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Intelligent ship monitoring technology, driven by its exceptional data fitting

ability, has emerged as a crucial component within the field of intelligent

maritime perception. However, existing deep learning-based ship monitoring

studies primarily focus on minimizing the discrepancy between predicted and

true labels during model training. This approach, unfortunately, restricts the

model to learning only from labeled ship samples within the training set, limiting

its capacity to recognize new and unseen ship categories. To address this

challenge and enhance the model’s generalization ability and adaptability, a

novel framework is presented, termed MultiAngle Metric Networks. The

proposed framework incorporates ResNet as its foundation. By employing a

novel multi-scale loss function and a new similarity measure, the framework

effectively learns ship patterns by minimizing sample distances within the same

category and maximizing distances between samples of different categories. The

experimental results indicate that the proposed framework achieves the highest

level of ship monitoring accuracy when evaluated on three distinct ship

monitoring datasets. Even in the case of unfamiliar ships, where the detection

performance of conventional models significantly deteriorates, the framework

maintains stable and efficient detection capabilities. These experimental results

highlight the framework’s ability to effectively generalize its understanding

beyond the training samples and adapt to real-world scenarios.
KEYWORDS

ship classification, deep learning, few-shot learning, maritime management,
vessel monitoring
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1 Introduction

Ships are an integral component of the marine transportation

system, serving crucial roles in international trade, ocean

development, and various other maritime activities. With the

diversification of marine mission requirements, ship types and

styles have become increasingly diverse. Each mission necessitates

ships of varying sizes, structures, functions, and technical

equipment to cater to specific marine application scenarios. The

increasing variety of ship types and styles poses fresh challenges for

the generalization capabilities of existing port management and

ship monitoring systems. To address these challenges, there is a

pressing need for the development of advanced and adaptable

technologies and methodologies. These advancements are

essential to ensure the accurate detection and classification of the

ever-increasing number of ship types and styles within the maritime

domain. Meanwhile, deep-learning-based ship monitoring can be

used as a complement to Automatic Identification System (AIS) as

an important line of defense for maritime regulatory systems. In

addition, a regulatory system with a high degree of generalization

not only helps to improve marine monitoring and protection

(Almpanidou et al., 2021) but also improves ship management

(Zhang et al., 2021) and other works as well as efficient management

turnaround efficiency, which can bring considerable benefits for

maritime management work.

Automatic ship monitoring models using deep learning

techniques are the mainstream nowadays, so the visible-light-

based automatic ship monitoring approach has become a major

research hotspot in the field of marine monitoring and maritime

management in recent years. The ship recognition models used

today can be divided into three major categories (Bo et al., 2021),

such as target-based recognition models, target detection models,

and image slicing models. However, the traditional deep learning

model training strategy is still used in the ship monitoring task,

which is still plagued by the following four aspects: For one thing,

when using the traditional strategy, only ships with predefined

categories of characteristics can be recognized, and it is difficult to

accurately detect and classify emerging ship types that are not

included in the training data. In the context of the diversification of

ship types and shapes, there are higher requirements for the model.

Second, when relying on only a small number of samples for

training, due to the limited number of samples, the model can

easily be overfitted on the training set (Tan et al., 2021), resulting in

poor generalization of new samples in the prediction stage.

Furthermore, the improved generalizability of traditional

strategies usually relies on a large amount of labeled data to train

the model, and in the maritime domain, obtaining as well as

labeling large-scale data is difficult, time-consuming, and

expensive (Del Prete et al., 2023), thus limiting the model’s ability

to be applied under fewer samples. Lastly, in the current context of

ever-diversifying ship types and styles, in order for the model of the

traditional strategy to have the ability to discriminate new ships, it

needs to adapt its training data by adding a large number of new

categories of data while simultaneously labeling and retraining the

model. However, this strategy is less efficient. This leads to the

problem of lack of generalization of the sample types of ship
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monitoring datasets at this stage. To a greater extent, it limits the

applicability of the model in real maritime management and fails

to meet the practical application needs of the maritime

management industry.

Thus, in order to solve the problems of existing ship monitoring

models in terms of data requirements and performance, such as

relying on a large amount of labeled data during training and being

prone to overfitting resulting in poor generalization ability on new

samples, there is an urgent need to develop a new model to classify

and recognize ship types. This model is able to be trained using an

existing publicly available ship dataset with a small number of known

categories to achieve a model with the ability to discriminate between

a larger number of unseen types of ships, and a model comparison of

the traditional and less-sample strategy is shown in Figure 1.

In response to the problem that the current ship monitoring

model training relies on large-scale labeled datasets and does not

have the ability to predict and recognize new samples, which makes

the model difficult to be applied to the task of the complex marine

environment and diverse ship types, this paper proposes a novel

model for unfamiliar ship type recognition in ship monitoring in

real-world scenarios: a multi-angle metric networks (AMAM-Net),

which is an end-to-end recognition model based on multi-scale

feature information that can be learned quickly using fewer

samples, and can be generalized to all types of ships. In a real

ocean environment, when the model faces a new category of

samples, it can define a mapping function to enable it to learn to

map known samples of different categories into a low-dimensional

feature space so that the samples of different categories are

distinguishable in the feature space and the prediction of new

samples can be performed by calculating the similarity between

the categories of sample metrics. During the testing phase, the new

unseen samples are categorized instead into the most similar known

categories by calculating the distance between a small number of

samples from known categories and the new unseen samples. The

goal of this strategy is to make the model independent of sample

label-based classification methods so that it can accurately identify

and classify a variety of emerging ship instances in a real

marine environment.

Experimental results on one realistic maritime ship inspection

dataset and two full type classification ship inspection datasets show

that AMAM-Net achieves the most efficient ship identification

accuracy compared to the traditional model, allowing our

implementation to maintain stable monitoring performance in

the face of samples of never-before-seen ship categories. In

addition, we conducted a series of complementary experiments as

a way of evaluating the effectiveness of the strategies used by

AMAM-Net. In summary, the main contributions of this study

are as follows:
• This paper proposes a triple metric neural network based on

multi-scale feature information for all kinds of ship image

classification. The method is experimented on different ship

datasets and its accuracy is improved by 15.14% compared

with other classical deep learning modeling methods.

• In addition, the experimental results improved to 83.23% and

61.41% accuracy relative to the traditional deep learning model
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approach in the coarse classification task (nine categories) and

the detailed classification task (73 categories) in the multi-

species ship inspection dataset, achieving 94.61% and 61.54%

classification accuracy, respectively, thus demonstrating the

generalized performance benefits of AMAM-Net in real

maritime management applications.

• The proposed method is a new multi-scale ternary loss

function and multi-scale similarity measure comparison

method, which effectively improves the ability of the

model to capture the local and global features of the
tiers in Marine Science 03
image, reduces the error and bias of a single measure,

avoids the defects of the existing methods of the

insensitivity of the scale and the insufficient consideration

of the relative relationship of the samples, and thus

improves the robustness of the system.

• Provided a new ship detection dataset that contains multiple

categories of ships with both coarse and fine categorization of

ship types. Compared with the existing ship inspection dataset,

this dataset is more in line with the actual marine

environment. The number of ship types increased from five
FIGURE 1

Comparison of strategies for all-type ship classification models and traditional deep learning ship classification models.
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to 73 categories, a 14.6-fold increase. This dataset can better

validate the robustness and generalization performance of the

model in solving the ship detection task.
The rest is presented in the following sections. Firstly, in Section 2,

the state-of-the-art research on traditional ship monitoring methods as

well as automatic ship monitoring models based on image recognition

is presented. In Section 3, AMAM-Net is described in detail, including

the problem statement, network architecture, and ternary generator

loss function metric function. Section 4 discusses the experiments and

analyzes the results. Finally, the main contributions of this work to

maritime management are summarized in Section 5, and future

research work to be carried out in depth is presented.

Finally, the main contributions of this work to maritime

management are summarized in Section 5, and future research work

to be carried out in depth is presented. Our codes are publicly available

at https://github.com/jiahuasun03/Unfamiliar-Ship-Type-Recognition.
2 Related works

In this chapter, the research work in the related field in recent

years is reviewed, which can be categorized into two main types of

research directions: traditional ship monitoring methods and

current deep-learning-based ship monitoring methods.
2.1 Traditional methods of ship monitoring

The most notable characteristic of traditional ship monitoring

systems is that they rely heavily on onboard radio communication

equipment and are usually only able to monitor ships that are

normally equipped with such equipment. Much of the previous

work has examined how maritime surveillance can be carried out by

means of shore-based or airborne radar and Automatic

Identification System (AIS) equipment, often with the aim of

optimizing the data obtained by these means to improve the

accuracy of maritime surveillance management.

Radar has also played an important role in maritime surveillance

during the earlier years. Chuang et al. (2015) proposed attempts to

identify ship types using adaptive detection techniques by extracting

ship echoes in a cross-spectral series of sea surface echoes to HF radar

signals. Park et al. (2016) proposed a method for a compact high-

frequency (HF) radar system optimized primarily for the observation

of surface radial flow velocities and ship orientation for improved

performance in detecting ships. da Silva et al. (2022) presented and

discussed four methods to estimate the extended target DOA angle to

obtain ship detection target results in real maritime scenarios. Shi et al.

(2022) proposed an effective method of acquired radar echoes to

acquire and analyze m-D signals and extract ship motion parameters

on time-varying sea surface for ship target detection and identification

in marine environment. In addition, in a follow-up study, it was found

that the performance of themonitoringmethod using AIS was superior

to that of the monitoring method using radar (Vesecky et al., 2009). In

comparing the performance of the AIS equipment monitoring method

and high-frequency radar monitoring method, it was found that high-
tiers in Marine Science 04
frequency radar may have situations such as misdetection, but the AIS

equipment can only identify a part of the vessels, so it is proposed to

combine Bayesian network with AIS and high-frequency radar,

respectively, to realize the priority identification of whether there are

vessels in a specific monitoring area so as to increase the regional target

detection efficiency. Eriksen et al. (2006) used a space-based AIS

receiver to monitor vessels at sea, and the effective distance of a

space-based AIS receiver communicating in near-Earth orbit is more

than 1,000 nautical miles, which is an advantageous condition to

monitor a wide range of sea areas. Chaturvedi et al. (2012) conducted

a study on maritime surveillance by combining AIS data and

recognized and analyzed the vessel targets in the collected

TerraSAR-X (R) images and AIS data in order to further identify

the vessel targets that distinguish between “enemy” and “friendly”

identities in a wide range of sea areas, which helps to determine

whether the vessel poses a threat to navigation safety in the sea area or

not. Meanwhile, Duan et al. (2022) proposed a semi-supervised deep

learning approach for ship trajectory classification via ships based on

ship AIS data. In addition, compared with AIS, FMCW radar can

detect some small vessels without AIS. This approach expands the

scope of maritime monitoring and helps to monitor the vast ocean in

real time to improve the safety of marine shipping. Therefore, Hong

and Yang (2013) utilized the FMCW radar’s all-weather and low-

power operating characteristics to monitor real-time vessel

activity information.

In general, although the method of using shipboard electronic

communication equipment to monitor ships mentioned above has

achieved certain effective results in general, this method shows a

high degree of dependence on communication equipment. When

the shipboard radio communication equipment fails to work

properly, the relevant maritime management department is

difficult to obtain timely information about the activities of the

ship at sea, which makes the initiative of maritime monitoring and

management subject to greater restrictions, and fails to effectively

solve the problems of maritime work in the real environment.
2.2 The current deep-learning-based
approach to ship monitoring

In recent years, with the development of deep learning

technology and computer vision technology, neural network

models are now dominating the application of sea area perception

(Thombre et al., 2022) due to their superior ability to fit the data.

Compared with the traditional ship monitoring methods, the

methods of deep-learning-based ship monitoring have made

greater progress in the accuracy of ship recognition. The current

ship recognition models mentioned above can be categorized into

three types of modeling strategies.

Firstly, based on the target recognition technique, in order to

solve the problem that the huge imbalance in the number of

samples of different scenes leads to a serious degradation of the

ship detection accuracy of synthetic aperture radar (SAR), Zhang

et al. (2020) proposed a balanced scene learning mechanism

(BSLM) for offshore and nearshore ship detection in SAR images.

In view of the limitations such as under-utilization of available
frontiersin.org
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information for maritime information, Li et al. (2023b) and Jiang

et al. (2024) proposed a two-way integrated ship monitoring system

based on knowledge migration that integrates remote satellite

equipment and nearshore detection equipment. Wang et al.

(2023) proposed a SAR ship recognition method that enhances

the features at each scale through multi-scale feature focus and

adaptive weighted classifier and adaptively selects effective feature

scales for accurate recognition. Yasir et al. (2023a), by incorporating

the C3 and FPN + PAN structures, as well as attention mechanisms,

successfully addressed the performance degradation caused by

complex background interference, variations in ship sizes, and

blurred features of small ships in synthetic aperture radar (SAR)

ship detection. Nie et al. (2017) used single shot multi box detector

as the basic architecture in order to improve the prediction accuracy

of distinguishing different types of ships by different levels of feature

maps. Chen et al. (2022) discusses proposing a new method for fast

small ships using degradation-based reconstruction enhancement

for medium-resolution (MR) remote sensing (RS) image. Zeng et al.

(2021) investigated ship classification by dual-polarized SAR, and

their model was able to efficiently classify ships into eight accurate

categories such as cargo, tanker, carrier, container, fishing, dredger,

tug, passenger, etc. Połap et al. (2022) proposed an image classifier

based on artificial intelligence techniques for automatic ship

classification in monitoring systems. The method employs a

combination of cascading classifiers and reward-penalty

mechanisms that can effectively classify ships. By cascading

multiple classifiers, the accuracy and generalization ability of

classification can be improved.

Within the technical field of target detection, etc., in order to

solve the problems of low accuracy and poor generalization ability

in multi-scale ship detection, Hu et al. (2022) proposed a framework

of anchorless network using balanced attention (BANet) for multi-

scale ship detection in SAR images. Aiming at the performance

problem of maritime ship monitoring when in low visibility

environments, a learning parameter sharing (LPS) approach was

adopted, and Qu et al. (2023) proposed an Image Enhancement

Monitoring Network (LPSNet). Meanwhile, Li et al. (2023a)

proposed a ship detection model called the Leap-Forward-

Learning-Decay and Curriculum Learning-Based Network that

combines an innovative strategy of leap-frog learning rate decay

and a curriculum-based learning strategy to enhance its detection

performance, making it more suitable for maritime monitoring in

real-world environments. Zha et al. (2022) proposed a novel ship

detection model based on multi-feature transformation and fusion

(MFTF-Net) to solve the monitoring performance problems such as

missed detection and false detection. Meanwhile, this technique can

also be applied to the management of ship’s deadweight tonnage.

Hou et al. (2023) proposed a method to manage the ship’s

deadweight tonnage by using the rotationally invariant task-aware

spatial de-entanglement (RITSD) algorithm. This method

implements a method of obtaining regression formulas for the

ship’s deadweight tonnage (DWT) as well as its shape by analyzing

high-resolution satellite images. This new method provides a new

way for maritime transportation monitoring and we can better

manage and monitor maritime transportation activities. Zhang et al.

(2023) employed the ghost module and transformer to enable the
Frontiers in Marine Science 05
model to achieve fast and accurate object detection capabilities even

in complex maritime environments.

Finally, the semantic slicing domain aspect technology, Cui

et al. (2019) utilized a novel multi-scale ship detection method

based on SAR images by densely refining the Convolutional Block

Attention Module (CBAM) tandem feature maps in Pyramid

Networks (DAPNs), which can extract a wide range of resolving

and semantic information to achieve high accuracy ship

monitoring. Finally, in the technical field of image semantic

segmentation, for example, in order to solve problems such as the

lack of consideration of the characteristics of the target ship task

leading to low overall accuracy, Shao et al. (2023) proposed a scale-

in-scale (SIS) idea for SAR hull instance segmentation, and Huang

and Li (2021) proposed a hybrid task for improved ship instance

segmentation cascade enhanced model (Zhang and Zhang, 2022).

Huang and Li (2021) proposed a new directional silhouette

matching network architecture using multi-scale features and

instance-level masks for realizing ship instance segmentation

under a single sample and without anchor frames. Roy et al.

(2023) proposed a deep learning-based model that is sufficient to

classify ships and no ships and to localize the ships in the original

image using the bounding box technique. Yasir et al. (2023b), by

optimizing the network architecture design, network feature fusion

structure, and improving the feature optimization module, achieved

a more precise and efficient ship instance segmentation in high-

resolution ship remote sensing images. In addition, a deep learning-

based autoencoder model is also utilized to segment the classified

ships again, which helps in the early identification of possible

threats at sea.

The abovementioned work provides an effective reference for

improving the accuracy of ship monitoring, which is an important

achievement of research in the field of maritime monitoring. At the

same time, the abovementioned research works are still all discussed

from the perspective of traditional deep learning tasks, and the

research on the robustness and generalization ability of deep

learning-based ship detection models in ship type recognition is

still relatively lacking, which greatly limits the feasibility as well as

practicality of the models’ application in real nearshore

maritime management.
3 A multi-angle metric
networks framework

The overall workflow of the AMAM-Net network proposed in

this paper is divided into two phases, containing modules such as

triad generation module, triple feature extraction module, multi-

scale ternary loss function, and multi-scale similarity measure

module, as shown in Figure 2 below. The first phase is called the

triad pre-training phase, in which we first train the network model

on a large-scale classification dataset and utilize the transfer

learning technique in order to improve the performance of

detecting ships near the shore. Subsequently, a triplet generator is

utilized to generate a preprocessed dataset with multiple triplets

based on the categories of the ship images, where each triplet

consists of an anchor sample, a positive example sample, and a
frontiersin.org
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counterexample sample, where the anchor sample and the positive

example sample belong to the same ship category, and the

counterexample sample belongs to a different ship category. Then,

this dataset containing multiple triples is fed into the feature

extractor with ResNet34 as the backbone, respectively. The final

pooling layer is modified to set the fully connected layer output

dimensions as a way to output dimension-specific feature vectors

for each of the three samples, mapping these samples into a low-

dimensional feature space. The difference between these distances is

measured in the low-dimensional feature space by defining a

multiscale ternary loss function. Through the backpropagation

algorithm, the model can update the network parameters based

on the gradient information of the loss function, thus gradually

optimizing the learning process of feature representation, while in
Frontiers in Marine Science 06
the second all-type evaluation phase after the training is completed,

it consists of the triple feature extraction module that has been

trained with the composition of the AMAM-Net network and can

be used to predict the class of unknown samples. For an unseen

query sample, its feature representation is extracted by the feature

extractor and compared with the feature representation of the

known categories in the support set. By computing the multi-

scale similarity between the two vectors of the comparison, the

new sample can be matched to the category that is most similar to

its feature representation.

Subsequently, a comprehensive description of this AMAM-Net

network model is presented, including the problem statement,

ternary generator, ternary feature extractor, multi-scale triplet loss

function, and multi-scale similarity measurer.
FIGURE 2

Model architecture of AMAM-Net.
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3.1 Problem statement

In this study, we treat the task as a supervised classification

problem aiming at recognizing ship types in images. The model

aims to classify ship types displayed in ship profile images captured

by an optical nearshore surveillance camera. In the provided

dataset, D = (xk, yk)f gNk=1, xk corresponds to the kth ship

outboard profile image, the category of the ship image is

represented by the label yk, and N denotes the total number of

images in the dataset. The main objective of this work is to predict

the category of ships and the output of this task can be expressed as

fship−match : xk → ykf g.
3.2 Triplet generator

The preparation of data for the AMAM-Net network necessitates

initial passage through a triad generator, which processes a raw

dataset accompanied by corresponding labels. Each category within

the dataset encompasses a multitude of sample images, each

annotated with a label that signifies its respective category. The

triad generator is pivotal in the training regimen of the AMAM-

Net network as it fabricates triplets that are indispensable for the

acquisition of a discriminative feature representation. A triplet

comprises an anchor sample (xai ), a positive example sample (xpi )

hailing from the same category, and a negative example sample (xni )

originating from a disparate category. The theoretical underpinning

of triplets is predicated on their capacity to instruct the model in

learning an embedding space where samples from the same category

are more proximate to one another than to those from divergent

categories. Following the ingestion of the entire training dataset into

the triad generator, it becomes imperative to forge pairs of positive

and negative examples predicated upon the anchor sample categories.

For each anchor sample, a sample from a distinct category must be
Frontiers in Marine Science 07
randomly selected to serve as a counter-example sample (xni ). An

exemplar of triadic preprocessing data is delineated in Figure 3. The

triad generator will then construct triplets from these positive and

negative example pairs, which will subsequently be utilized to train

the model. This training endeavors to align the positive example

samples more closely with the anchors, ensuring that the embeddings

of the negative example samples are more distant from the anchors

than those of the positive examples. The dataset is amalgamated by

integrating the generated triplets into a data subset that encompasses

anchor point samples, positive examples, and counterexample

samples, all of which are instrumental in training the deep learning

model. This methodology capitalizes on the triplet loss function,

which is engineered to attenuate the distance between the anchor and

positive samples while amplifying the distance to the negative

samples. This enforces a relative distance constraint that is

advantageous for the learning of a salient feature space.

Concurrently, data augmentation methodologies are employed to

enact a spectrum of transformations and expansions upon the

training data, thereby enhancing the performance and

generalization capabilities of the model to a notable extent. The

operational specifics of the triad generator are articulated in Figure 3,

Algorithm 1.
3.3 Triple feature extractor

In order to realize the effective monitoring of ships near the

shore, we input the output from the triad generator: the i-th triad

containing xai , x
p
i , x

n
i into the triple feature extraction module for

feature extraction, and we utilize the basic module of the residual

network as the backbone network. In the triple feature extraction

module, the samples of each ternary are first fed into the

corresponding feature extractor separately, and the ship image

information is fed to the convolutional layer for higher-level
FIGURE 3

Examples of the generated triples.
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representation. The convolutional layer is the core layer of the

convolutional neural network (CNN), which extracts the

information by convolutional kernel scanning. The formula for

the convolutional layer is shown below:
Fron
Input: Outboard profile ship detection dataset

D = (xi,yi)f gNi=1

Require: Random selection function, RandomSelect();

data size adjustment function Resize(); data

normalization function, Resize(); data normalization

function, Normalize().

1: # obtain multiple subsets

2: for xi in D:

3:  €D←Resize   (D) # Resize the image in the dataset to

224 × 224.

4:  �D←Tensor   (D)

5:  �D←Normalize   (D) # The mean and standard deviation

on the R, G, and B channels are set to 0.5.

6: end for

7: Da ,Dp ,Dn = ½�

8: # Randomly selected anchor points with positive

example samples of the same category and negative

example samples of different category

9: for xi,yi in D do:

10:  Da ←RandomSelect   (xj ,yi)

11: end for

12: for xj ,yi in D do:

13:  Dp ←RandomSelect   (xj ,yi)

14: if yk = y then

15:   Da ←RandomSelect   (xkjyk = y)

16:   Dp ←RandomSelect   (xkjyk = y)

17: else if yk ≠ y then
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18:   Dn ←RandomSelect   (xkjyk ≠ y)

19: end for

20: end for

21: Dt
i = Da ∪ Dp ∪ Dn

Output: Triplet preprocessing dataset:

Dt = (xa
k ,  x

p
k ,  x

n
k)

� �i
k=1,∀ i ∈ 1,  ⋯,  Nf g
Algorithm 1. Triplet segmentation and synthesis algorithm.

sij =o
m
o
n
(xai , x

p
i , x

n
i )i+m � wm,n; (1)

where s is the feature obtained by extracting the image, x is the

input of the image to the convolutional layer, w is the weight of the

convolutional kernel, i, j are the dimensions of the extracted

information, and m, n are the dimensions of the convolutional

kernel. Finally, the last pooling layer of the original ResNet34 is

removed and the fully-connected layer is modified to output

dimension-specific feature vectors to obtain the most

representative features for each image sample. In addition, the

triple feature extraction module performs sample feature

extraction as shown in Algorithm 2.
3.4 Multi-scale triplet loss function

In this paper, multi-scale triplet loss is used as a loss function for

model training by minimizing the distance between samples of the

same category and maximizing the distance between samples of

different categories, even in the absence of label information.

Compared to contrastive loss (Hadsell et al., 2006), it can more

fully utilize the information between samples and provide richer

similarity information. Also, to more fully utilize the relative

relationship between the three samples, the loss function can be

defined by a variety of different scales of distance (Euclidean, cosine

distance, etc.). The Triplet Loss formula is as follows:
Input: Triplet preprocessing dataset

Dt = (xa
k,x

p
k,x

n
k)

� �i
k=1,∀ i∈ 1,…,Nf g

Require: Residual − n(), Conv − n(), Maxpool − n(), FC()

functions, which contains the basic elements of the

residual network, such as the convolutional layer,

the maximum pooling function, the average pooling

function, and the fully connected layer, and the

suffix “n” in the function is the corresponding

feature extractor number.
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Fron
1: ea
i ,e

p
i ,e

n
k = ½�

2: # Get the feature vectors of the anchor, positive and

negative samples

3: for xa
k,x

p
k,x

n
k in Dt

4:  k
xa,x

p
k,x

n
k ←Conv xa

k ,x
p
k ,x

n
k

� �

5:  k
xa,x

p
k,x

n
k ←Maxpool xa

k ,x
p
k ,x

n
k

� �

6: for i in [3,4,6,3] do: # [3,4,6,3] is the number of

the residual basic block

7: for j in 1 to i do:

8:    k
xa,x

p
k ,x

n
k ←Residual xa

k ,x
p
k ,x

n
k

� �

9: end for

10: end for

11: ea
i ,e

p
i ,e

n
i ←FC xa

k ,x
p
k ,x

n
k

� �
# set the output feature

vectors dimension

12: end for

13: et = ea
i ∪ ep

i ∪ en
i

Output: Specific dimension feature

vector: et = (ea
i ,e

p
i ,e

n
i)

� �i
k=1,∀ i∈ 1,…,Nf g
Algorithm 2. Triple feature extractor algorithm.

Losstotal = ½aLossCosine +… + bLossEuclidean�+ +Margin; (2)

where Losstotal   is the total loss function, which weights and

sums the loss values of multiple scales, a , b represent different

weight parameters to balance the influence of each distance

measure, Margin is the minimum interval between the distance of

distancepa and distancean to prevent the loss value from being too

small, and + means that when the value in [] is greater than zero, the

value is taken as the loss.

LossEuclidean =
1
N o

N

i
f (xak) − f (xpk)

�� ��2− f (xak) − f (xnk )k k2
h i( )

; (3)

LossEuclidean =
1
N o

N

i

(f (xai ) · f (x
p
i ))

f (xak)
�� �� ∗ f (xpk)

�� �� −
(f (xai ) · f (x

n
i ))

f (xak)
�� �� ∗ f (xnk )

�� ��
" #( )

;

(4)

where‖f (xak) − f (xpk)‖
2
is the Euclidean distance metric between

the anchor sample and the positive sample, ‖f (xak) − f (xnk )‖2
is the

Euclidean distance metric between the anchor sample and the
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negative sample;
(f (xai )·(f (x

p
i ))

f (xak )k k ∗ f (xpk )k k is the cosine distance metric

between the anchor sample and the positive sample, and

(f (xai )·(f (x
n
i ))

f (xak )k k ∗ f (xnk )k k is the cosine distance metric between the anchor

sample and the negative sample. The samples are the inputs xak , x
p
k , x

n
k

for each ternary, k is the number of input image ternaries, and f ( · ) is

the mapping function of the network, and the size of the whole

training set is N.
3.5 Similarity metric
Input: Full range of ship inspection support datasets

DS = (xk ,yk)f gik=1, ∀i ∈ 1, 5, 10,…f g, and query datasets:

DQ = (xg,yg)
� �j

k=1, ∀j ∈ 1,…,numf g

Require: Mean function, Mean(); Similarity metric

function, Similarity(); Maximum index function,

Argmax().

1. # Feature vectors extraction of images from support

set and query set

2. for xk ,xg in DS ,DQ:

3. xk ,xg ←Conv xk ,xg
� �

4. xk ,xg ←Maxpool xk,xg
� �

5. for i in [3,4,6,3] do: # [3,4,6,3] is the number of

the residual basic block

6. for j in 1 to i do:

7. xk ,xg ←Residual xk ,xg
� �

8. end for

9. end for

10. eS
k ,e

Q ←FC(xk ,xg) # set the output feature vectors

dimension

11. end for

12. # Prediction part: comparison of extracted feature

vectors
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Fron
13. eS
k ←Mean eS

k

� �

14. for j in num do:

15.  pi ←SimilarityðeS
k ,e

Q
gÞ

16. Ci ←Argmax pi jyg
� �

17. end for

Output: The label for the largest cosine similarity

group and similarity: Ci = (xk ,pi)f gik=1.
Algorithm 3. Multi-scale similarity measures algorithm.

In the prediction stage, the optimal model is tested by calling the

trained optimal model, and the support set and query set of all kinds of

ship detection:DS,DQ are inputted into the feature extractor in order to

obtain the feature vectors of the support and query samples, and the

mean operation is performed on the support samples of the same type,

which is later imported into the multi-scale similarity metric module.

For the scale features, using measures such as Euclidean distance, cosine

similarity, etc., the similarity of each scale similarity value is summed by

adding factors with different weights (l, µ, etc.) to obtain similarity, and

the multidimensionality metric module is used to match the feature

vectors obtained from the support setDS andDQ the query set, and the

group with the maximum similarity is selected as the predicted category

label, and the comparison process is shown in Figure 4 as follows, and

finally complete the image classification as follows:

Similarity(DS ,DQ) = l · Cosine(DS ,DQ) +… + m · Euclidean(DS ,DQ) , (5)
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pi = Similarity(DS ,DQ) , (6)

yi = argmax (pi) , (7)

where l, µ… are different weight parameters to balance the

influence of each distance measure; pi is the similarity value between

DS and DQ samples, which is used as the confidence level of each

category, and yi is the category with the largest cosine similarity

value in each group as the predicted category label of the DQ

samples, and the specific operation is shown in Algorithm 3.
4 Experiments and results

This section describes the experimental results and details of the

AMAM-Net network, including the construction of the

experimental dataset, the configuration of experimental

parameters, the evaluation metrics, and the sensitivity analysis of

the network parameters. Experiments are then conducted and

compared between AMAM-Net and other methods. To

demonstrate the effectiveness of AMAM-Net, we finally apply the

enhanced results to real-time images captured by realistic nearshore

surveillance equipment for different types of ship detection tasks.
4.1 Experimental datasets

In this study, a total of four ship detection datasets, the adapted

deep learning ship dataset, the realistic environment ship detection
FIGURE 4

Multi-scale similarity metrics module for the few-sample case. The support sample points used for comparison are computed based on the average
of the multiple support sample vectors (dashed lines) under each class, and the similarity is computed by the distance relationship between them.
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dataset, and two multi-category ship detection datasets based on

coarse versus fine classification, respectively, are used to train or

evaluate the performance of AMAM-Net. The original deep

learning ship dataset is a publicly available deep learning image

task dataset, consisting of 6,252 images of five types of ships, with

data examples of the set as well as the statistics shown in Table 1,

respectively. The dataset contains a large number of high-quality

images with clear contrast and sharp focus and a sufficient number

of images of each type to make it a suitable choice for training deep

learning models. In addition, because the original dataset has a wide

range of classification criteria, resulting in a category containing a

variety of ships belonging to the same broad category, such as the

cargo ship category that contains multiple samples such as general

cargo ships, bulk carriers, container ships, etc., which causes some

trouble for the similarity learning of the model, so we have been

careful in processing of the same type of ships to be extracted, as

shown in Table 1, and ultimately obtained a training dataset with

seven categories of ships with a large number of image samples in

the training datasets. Our dataset is publicly available at https://

doi.org/10.6084/m9.figshare.27874146.

On the other hand, the Realistic Maritime Ship Inspection

Dataset and the Full Type Classification Ship Inspection Dataset,

which has both detailed and rough classification criteria, are both

datasets with small data volumes, which we specifically collected to

test as well as to evaluate the robustness and generalization ability of

each model. The image quality of the Realistic Maritime Ship

Inspection Dataset better reflects the realism of the conditions

during the nearshore inspection task and includes a variety of

weather-related factors, but with categories that are known to the

model at the time of training, thus providing a more accurate and

representative assessment of the robustness of the models. The Full

Type Classification Ship Inspection Dataset, on the other hand,

focuses on the diversity of ship types and contains a nine-category

classification task dataset for the rough classification of ships and a

73-category classification task dataset for detailed classification,

respectively. The main purpose is to verify whether the model has

better generalization ability in the face of more new unseen

categories. The data samples in the above datasets were captured

using optical surveillance cameras. Compared with the deep
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learning blood vessel dataset, the images in this dataset are more

realistic and can effectively reflect the robustness and generalization

ability of the model. The statistics of these four datasets are listed in

Tables 1, 2, respectively, and the visual representation of the

samples in the dataset is provided in Figure 5 accordingly.
4.2 Experiment environment and
parameters setting

We used a pre-trained ResNet 34 model on the ImageNet

dataset as the backbone of the AMAM-Net monitoring module.

The entire model was optimized using a multi-scale ternary loss

function to combine multiple ternary distance measures in a

weighted manner. We empirically set the batch size to 32 and the

learning rate to 0.001. Based on the experimental results, average

stochastic gradient Descent (ASGD) was used as the optimization

algorithm, the spacing parameter value (margin) was set to 0.875,

and the feature dimension vectors with a nominal dimension value

of 2,048 dimensions were selected. The experiments were

performed on a computer including a 64-bit Windows 11

operating system, a 12th generation Intel Core i7-12700

processor, 32 GB of RAM, and NVIDIA GeForce RTX 3060. The

PyTorch deep learning framework, version 11.7, was used, with

PyCharm as the main software compilation tool and Python 3.9 as

the programming language.
4.3 Evaluation indicators

The AMAM-Net ship identification performance is evaluated

quantitatively in terms of accuracy, precision, recall, and F1, which

are as follows:

Accuracy = (TP + TN)=(TP + FP + FN + TN)

Recall = TP=(TP + FN)

Precision = TP=(TP + FP)

F1 = 2� (Precision� Recall)=(Precisionþ Recall)

8>>>>><
>>>>>:

(8)
TABLE 1 Dataset statistics.

Deep learning vessel dataset Preprocessed deep learning vessel dataset Realistic maritime ship inspection

Category Number of samples Category Number of samples Category Number of samples

Cargo 386 Aircraft 386 Cargo 137

Carrier 1,269 Bulk 683 Carrier 131

Cruise 747 Carrier 1,269 Cruise 115

Military 823 Container 1,809 Military 126

Tankers 1,234 Cruise 747 Tankers 127

General 588

Military 823

Tankers 1,234
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where we use a number of terms to describe the accuracy of the

prediction results. When a positive sample is correctly predicted as

positive, it is called true positive (TP). Similarly, when we correctly

predict a negative sample as negative, it is called true negative (TN).

However, when incorrectly predicting a negative sample as positive,

we call it false positive (FP). Conversely, when we incorrectly

predict a positive sample as negative, we call it false negative

(FN). The abovementioned metrics can help us evaluate the

accuracy and performance of the model.
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4.4 Experimental results

In order to deeply investigate the performance of AMAM-Net

network in terms of robustness, stability, and migration on different

data, AMAM-Net is compared with a variety of widely used image

classification models based on deep learning, including the well-

known LeNet, AlexNet, VGGNet, ResNet, GoogleNet, DenseNet,

and MobileNet models. MobileNet and other models. All baseline

models are tested for robust performance on the Realistic Maritime
TABLE 2 Full type classification ship inspection dataset.

Category Subcategory Category Subcategory Category Subcategory Category Subcategory

Transport

Bulkers

Engineering

Crane Ships

Port Service

Coast Guard
Sailing

Sailing Ship

Cement Carriers Dredgers Buoy ships Sailing Yacht

Containerships Drilling Rigs
Firefighting
Vessels

Underwater Submarines

Fruit Juice and
Wine Tankers

Floating Sheerlegs Law Enforcement

Passenger

Accommodation

Gas Tankers
(Film-type)

Heavy Lift Vessels Lifeboats
Ancient

Motor Vessels

Gas
Tankers

(Spherical)
Lift Vessels Pilot ship Ferries

General Cargo Platform Tugs Flybridge Yachts

Great Lakes (Tugs
& Barges)

Processing vessels
Offshore

Crew Vessels
Harbour &
tour boats

Great
Lakes Bulkers

Semi-
Submersible Boat

Rescue Vessels Liner

Inland Dry
Cargo Vessels

Salvage Vessels
Guard Vessels
Safety Rescue

Super Yachts

Inland Tankers Work barge

Surface

Aircraft Carrier

Live Fish Carriers

Ocean Development

Cable vessels Battleship

Livestock Carriers Icebreakers Cruisers

Ore Carriers Supply Vessel Destroyers

Refrigerated ship Support Vessel Fast Attack Craft

Ro Ship Survey Vessel Frigates

Tankers Drill Ships Landing Ships

Vehicle Carriers

High Speed

Hydrofoil
Littoral

Combat Ship

Wood Chip Ship
Small

Waterline
Catamaran

Mine
Warfare Ships

Offshore-
Fishing Vessels

Wave
Piercing

Catamaran
Patrol forces

Deep-Sea
Fishing Boat

Wave
Piercing Trimaran

Hospital ship
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Ship Inspection Dataset, while the generalization performance is

evaluated on the Full Type Classification Ship Inspection Dataset.

The abovementioned models are chosen because they have shown

excellent results in many image classification tasks and have the

potential to achieve excellent results in detection tasks as well.

The comparative experimental results given in the left side of

Table 3 show that AMAM-Net has excellent monitoring accuracy in

the known sample set. Using the AMAM-Net that has been trained

on the Preprocessed Deep Learning Vessel Dataset, in the Realistic

Maritime Ship Inspection Task, there is no need to re-train it,

relying only on the Realistic Maritime Ship Inspection Dataset to

extract five samples as the support set. With Ship Inspection Dataset

as the support set, the detection accuracy of AMAM-Net is

improved by up to 37.855% to 87.006% compared with baseline

models in the classification task, which proves that it can more

accurately predict the category of the samples and effectively reduce

the misclassification and improve the classification accuracy.

In addition, we also analyzed the model accuracy and recall, and

the experimental results are shown in Figure 6. It can be seen that

the average-AUC and average-PR values of AMAM-Net are

significantly higher than those of other models, and its average-

AUC and average-PR values are 0.96 and 0.90, respectively, which

indicate that our model has a high level between accuracy and recall.

Because of the high cost of misclassification situations in maritime
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surveillance management tasks, automatic detection models are

required to maintain high accuracy while maximizing recall. In

contrast, the average-AUC and average-PR of LeNet are only 0.66

and 0.37, respectively, which make it difficult for it to maintain a

good prediction ability in the maritime monitoring task in the

real environment.

In order to further verify the superiority of the generalization

performance of the AMAM-Net network, we purposely collected a

ship image inspection dataset with more categories, aiming at

comparing the deeper generalization performance of the models,

which is demonstrated in the middle as well as the right side of

Table 3. In the Full Type Classification Ship Inspection Dataset, the

AMAM-Net network still maintains a high detection and

classification performance on the large-scale category

classification problem. The detection accuracies of 94.614% and

75.013% are achieved in the rough classification with nine

categories and the detailed classification with 73 categories,

respectively, and the detection accuracies are improved by

83.917% and 63.897% on average compared with baseline models,

which shows that the AMAM-Net model can be used for large-scale

ship classification in the face of the more challenging tasks. The test

results show that the AMAM-Net network model, when faced with

the more challenging task of large-scale ship classification, can

obtain the ability to discriminate many new, unseen, and unfamiliar
FIGURE 5

Sample images of a randomly selected portion of the full type classification ship inspection dataset.
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ship types with only a small number of support samples, and the

generalization performance of AMAM-Net has been greatly

improved compared with many baseline models. In addition,

some baseline models, such as LeNet-5, which was originally

designed for handwritten digit recognition tasks, cannot be

directly scaled up to adapt to more categories of classification

tasks due to the fact that the network structure of these models,

as well as the size of the output layer, is fixed. Because its network

structure cannot accommodate these larger numbers of categories,

it was not possible to experiment with these baseline models and

obtain their performance metrics in this experiment.
Frontiers in Marine Science 14
4.5 Error investigation

We used the confusion matrix to check the prediction results in

the deep learningmodel using the traditional strategy and in AMAM-

Net. The experimental results in the error analysis in The Realistic

Maritime Ship Inspection Task are shown in Figure 7. In the Realistic

Maritime Ship Inspection Task, accurately distinguishing between

cargo and tankers is a problem with some difficulty for both the

baseline model and AMAM-Net. Typically, the baseline model tends

to make errors in the prediction of these two types of vessels and is

more inclined to incorrectly label tankers as cargo. In contrast, our
TABLE 3 Evaluation metrics comparison with other approaches.

Dataset

Realistic maritime
Ship inspection dataset

(5 categories)

Full type classification
Ship inspection dataset

(9 categories)

Full type classification
Ship inspection dataset

(73 categories)

Model Acc. Pre. Rec. F1 Acc. Pre. Rec. F1 Acc. Pre. Rec. F1

LeNet-5 37.855 37.126 37.845 36.479 — — — — — — — —

AlexNet 67.823 69.367 67.925 68.101 10.993 5.614 10.645 6.715 4.129 0.375 1.864 0.489

VGG-11 61.83 63.798 61.833 62.271 10.439 5.623 10.377 6.098 3.656 0.253 1.116 0.378

VGG-13 60.883 61.301 61.201 60.446 10.605 5.934 10.421 5.339 3.114 0.332 1.432 0.399

ResNet-18 66.246 69.169 66.268 65.674 10.383 5.413 10.431 5.395 3.114 0.274 1.499 0.367

ResNet-34 71.924 73.065 72.028 72.211 11.327 5.647 10.518 7.021 2.708 0.215 1.026 0.304

ResNet-50 62.461 64.42 62.326 62.691 10.438 5.379 10.208 6.001 3.046 0.215 0.894 0.302

ResNet-101 51.735 54.297 52.064 52.646 10.938 5.613 10.519 6.658 3.452 0.298 1.352 0.411

GoogleNet 41.325 39.819 41.534 39.626 11.382 3.947 10.250 3.136 5.958 0.245 1.290 0.404

DenseNet-121 72.555 73.222 72.583 72.762 9.716 5.113 9.333 6.131 2.911 0.197 0.805 0.285

DenseNet-169 70.347 70.547 70.54 70.417 11.049 5.931 10.813 6.707 3.249 0.195 1.062 0.289

MobileNet-V2 57.729 59.267 57.855 58.012 10.49 5.537 9.967 6.607 2.505 0.295 1.139 0.342

MobileNet-V3 63.722 64.406 64.114 63.954 10.605 5.662 10.231 6.496 3.791 0.258 1.074 0.384

AMAM-Net 87.066 87.986 87.507 87.041 94.614 94.868 94.613 94.625 67.366 68.59 67.212 67.068
fron
—, traditional models do not have the ability to recognize new types of ships; Acc., accuracy; Pre., precision; Rec., recall; F1, F1-score.
The bold values represent the optimal values for this indicator in the table.
FIGURE 6

Realistic maritime ship detection task average PR (precision–recall) and AUC curves.
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proposed model performs better in the identification of tankers, with

only 5.9% of cargo samples being incorrectly categorized as tankers.

At the same time, there are some results from our model that show

the 12.7% misclassification rate in predicting cargo as tankers. In

addition, our model also achieved a high accuracy rate in recognizing

cruise. Whereas the baseline model is more likely to misclassify

cruises as military, carrier, or tankers, our model has only a low

probability of misclassifying them as tankers.
4.6 Analysis of the effectiveness of the
triple feature extraction module

We also recorded the extraction effect of the triple feature extraction

module, in real time. At each stage of training, the feature vectors are

extracted and output by inputting the query samples into the feature
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extractor, and then the output vectors are downscaled using the t-SNE

method and visualized by mapping them into the three-dimensional

space. As shown in Figure 8, the sample points of each category of

AMAM-Net after a period of time of learning are changed gradually

from highly confusing to similar clusters, and at the same time the

boundary between clusters is clear. This experimental result proves the

effectiveness of the triple feature extraction module. The triple feature

extraction module can effectively map samples with similar features to

similar locations in the feature space, and can better capture the

common and different features of ship data between different types.
4.7 Analysis of the influence of reference
sample size on accuracy

Meanwhile, we conducted more explorations by defining a

problem of N ways k shots to evaluate the model’s ability to
FIGURE 7

Confusion matrices of each model. (A) LeNet, (B) AlexNet, (C) VGG11, (D) ResNet34, (E) ResNet101, (F) DenseNet121, (G) MobileNetV2, (H)
GoogleNet, and (I) AMAM-Net.
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generalize in a few-sample learning task, and the results are shown

in Table 4, where the model needs to learn k samples from a support

set containing N categories and make classification predictions on

the query set. To investigate how different numbers of reference

samples in different support sets affect ship monitoring

performance for three tasks, we tested the effect of support sets

containing a single, five, and 10 support sample counts on the

model’s classification results. The results in Full Type Rough

Classification Ship Inspection Task show that when the number

of reference samples is increased from single to five, the

classification accuracy of the model is improved by 19.601% to

94.614%. However, in the Full Type Meticulous Classification Ship

Inspection Task, the number of categories in the query set, N,

changes from nine to 73, which unsurprisingly decreases the

model’s performance by nearly 30%, but as the number of

reference samples continues to increase to 10, the model’s

classification accuracy improves by 5.823% over 61.543%, and the

model’s classification accuracy improves by 5.823% over 61.543%.

Thus, in general, classification performance decreases as the

number of N values increases, and the most direct way to

compensate for this performance degradation is by adding k

reference samples.

However, in the Realistic Maritime Ship Inspection Task, when

the k-value of the support set was increased from five to 10, there

was a problem that the accuracy decreased by about 1%. Due to the

increase in the number of reference samples in the support set, more

similar or redundant samples will appear and thus may cause the

model to focus excessively on some specific samples while ignoring

the feature information of other samples. At the same time, the

distribution of samples between categories may overlap, leading to

increased interference between categories. This makes it more
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difficult for the model to distinguish differences between

categories, thus reducing the accuracy on the query set.
4.8 Experiments on optimizer sensitivity
impact analysis

We delve into optimization algorithms for ship monitoring that

are applicable to real-world environments and conduct extensive

experiments on them. We tested six common optimizers such as

Average Stochastic Gradient Descent (ASGD), Adaptive Moment

Estimation (Adam), Adam with Weight Decay (AdamW), Adaptive

Delta (Adadelta), Stochastic Gradient Descent (SGD), and Root

Mean Square Propagation (RMSprop) with recorded metrics of

their best performance during training. This result can provide

some reference for other studies on ship monitoring tasks.

In the experimental session, we set the Margin parameter to 0.5

and the output embedding vector dimension to 128. The

experimental results are shown in Figure 9, where ASGD

performs best on the validation set with a large number of

categories, while the optimization algorithms such as Adam,

AdamW, and RMSprop are less effective. An accuracy level of

86.95% was achieved when using ASGD. The next best is SGD with

85.34% accuracy. The reason for the poor performance of

algorithms such as Adam is that such optimizers usually have the

feature of adaptive learning rate, but with a small sample size, the

adaptive learning rate may lead to excessive fluctuations in the

learning rate, which, in turn, affects the performance of the model.

In contrast, the ASGD algorithm uses a fixed learning rate, which

may make it easier to find a suitable learning rate for ship datasets

with many categories and few samples. Meanwhile, ASGD can
TABLE 4 Comparison of evaluation indicators for different support sample numbers.

Dataset Number of categories k quantity Accuracy Precision Recall F1-score

Realistic maritime ship inspection dataset 5 categories 5 shots
10 shots

87.066 86.119 87.986
88.107

87.507
86.667

87.041
86.667

Full type classification ship
inspection dataset

9 categories 1 shot
5 shots

75.013
94.614

80.397
94.868

75.009
94.613

73.55
94.625
FIGURE 8

After reducing the high-dimensional feature vector to three dimensions using the t-SNE dimensionality reduction method, each sample point is
labeled in the corresponding embedding space. (A) Early stage of training (accuracy: 24.71%). (B) Middle stage of training (accuracy: 58.36%). (C) End
stage of training (accuracy: 93.56%).
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update the parameters by means of average stochastic gradient

descent, which is conducive to more stable optimization of the

model by reducing the variance of parameter updates. Therefore,

ASGD optimization algorithm has better performance in the ship

monitoring tasks with more types of ships mentioned in this paper.
4.9 Exploratory analysis of the impact of
spacing parameters

In order to further investigate the effectiveness of AMAM-Net

and optimize the model performance, the study of how the variation

of the spacing parameter (margin) affects the multi-scale triplet loss

is carried out. The experimental results show that the spacing

parameter is proved to have a significant effect on how the model

learns and organizes the feature space, and the optimal point of the

model’s performance is when margin is equal to 0.875, and the

specific experimental results are shown in Figure 10.

However, the interval parameter setting needs to be adjusted for

different task conditions, and too large an interval parameter may
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cause the model to have difficulty in finding an appropriate

classification boundary, especially if there is noise in the dataset

or there is overlap between the categories, which may lead to the

model being very sensitive and prone to overfitting. At the same

time, if the interval parameter is set too small, it may lead to overly

loose classification criteria and the model will be insensitive to

differences between samples. This may result in a model that

performs well in terms of accuracy on the training set, but shows

poor generalization ability in the face of new, unseen samples.
4.10 Analysis of the impact of feature
vector dimensions

The selection of the embedding dimension is a critical decision,

and we chose a range of embedding dimensions for our

experiments, so in this paper, we chose values of embedding

dimension sizes with a larger coverage to get a more

comprehensive understanding of the effect of dimension size on

the performance of the model. The experimental results show that

increasing the dimensionality improves the performance of the

model and that the dimensionality of the output of the fully

connected layer is optimal at 1,024 dimensions. The experimental

results are shown in Figure 11.

Under the current ship detection task, setting higher

dimensional feature vectors does not necessarily lead to better

results. When the dimensionality is the initial dimension of 64

dimensions, the model may not be able to capture the complex

relationships in the data and lose important information, leading to

an insufficient expression of the semantics of the features, resulting

in performance degradation. When the dimensionality is greater

than 1,024 dimensions, the data becomes sparse in the high

dimensional space, which may lead to a decrease in the degree of

difference in the distance between the sample points, and the

dimensionality catastrophe leads to an increase in the sparsity of

the data, and the distance between the samples becomes even

sparser, which increases the complexity of the model training and

inference. In addition, when the embedding dimension is too large,
FIGURE 9

Accuracy curves of the query set for different optimizers for the
rough classification nearshore detection task.
FIGURE 10

Accuracy curves of the query set for different margin values for the
rough classification nearshore detection task.
FIGURE 11

Accuracy curves of the query set for different margin values for the
rough classification nearshore detection task.
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the model may overfit the training data because the model can over-

remember subtle features of each sample. This may result in the

model performing poorly on unseen data and lacking generalization

ability. This can negatively affect the training and inference of the

model, and it becomes difficult to distinguish the boundaries

between different categories.
5 Implications

The methodology and results presented in this paper can

provide insights for researchers and administrators in the

nearshore maritime and other related fields. For researchers in

the field of nearshore maritime, our work demonstrates the

following research advantages: the monitoring model training

strategy approach used in this study is different from the

traditional training method, which makes it possible to utilize the

existing dataset supplemented with a small number of samples for

all types of ships in the directions of type identification and

monitoring, collision avoidance (Li et al., 2020), and target

discovery and localization and provides some reference support

for research. In addition, the research in this paper is the first

attempt to train and predict ship monitoring models with the

strategy of less sample learning. In our study, the classification

accuracies using the few-sample approach strategy outperform

those using the traditional deep learning strategy in a variety of

prediction tasks with different quantities. This demonstrates the

significance of the few-sample learning strategy for model

generalization performance improvement and gives insights to

researchers in this field to carry out analytical studies applied to

real maritime management monitoring systems.

At the same time, for managers working in the maritime shipping

industry, this study provides the following two managerial

implications: (1) This study contributes to the safety management of

the activities of shipping. Illegal intrusion into controlled waters and

waterway smuggling have become one of the biggest hazards to

shipping safety. By using our network framework to build a ship

intelligent patrol system, predictive analysis of real-time collected ship

data provides real-time references for managers’ decision-making; (2)

With the globalization of navigation and the development of

dehumanization of ships, the increasing demand for the regulation of

ship behaviors and the limited resources of transportation service

contradiction is obvious, and the frequent occurrence of maritime

accidents has become a problem. The research in this paper can be used

as a supplement to the monitoring system for abnormal ship behaviors

(Liu and Shi, 2020), such as illegal fishing (Arias and Pressey, 2016),

and specific sailing patterns or stopover behaviors of illegally extracting

vessels. Real-time monitoring enables timely detection and reporting of

illegal activities. In summary, depth-based ship monitoring technology

has a wide range of applications. It can obtain more comprehensive

information on marine activities and contribute to comprehensive and

effective marine decision-making. Our work can play an important role

in monitoring maritime traffic, safeguarding maritime rights and

interests, and improving maritime warning. We can use deep

learning image ship monitoring technology to analyze water traffic in

specific seas, bays, and ports and to address issues such as shipwreck
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rescue, illegal fishing, illegal smuggling, and illegal oil dumping by

ships. Through this analysis, we can provide predictive references to

support maritime management. This technology is an important part

of the next-generation maritime management system.
6 Concluding remarks and
future prospects

In this paper, a novel automatic ship monitoring model based on

image multi-scale feature information recognition is proposed to

enhance maritime management in the context of ship category and

shape diversity. Specifically, the proposed method consists of a triad

generation module, a triple feature extraction module, a multiscale

ternary loss function, and a multiscale similarity measure module. The

triad generation module aims to extract the original dataset to

construct a triad for training the deep learning model, and the triple

feature extraction module extracts the feature vectors of specified

dimensions for each sample, which, through the multi-scale triplet

loss and the back propagation of the network, enables the model to

learn an embedding function capable of mapping the samples of the

same category to similar locations in the embedding space. embedding

function. Then, in the testing phase, the embedding vector distance

between the query samples and the support samples can be calculated.

Finally, the classification is accomplished by comparing the similarity

probabilities between the vectors using a multi-scale similarity metric

module. Experiments on several different ship detection tasks show that

AMAM-Net can be generalized to different multi-class classification

and recognition tasks and achieve efficient generalization performance

on different tasks because AMAM-Net uses a different training strategy

from that based on traditional deep learning. In addition, experiments

on the Realistic Maritime Ship Inspection Dataset demonstrate the

robustness of the AMAM-Net method with significantly improved

detection accuracy compared to other traditional methods. It brings

significant improvement to the efficiency of nearshore maritime

management in the context of the diversification of ship types

and shapes.

Furthermore, in order to bringmore substantial improvements to

the efficiency of maritime management, the following two directions

will be considered in future research: firstly, by integrating other

information generation and scheduling techniques, the robustness

and generalization ability of the model will be further improved by

obtaining more samples to construct a more comprehensive training

dataset. The second is that in real maritime management, the

acquisition of ship visible image samples is not only limited by the

amount of data but also by the quality of the data, such as those

affected by weather conditions or due to lens distortion. Therefore, we

can comprehensively analyze the methods to improve the robustness

of the samples when they are perturbed to provide certain reference

values for safe navigation management.

Thanks to the fact that only a small number of samples are

required to train the AMAM-Net network, our AMAM-Net can be

effectively generalized to a large number of categories of detection tasks

and maintains high accuracy as well as robustness, which practically

improves the efficiency of nearshore maritime management in the face

of large-scale information on vessel traffic activities.
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