

from purple (low risk) to yellow (high risk), transitioning through

cyan and green. A risk distribution map of anchored ships is shown

in Figure 11, where “Start” is the starting point and “Goal” is the

ending point.
3.3 Path planning and smoothing

The RAPO algorithm was used to plan safe and efficient paths

for USVs in anchorage areas. First, a modified Gaussian influence

function was used to conduct risk assessments to minimize

potential risks. Then, the algorithm optimises the path through

two stages of DPSS path smoothing. In the first phase, a Bresenham-
FIGURE 9

Simulated ship positions and Voronoi polygon partitioning in
the experiment.
FIGURE 10

Simulated ship positions and Voronoi polygon partitioning in
the experiment.
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based path smoothing method is employed to eliminate

unnecessary turns and redundant nodes in the initial path. In the

second phase, a cubic B-spline-based path smoothing method is

used to further smooth the path obtained from the first phase,

inserting a control point every 30 meters on the path obtained from

the first-phase smoothing, and then applying a cubic B-spline curve

to smooth the path. After the DPSS, the number of turns is

significantly reduced, and the smoothness of the path is improved.
3.4 Simulation results

The RAPO algorithm integrates risk assessment and the DPSS,

to verify that the RAPO algorithm can be applied to path planning

in anchorage areas, simulation experiments were conducted. The

path planning results of the RAPO algorithm at a path risk value of

1.5 are shown in Figure 12, where the blue solid line represents the

initial path from the risk-improved A* algorithm within RAPO, the

black solid line indicates the path after the first-phase smoothing

based on Bresenham’s algorithm, and the red solid line shows the

final path after the second-phase smoothing using a cubic B-spline.

The path planning results indicate that the RAPO algorithm, which

includes DPSS, significantly improves both path length and the

number of turns across different path risk tolerances. Table 1

presents the path lengths, number of turns, and maximum turning

angles for the RAPO algorithm under path risk tolerances of 1.2, 1.5,

and 1.8. Compared with the original paths generated through risk
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assessment within the RAPO algorithm, the lengths of the smoothed

paths were reduced by 7.13%, 7.60%, and 7.70%, respectively. The

number of turns decreased by 81.13%, 90.57%, and 94.34%,

respectively, while the maximum turning angle was reduced by

17.78%, 13.33%, and 11.11%, respectively. When comparing the

smoothed paths at different risk tolerances, the path length with a

risk tolerance of 1.5 was reduced by 4.9%, and the number of turns

decreased by 57.14% compared with the smoothed path with a risk

tolerance of 1.2. The path length at a risk tolerance of 1.8 is reduced by

0.51% compared to that at a risk tolerance of 1.5, and the number of

turns decreases by 50%. The path length at a risk tolerance of 1.8 is

reduced by 0.61% compared to that at a risk tolerance of 1.2, and the

number of turns decreases by 70%. As the risk tolerance increases, the

resulting path length continuously shortens, and the number of turns

decreases, thereby reducing the operational difficulty and energy

consumption of the USV, thus ensuring the economy of the path.
4 Discussions

The RAPO algorithm proposed in this paper first assesses the

risk of anchored ships and then plans a route, while also smoothing

the route to ensure a safe and economical path for USVs in

anchorage areas. The results from simulation experiments

demonstrate that the RAPO algorithm outperforms the A*

algorithm (Hart et al., 1968), the Voronoi-based A* algorithm
FIGURE 11

Risk distribution map of anchored ships.

FIGURE 12

Path planning outcomes under a risk tolerance of 1.5 using the
RAPO algorithm.
TABLE 1 Comparison of path planning of the RAPO algorithm under different risk tolerances.

Risk
Tolerance

Original Path
Length (Risk-
Assessed) (m)

DPSS Smoothed
Path Length (m)

Original
Number
of Turns

Smoothed
Number
of Turns

Original Max
Turning
Angle (°)

Smoothed Max
Turning
Angle (°)

1.2 8.641 8.025 53 10 45° 37°

1.5 8.641 7.984 53 5 45° 39°

1.8 8.641 7.976 53 3 45° 40°
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(Fedorenko and Gurenko, 2016), RRT algorithm (LaValle, 1998)

and PSO algorithm (Kennedy and Eberhart, 1995) in terms of path

length, the number of turns as well as a path smoothness.

Figure 13 illustrates the paths obtained by the five algorithms.

The blue solid line represents the path generated by the RAPO

algorithm, the red solid line represents the path produced by the

traditional A* algorithm, the orange solid line shows the path from

the Voronoi-based A* algorithm, the golden yellow solid line

represents the path obtained by the RRT algorithm, and the black

solid line represents the path from the PSO algorithm.

When the risk tolerance is 1.5, path planning was conducted

using five different algorithms, and the simulation results are shown

in Table 2. In terms of path length, the RAPO algorithm resulted in a

path length of 7.984 km, which is significantly shorter than the paths

obtained by the other four algorithms. It can be seen that while

considering risk factors to ensure path safety, its path length is also
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the shortest, and the overall path length was further optimized after

applying the DPSS. Regarding the number of turns, the path obtained

by the RAPO algorithm has only 5 turns, which is significantly fewer

than the 39 turns of the traditional A* algorithm, the 20 turns of the

Voronoi-based A* algorithm, the 68 turns of the RRT algorithm, and

the 7 turns of the PSO algorithm. In terms of the maximum turning

angle, the path generated by the RAPO algorithm has a maximum

turn of only 40°, which is significantly lower than the 45° of the

traditional A* algorithm, the 90° of the Voronoi-based A* algorithm,

the 128° of the RRT algorithm, and the 57° of the PSO algorithm. It

can be seen that the path smoothing phase in the RAPO algorithm

effectively reduces unnecessary turns, enhances path smoothness, and

decreases the operational difficulty and energy consumption of USVs.

Additionally, the maximum risk value of the path obtained by the

RAPO algorithm is 1.484, which, although higher than that of the

path obtained by the Voronoi-based A* algorithm, is still within the
（a）Paths with different algorithms in 

simulation
（b）RAPO Path （c）A* Path

（d）Voronoi-based A* Path （e）RRT Path （f）PSO Path

FIGURE 13

Path planning outcomes by different algorithms.
TABLE 2 Comparison of different path planning algorithms with risk tolerance of 1.5.

Algorithm Type Path Length (km) Number of Turns Maximum Turning Angle (°) Maximum Risk Value

RAPO 7.984 5 40° 1.484

Traditional A* 8.013 39 45° 2

Voronoi-based A* 9.257 20 90° 1.214

RRT 9.299 68 128° 2

PSO 8.991 7 57° 1.97
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set range. Therefore, the RAPO algorithm can plan a safe path for

USVs in anchorage areas.

The traditional A* algorithm focuses solely on finding the

shortest path, without considering path safety, resulting in poor

overall path safety. Additionally, the traditional A* algorithm

generates paths with numerous redundant turns, which increases

operational complexity and energy consumption. Although the

Voronoi-based A* algorithm considers path safety, it does not

optimize path length, resulting in longer paths. Furthermore, the

paths are constrained by the boundaries of Voronoi polygons,

leading to more sharp turns, which further increases operational

difficulty and energy consumption. The RRT algorithm lacks path

smoothness in path planning, generating longer paths with

excessive sharp turns and limited overall optimization capability.

Although the PSO algorithm demonstrates certain global

optimization capabilities, its generated paths perform poorly in

risk avoidance, making it difficult to ensure path safety.

The RAPO algorithm mainly combines risk assessment with the

DPSS. The addition of risk assessment to path planning allows the

path to successfully bypass high-risk areas. The DPSS process

eliminates a large quantity of unneeded turns and improves the

flow of the path. The RAPO algorithm is capable of designing routes

for USVs in challenging environments, ensuring both the safety and

economy of the path, and also making USVs operations less difficult

and less energy intensive.
5 Conclusions

This paper proposes the RAPO algorithm to enhance the

safety and efficiency of USVs in anchorage areas. The algorithm

integrates a grid-based risk function derived from the ship domain

model, a Gaussian influence function, and the DPSS. By defining

prohibited zones using the ship domain and conducting risk

assessments on waters outside these zones with the Gaussian

influence function, the algorithm effectively avoids high-risk

areas, improving the safety of path planning. Furthermore, the

DPSS reduces the number of turns, resulting in a smoother and

more efficient planned path.

Still, the algorithm has some inherent limitations. Initially, the

algorithm’s computational burden is quite high, which leads to an

increase in time needed and the smoothing results are contingent

upon the parameter settings. Then, the algorithm is currently

mostly focused on static environments, which may influence its

use in real complex marine settings.

In future research, the role of ocean currents in the navigation

environment will be examined to better understand USVs

navigation in anchorage areas. In addition, the exploration of

path planning for USVs in dynamic environments with both

static and dynamic obstacles will be undertaken to further

improve the practicality of the RAPO algorithm, allowing it to

perform well in static environments and to provide safe and

effective path planning in complex dynamic settings.
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