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Buoys, serving as crucial platforms for ocean observation, require precise

predictions of their motion states, which are essential for buoy structure

design, testing, and directly related to the stability and reliability of data

collection. Leveraging data-driven methods instead of traditional software

modeling analysis enables efficient analysis of the ocean environment’s impact

on buoys. However, the coupling mechanisms between the ocean and the

atmosphere complicate the pre-diction of buoy attitudes. In response to these

challenges, this paper systematically analyzes the key ocean surface elements

that affect buoy attitudes and innovatively applies the Pearson correlation

coefficient to quantify the potential coupling relationships between these

elements. The Recursive Feature Elimination with Cross-Validation (RFECV)

algorithm is employed to select the optimal feature subset from a large

number of raw features. Based on this, a Convolutional Neural Networks-

Bidirectional Gated Recurrent Unit (CNN-BiGRU) buoy attitude prediction

model is constructed. Experimental results demonstrate that the optimized

prediction model, when combined with the feature selection algorithm,

achieves a minimum prediction accuracy of 95.7%. This model not only

reduces the dimensionality of the original data but also precisely captures the

dynamics of ocean elements and their effects on buoy attitudes, leveraging the

powerful feature extraction and fusion capabilities of CNN.
KEYWORDS

buoy motion characteristics, feature selection, CNN-BiGRU, marine environment,
modeling and prediction
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1 Introduction

With the continuous development of global ocean observation

technologies, real-time monitoring data of sea surface elements

(such as wind fields, sea waves, and ocean currents) have become

increasingly abundant. These data are of great significance for

understanding ocean environmental dynamics, predicting

meteorological changes, ensuring maritime safety, and promoting

the sustainable utilization of marine resources (Wang et al., 2016; Li

and Wang, 2023). As a key platform in the ocean observation

system, buoys are undeniably important. However, given that buoys

are located at the complex interface of ocean-atmosphere

interaction, their motion attitudes are deeply influenced by the

coupling effects of oceanic and atmospheric dynamic processes,

exhibiting a high degree of complexity, dynamics, and irregularity.

Therefore, an in-depth exploration of the mechanism by which

ocean environmental parameters influence buoy motion response

has become an urgent need to enhance the understanding of ocean

dynamic processes, optimize ocean observation strategies,

strengthen meteorological forecasting capabilities, ensure the

safety of marine engineering, and promote environmental

protection (Xu et al., 2019; Jin et al., 2022). This exploration can

also help us scientifically plan the layout of ocean observation

stations, optimize the design and data collection strategies of

buoys, and thereby improve the accuracy and efficiency of ocean

observation, laying a solid foundation for marine scientific research.

In existing research, the methods for buoy attitude prediction

can be mainly categorized into: (a) physics-based modeling

approaches (Le Cunff et al., 2007; Ma et al., 2016; Zhu and Yoo,

2016; Yang et al., 2020; Chen et al., 2022; Zheng et al., 2024) and (b)

data-driven methods (Li and Bian, 2021; Deng et al., 2022). The

physics-based modeling approaches primarily utilize tools such as

ANSYS (Wang et al., 2024), STARCCM+ (Li et al., 2023), and

OpenFOAM (Jiang et al., 2021) to construct physical models of

buoys, encompassing geometry, materials, boundary conditions

(e.g., external forces like currents, waves, wind), and possible

constraints to simulate the dynamic behavior of buoys in marine

environments. However, for equipment situated in harsh and

variable environments, it is often challenging to establish relatively

accurate model systems, facing issues such as model simplification,

complex mesh generation, high professional requirements,

significant computational demands, and data sensitivity. In

contrast, data-driven prediction methods focus on utilizing actual

operational historical data of buoys to establish prediction models

through data analysis, machine learning, or deep learning

techniques to forecast future buoy attitudes (e.g., pitch, roll,

heave). These methods do not require a deep understanding of

the complex physical mechanisms within buoys but instead

construct prediction models based on correlations and statistical

laws among data, offering high flexibility and adaptability, minimal

reliance on experience, and strong capabilities in handling nonlinear

relationships. Among them, the Least Squares Support Vector

Regression (LSSVR) model proposed by Li et al. (Li and Bian,

2021) provides a new perspective for predicting buoy motion

characteristics. This model captures buoy motion characteristics

under different conditions, providing crucial information for marine
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environmental monitoring and early warning. Furthermore, Deng

et al. (Deng et al., 2022) utilized transfer learning to integrate in-

formation data under different conditions, enhancing the prediction

performance of marine buoy motion characteristics and offering a

new perspective for marine scientific re-search. Therefore, a data-

driven buoy attitude prediction method is undoubtedly a

better choice.

However, current prediction methods for buoy attitudes have

not analyzed the coupling relationship between buoy attitudes and

various marine environmental factors. The motion characteristics

of buoys are primarily influenced by multiple marine

environmental factors such as wind speed, waves, and ocean

currents. Generally speaking, utilizing multiple marine

observation parameters as inputs ensures data diversity, which

helps improve prediction accuracy. However, these parameters

may contain redundancies or have low correlation with buoy

attitudes. If they are directly used as inputs for the prediction

model, it will not only increase the number of parameters in the

prediction algorithm, affecting calculation speed, but may also

reduce prediction accuracy. Therefore, in the face of multiple

ocean surface parameter data, feature selection becomes crucial

for enhancing prediction accuracy.

Feature selection is a data preprocessing method to eliminate

irrelevant subsets (Jović et al., 2015), which is generally divided

into four types: filter methods, wrapper methods, embedded

methods, and hybrid methods (Chandrashekar and Sahin, 2014).

Filter methods (Sánchez-Maroño et al., 2007) are based on the

statistical proper-ties or information theory indicators of the data

itself, such as Pearson correlation coefficient, chi-square test,

mutual information, etc., to evaluate the correlation or

importance between features and target variables, and quickly

screen features. However, it may ignore the relationship between

features, leading to the selection of redundant features. Wrapper

methods (El Aboudi and Benhlima, 2016) evaluate the

contribution of feature subsets to model performance through

optimization algorithms (such as recursive feature elimination

(Liang et al., 2023), genetic algorithm ( (Oh et al., 2004), etc.) to

select the optimal feature subset. It considers the interaction

between features and has high accuracy but complex

calculations. It is suitable for scenarios with high requirements

for model performance, such as buoy attitude prediction.

Embedded methods (Boroujeni et al., 2017) integrate feature

selection with model training and simultaneously select features

and train models through the objective function of optimization

algorithms, such as L1 regularization, decision trees, and random

forests (Genuer et al., 2010). They have high computational

efficiency but may contain features that are less correlated with

target variables but have an indirect impact on model performance.

It can be seen that the wrapper method and the filter method

complement each other. The filter-based method can efficiently

and quickly search the feature space, but the evaluation bias of

subsequent learning tasks is large; while the wrapper-based method

has better accuracy but slower search speed. Therefore, the hybrid

method of the filter method and the wrapper method (Chen et al.,

2020; Hu et al., 2020; Mandal et al., 2021) is widely used to ensure

accuracy and reduce computational complexity. Given that buoy
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attitudes are affected by various complex marine environmental

factors, this paper adopts a fused feature selection method.

In summary, data-driven prediction methods, especially those

combined with feature selection algorithms (Farhangi et al., 2023;

Wei et al., 2023; Liu et al., 2024), can fully utilize the implicit

information in ocean surface parameter data. However, there can

also be coupling effects among various marine environments.

Therefore, the prediction model first needs to integrate multiple

marine observation parameters and extract their coupling effects on

buoy attitudes. The CNN-BiGRU network model, as an integrated

architecture that combines Convolutional Neural Networks (CNN)

and Bidirectional Gated Recurrent Units (BiGRU) (Liu et al., 2022),

can effectively capture complex nonlinear relationships in both spatial

and temporal dimensions. Through the powerful feature extraction

capabilities of CNN, high-level spatial features can be identified, while

BiGRU excels in processing time series data, capable of deeply mining

dynamic patterns in the temporal dimension.

In view of this, this article aims to use feature selection

algorithms to deeply analyze the coupling characteristics of sea

surface elements to improve the accuracy and efficiency of buoy

attitude prediction. Specifically, this paper first builds an

experimental platform to collect and process various sea surface

elements and buoy attitude data, and then uses advanced feature

selection algorithms to screen out the feature subsets that have the

greatest impact on buoy attitude prediction. On this basis, the

interaction relationship between these features is further analyzed,

and a buoy attitude prediction model based on feature selection

algorithm is constructed. Finally, the prediction performance of the

model is verified through experiments.

The rest of the article is structured as follows. Section 2

introduces the principles of the model and its algorithm

implementation in detail. Section 3 presents the experimental

data. In addition, the data characteristics are discussed to

determine the appropriate modeling method. Section 4 applies

Pearson correlation coefficient and RFECV to analyze the

correlation of features and select the optimal feature subset.

CNN-BiGRU is used to predict buoy motion characteristics. The

prediction results are compared with existing prediction models,

demonstrating the advantages of the proposed model in this paper.

Finally, Section 5 summarizes related work.
2 Methods

2.1 Feature selection

To enhance the accuracy of buoy attitude information

prediction, it is first necessary to employ feature selection

methods to deeply analyze the interaction between sea surface

environmental parameters and buoy attitude. In this study, we

initially utilize the Pearson correlation coefficient to conduct a

preliminary analysis of the correlations among environmental

parameters, with the aim of eliminating some irrelevant or weakly

correlated features. Subsequently, the RFECV method of random

forest (RF) is adopted to further optimize the feature set. By

constructing a random forest model, a mapping relationship
Frontiers in Marine Science 03
between environmental features and buoy attitude targets is

established. The model is repeatedly trained to evaluate the

importance of each feature, and those with lesser contributions to

prediction are recursively eliminated.

2.1.1 Pearson correlation coefficient
The Pearson correlation coefficient (Liu et al., 2020) is a widely

used statistical method for accurately measuring the degree of linear

correlation between two variables. Its value ranges from -1 to 1,

where 1 indicates a perfect positive correlation, -1 indicates a perfect

negative correlation, and 0 indicates no linear relationship between

the two variables. The closer the absolute value of the Pearson

Correlation Coefficient is to 1, the stronger the linear relationship

between the two variables. Its calculation principle is based on

covariance and standard deviation, with the specific formula as

Equation 1:

r = on
i=1(Xi − �X)(Yi − �Y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

on
i=1(Xi − �X)2(Yi − �Y)2

q (1)

In the formula: r represents the correlation coefficient, X

represents the main index, and Y represents the characteristic value.

2.1.2 Recursive feature elimination with
cross-validation

The RFECV algorithm (Liang et al., 2023) is an automated

feature selection technique that integrates the advantages of

Recursive Feature Elimination (RFE) and Cross-Validation (CV).

The algorithm first initiates the RFE process, which gradually

optimizes the feature set by con-structing a model, evaluating

feature importance, and iteratively removing the least important

features until a predetermined performance peak is reached or a

specific stopping condition is met. Subsequently, RFECV utilizes a

cross-validation strategy to comprehensively evaluate each feature

subset ranked by RFE, ensuring that the selected feature subset

maintains stable predictive performance across different data

subsets. In each fold of cross-validation, RFECV employs a

Random Forest model as the base learner to fit the currently

considered feature subset and calculate the cross-validation score

of the model on that fold of data. By synthesizing the scores from all

folds, RFECV is able to identify the optimal feature subset that

performs best across the entire dataset. This process is illustrated in

Figure 1, which briefly depicts the complete flow from the full

feature set, through RFE ranking and cross-validation screening, to

the final determination of the optimal feature subset. Starting with

all features, in each iteration, the least important feature is removed

based on the performance of the estimator (Random Forest, RF) on

the cross-validation set. After each step of feature selection, cross-

validation (cv=5, indicating 5-fold cross-validation) is employed to

evaluate the performance of the current feature subset. Here, Mean

Squared Error (MSE) is used as the performance criterion, meaning

that the goal is to maximize the negative of the mean squared error

(i.e., to minimize the mean squared error). RFECV continues to

remove features until a stopping criterion is met. For RFECV, this

stopping criterion is based on cross-validation scores. Specifically, it

selects the feature subset with the highest average score during the
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cross-validation process. Once a feature subset fails to improve the

average cross-validation score in subsequent feature removals,

RFECV stops further feature removal and returns this optimal

feature subset.
2.2 Convolutional neural networks-
bidirectional gated recurrent unit

In this paper, a 1D- CNN is employed to extract the overall

characteristics of the input features. The BiGRU method is adopted to

extract the correlations among the input features. The overall structure

of the proposed hybrid model network is shown in Figure 2, and the

model parameter design is presented in Table 1 (the parameter settings

were selected based on optimal values obtained through multiple

experimental comparisons). Firstly, the feature subset after feature

selection is used as input, and the CNN is utilized to extract the

correlations among features, fusing multiple features to better learn the

coupling characteristics among them. Then, the extracted features are

input into the BiGRU to extract sequential features, thereby enhancing

the effect of regression prediction. Finally, the forward and backward

outputs are merged and outputted. CNN-BiGRU (Song et al., 2024)

can effectively extract both local and global feature information.

The primary objective of CNN is to extract salient features from

input data. A typical CNN architecture comprises several layers,
Frontiers in Marine Science 04
namely convolutional, pooling, and fully connected layers.

Convolutional layers play a vital role in feature extraction, where

convolutional kernels capture relevant features from the input data.

The level of abstraction of the extracted features increases with the

number of convolutional kernels used. The fully connected layers

flatten the pooled neurons into a one-dimensional vector form,

facilitating more manageable data processing. However, CNNs are

ineffective in capturing the temporal dependencies of time-series

data for predictive tasks. Therefore, it is essential to integrate

recurrent neural network techniques and combine CNNs with

BiGRU networks to enhance performance.

GRU (Busari and Lim, 2021) is a type of recurrent neural

network model commonly used for processing sequential data,

which can better address long-term dependency issues. Compared

to traditional recurrent neural networks, GRU introduces a gating

mechanism that enables it to learn effectively to retain or forget

information in the sequence. GRU incorporates two gating

mechanisms: the update gate and the reset gate. The update gate

controls how much past information to retain, thereby addressing

the issue of gradient vanishing; the reset gate helps the network

determine how much past information to ignore, facilitating the

processing of short-term dependencies. The computational

formulas for each GRU gating unit are shown in (Equations 2–5):

rt = s (Wrxt + Urht−1) (2)

zt = s (Wzxt + Uzht−1) (3)

~ht = tan h(Whxt + Uh(rt ⊙ ht−1)) (4)

ht = zt ⊙ ~ht + (1 − zt)⊙ ht−1 (5)

In the above equations, xt represents the input to the hidden

layer at time t; ht is the output of the current layer at time t; rt and zt
represent the reset gate and update gate, respectively; ~ht is the

candidate memory unit at time t; Wr and Ur are the weight

coefficients for the update gate; Wz and Ur are the weight

coefficients for the reset gate; s refers to both the sigmoid

activation function and the hyperbolic tangent function. As a

unidirectional recurrent neural network structure, GRU typically

propagates states in a forward direction. However, BiGRU consists

of two GRU models with opposite directions, enabling it to more

comprehensively capture global information and long-term

dependencies within the time series.
2.3 The prediction process of buoy attitude

This study has constructed a systematic and comprehensive

methodological frame-work, which covers four core links. It aims to

deeply explore the complex relationship between sea surface

elements and buoy attitude, and design an ap-propriate buoy

attitude prediction model based on the coupling relationship

between the two. The specific research process and methodology

system are described as follows:
FIGURE 1

Flowchart of RFECV feature selection.
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1. Data collection and preprocessing stage. This stage focuses

on the construction of a high-quality dataset. Firstly,

diversified sea surface element data were comprehensively

collected from the buoy system, including but not limited

to key parameters such as wind speed, wind direction,

wave height, wave direction, sea water temperature, and

ocean current speed. To ensure the validity of the data,

a strict data synchronization strategy was implemented

to ensure precise matching between buoy attitude

data and sea surface element data in terms of time and

space dimensions, laying a solid foundation for subsequent

analysis. Subsequently, through a meticulous data cleaning

process, outliers and missing values were effectively

eliminated, and scientific interpolation methods were

used to fill data gaps, ensuring the completeness and

accuracy of the dataset. In addition, according to research
tiers in Marine Science 05
needs, the original data was further converted and derived,

extracting new features and statis-tics, enriching the

dimensions and depth of the dataset.

2. The design and application stage of feature selection

algorithms. To extract the most critical subset of features

from massive data for predicting buoy attitude, an efficient

feature selection algorithm was designed. Firstly, Pearson

correlation coefficient was used to conduct a correlation

analysis, initially screening out sea surface element features

that are highly correlated with buoy attitude. Then, the

RFECV method based on RF was employed to deeply

quantify the impact of each feature on the performance

of the prediction model, further refining the optimal feature

combination. Additionally, feature redundancy analysis

was performed to effectively avoid the problem of model

overfitting caused by high correlations between features.
FIGURE 2

The architecture of CNN-BiGRU model.
TABLE 1 Model parameter setting.

Parameters Training: Testing Filters Kernel_size Activation

Values 8:2 32 1 Relu

Parameters Hidden_dim Optimizer Batch_size Epoch

Values 40 Adam 40 600
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3. Coupling characteristic analysis and modeling stage. After

identifying the key features, the focus shifts to the coupling

mechanisms between sea surface elements and their

combined influence on buoy attitude. Through data-driven

methods, the interaction relationships between various

elements are deeply analyzed, revealing the com-plex

pathways through which they jointly affect buoy attitude.

Based on these in-sights, a machine learning model that can

accurately reflect the coupling characteristics of sea surface

elements is constructed, providing a powerful tool for precise

pre-diction of buoy attitude.

4. Experimental design and result analysis stage. To ensure a

comprehensive evaluation of model performance, an elaborate

experimental scheme was designed. The predictive capability

of the model was systematically tested through reasonable

partitioning of training and testing sets, implementation of

cross-validation strategies, and arrangement of comparative

experiments. During the evaluation process, several widely

recognized performance metrics, such as Root Mean Square

Error (RMSE) andMean Absolute Error (MAE), were selected

to quantify the prediction accuracy and generalization ability

of the model in multiple dimensions. Ultimately, through in-

depth analysis of the experimental results, not only the specific

contribution of different features to the prediction outcomes

was revealed, but also valuable insights were provided for

subsequent model optimization and application promotion.

The equations should be inserted in editable format from the

equation editor.
2.4 Evaluation criteria

This paper uses three of the most commonly used metrics to

evaluate the performance of the model: MAE, RMSE, and

Coefficient of Determination (R²). The specific calculation

formulas for these metrics are shown in (Equations 6-8):

MAE =
1
no

n

i=1
yi − ŷ ij j   (6)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n
i=1 ∣ yi − ŷ i ∣

2

r
(7)

R2 = 1 −o
n
i=0(yi − ŷ i)

2

on
i=0(yi − �yi)

2 (8)

Where, n is the total number of samples; yi is the actual value at

sample point i; and ŷ i is the predicted value at sample point i.
3 Experimental data description
and analysis

Based on the “Bailong” buoy (Yuan et al., 2023), this study

designed a buoy system equipped with a data acquisition device to
tiers in Marine Science 06
collect real-time parameters related to the buoy’s in-situ operation.

The buoy body is made of foam with a diameter of 2.3m, weighing

750kg, has a submergence depth of 0.56m, and a tower height of

2.3m. The buoy employs an r-type mooring system and is equipped

with meteorological sensors, current meters, wave sensors (Zhou

et al., 2022), attitude sensors, and a data acquisition controller. The

sampling period for the wave sensor is 10 minutes, the sampling

frequency for the attitude sensor is 4Hz, and the sampling frequency

for all other sensors is 1Hz. Powered by solar panels and lead-acid

batteries, the data is transmitted via 4G and periodically returned to

the data receiving center for storage, analysis, display, and upload.

The experimental buoys is illustrated in Figure 3. Figure 3A shows the

deployment process of the buoy and the scene after deployment.

Figure 3B displays the structural layout of the buoy, as well as the

relative positions and installation heights of the load sensors, and

provides the model of each sensor.

The buoy’s measured working dataset used in this paper was

collected from the National Deep-Sea Base Management Center from

16:30, November 10, 2023 to 07:10, November 21, 2023, and from

00:30, November 22, 2023 to 09:40, December 12, 2023. Given that the

sampling frequency of wave data is 10 minutes, the overall feature data

was grouped and processed accordingly to this time interval, i.e., the

data from every 10 minutes was considered as an independent unit.

After statistical analysis of these grouped data, a total of 4321 sets of

valid data were screened out. After the data collection was completed,

30 key environmental information features were identified and

recorded, and their corresponding abbreviations are detailed in Table 2.

During the data preprocessing stage, the first step involved

checking the data for errors, missing or abnormal values, and

deleting incomplete or corrupted data. Interpolation methods

were used to estimate missing values. Secondly, to eliminate the

dimensional differences among various feature variables, all features

were normalized. In particular, given the high symmetry of the buoy

structure, this study focuses on predicting the pitch, roll, and heave

characteristics of the buoy. Furthermore, due to the high symmetry

exhibited by the pitch, roll, and heave characteristics of the buoy at

troughs and peaks (as shown in Figure 4), the mean absolute value

and trough mean of each set of attitude data were calculated as

target features (refer to Equations 9, 10 for specifics). The statistical

values of the overall data after processing are presented in Table 3.

valleymean = o
n
i=1valleyi
n

(9)

absmean = o
n
i=1 absij j
n

(10)

In the above formula, n refers to the total number of samples in

10-minute data.
4 Results and discussion

4.1 The result of feature selection

This study first adopts the Pearson correlation coefficient as a

quantitative indicator to analyze the influence of sea surface
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environmental factors on the motion attitude of buoys. As one of

the most direct forces, waves directly lead to periodic vertical lifting,

horizontal shaking, and even rotational motion of buoys due to

changes in their frequency and intensity. This not only tests the

stability of the buoy but also directly affects the accuracy of the

observed data. Figure 5 shows the correlation analysis results

between wave parameters and buoy attitudes. The analysis results

show that there is a significant linear correlation between wave

period, wave height, Dmean, and attitude characteristics. However,

the linear correlation between Dmain, Dp, MaxDirSpec, and attitude

parameters is very small. Moreover, the correlation coefficients

between Hmax, Havr, H1/3, Hm0, Havr_s, and the six attitude

characteristics are basically the same, and they are positively

correlated with Abs_Pitch, Abs_Roll, Abs_Heave, and negatively

correlated with Valley_Pitch, Valley_Roll, Valley_Heave. The
Frontiers in Marine Science 07
correlation coefficients between Tmax, Tavr, T1/3, TP, Tavr_s, and

the six attitude characteristics are also basically the same, and they

are negatively correlated with Abs_Pitch, Abs_Roll, Abs_Heave,

and positively correlated with Valley_Pitch, Valley_Roll,

Valley_Heave. In other words, the larger the wave height, the

greater the amplitude of the attitude characteristics; the larger the

wave period, the smaller the attitude amplitude. Fp also shows a

moderate correlation with attitude parameters. Considering that

there is a strong correlation among Hmax, Havr, H1/3, Hm0, and

Havr_s, to eliminate feature redundancy and reduce the dimension of

input features, only one of these five features needs to be selected.

Similarly, only one feature needs to be selected from Tmax, Tavr, T1/3,

TP, and Tavr_s. Based on the above analysis, Dmean, Fp, wave height,

and wave period are selected as the four features among the various

wave parameters.
FIGURE 3

Experimental buoys (A) Deployment scenarios, (B) Mounted equipment.
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Meanwhile, ocean currents, with their continuous pushing or

dragging, subtly alter the horizontal position of buoys, especially in

strong current areas, potentially exacerbating their attitude

instability and increasing the difficulty of observation. The impact
Frontiers in Marine Science 08
of changes in wind speed and direction on buoys cannot be

overlooked. Strong winds not only increase the aerodynamic load

above the buoy, causing it to tilt or deviate, but they may also

indirectly affect the water flow conditions below the buoy through

wind shear and turbulence, further complicating its dynamic

response. Changes in wind direction may also affect the relative

angle between the buoy and the mooring system, increasing the

tension variation in the mooring lines. Additionally, changes in

rainfall, long and short-wave radiation, sea surface temperature, and

atmospheric pressure can also indirectly affect the attitude of the

buoy. Therefore, this study utilizes the Pearson correlation

coefficient to analyze the correlation between hydrological and

meteorological characteristics and buoy attitude parameters. As

shown in Figure 6, which depicts the correlation analysis results

between hydrological and meteorological data and buoy attitudes,

features with a correlation coefficient greater than 0.2 are selected

for the study. Among them, CD, WS, R, and SST exhibit low

correlation, WD, AT, AP, and LR show moderate correlation, WP

demonstrates strong correlation, and CV displays an extremely

strong correlation.

In summary, the initial screening using the Pearson correlation

coefficient reduced the number of features from 30 to 14,

specifically: Dmean, Fp, wave height, wave period, CD, WS, R, SST,

WD, AT, AP, LR, WP, and CV.

After the initial assessment of feature relevance using the

Pearson correlation coefficient, the RFECV method with RF as

the underlying estimator was further employed to refine the feature

selection. By inputting environmental parameters and predicting

attitude parameters, the optimal feature subset was identified

through multiple iterative experiments based on the average

frequency of feature occurrence across experiments, resulting in a

selection of 14 features. As depicted in Figure 7, the scores of these

features reflect their importance. Notably, the selection of wave

parameters Havr_s and Tavr_s is highly consistent with the previous

filter-based feature selection results, demonstrating the
TABLE 2 Environmental parameter characteristics and abbreviations.

Name Symbol Name Symbol

Maximum wave height Hmax
Current

velocity(east)
CVe

Maximum wave period Tmax
Current

velocity(upward)
CVu

Significant wave height in
time domain

H1/3
Current

velocity(north)
CVn

Significant wave period in
time domain

T1/3 Current velocity CV

Average wave height Havr Current direction CD

Average wave period Tavr Wind direction WD

Mean wave direction Dmean Wind speed WS

Domain wave direction Dmain Humidity H

Maximum directional
spectral density

MaxDirSpec Rainfall R

Spectral peak frequency Fp Water pressure WP

Spectral peak direction Dp
Sea surface
temperature

SST

Significant wave height Hm0 Air temperature AT

Peak wave period Tp
Atmospheric
pressure

AP

Average wave height in
frequency domain

Havr_s
Short-

wave radiation
SR

Average wave period in
frequency domain

Tavr_s
Long-

wave radiation
LR
FIGURE 4

Diagram of symmetry in Pitch feature valleys and peaks.
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complementarity of these two methods in identifying key wave

characteristics. However, unlike the filter-based approach, RFECV,

as a wrapper feature selection method, additionally selected CVn

and CVe, which showed lower correlation with attitude features in

the initial correlation analysis. To delve into the actual

contributions of these two features, two sets of comparative

experiments were designed: one using 12 features excluding CVn

and CVe, and the other utilizing all 14 features selected by RFECV.

Both sets were employed for attitude prediction through the CNN-

BiGRU model. The experimental results, as presented in Table 4,

clearly indicate that the model with 14 features, including CVn and

CVe, significantly outperforms the model using only 12 features,

strongly justifying the necessity of CVn and CVe in enhancing the

predictive capability of the model. In summary, the final set of

features selected for this study is: CV, WS, WD, R, CD, Havr_s, SST,

WP, LR, Tavr_s, AT, CVn, CVe, and AP. This feature set provides

comprehensive and effective input for the subsequent attitude

prediction model.
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4.2 Ablation experiment

In this section, an initial evaluation of the model’s effectiveness

is conducted, comparing the performance of GRU, BiGRU, and

CNN-BiGRU through ablation experiments. As shown in Table 5,

the ablation experiment results clearly demonstrate the significant

advantages of CNN-BiGRU. The specific data are as follows:

compared to the GRU and BiGRU models, the CNN-BiGRU

model achieves significant error reductions across multiple key

evaluation metrics. Specifically, in terms of the RMSE evaluation

for Abs_Heave, CNN-BiGRU reduces errors by 4.65% and 2.38%

respectively compared to GRU and BiGRU. For Abs_Pitch, the

RMSE reduction is even more pronounced, achieving reductions of

16.44% and 12.84% respectively. Similarly, the RMSE for Abs_Roll

also experiences a noticeable decrease, with reductions of 14.54%

and 19.51% respectively. In the Valley series of metrics, CNN-

BiGRU also performs exceptionally well. For example, the RMSE

for Valley_Heave is reduced by 9.68% and 6.67% compared to GRU
TABLE 3 Dataset statistical information.

Feature
Abs_Heave

(m)
Abs_Pitch

(°)
Abs_Roll

(°)
Valley_Heave

(m)
Valley_Pitch

(°)
Valley_Roll

(°)

Maximum 0.284 5.996 7.044 -0.015 -0.165 -0.225

Minimum 0.012 0.229 0.466 -0.353 -6.762 -9.708

Mean 0.042 1.376 1.688 -0.056 -1.672 -2.202
FIGURE 5

Pearson correlation analysis between wave parameters and buoy attitudes.
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and BiGRU, respectively. Similarly, significant reductions are also

observed in the RMSE of Valley_Pitch and Valley_Roll, with

decreases of 9.89%, 5.88%, 15.84%, and 21.46% respectively.

Upon further examination of the MAE metrics, the CNN-

BiGRU model continues to demonstrate its superiority. In terms

of the MAE for Abs_Heave, compared to GRU and BiGRU, the

reduction percentages are 3.7% and 0% respectively (remaining at

par with BiGRU without any regression). For Abs_Pitch and

Abs_Roll, the MAE reductions are even more significant, with

decreases of 14.08%, 10.2%, 17.99%, and 23.51% respectively. In

the Valley series, CNN-BiGRU also achieves notable reductions in

MAE. Specifically, the MAE for Valley_Heave, Valley_Pitch, and
Frontiers in Marine Science 10
Valley_Roll decreases by 10.26%, 5.4%, 7.5%, 4.48%, 18.28%, and

26.41% respectively.

The results presented above showcase the unique advantages of

CNN-BiGRU, which are primarily attributed to the integration of the

dual strengths of CNN and BiGRU. The CNN layer, with its

exceptional ability in local feature extraction, effectively mines and

enhances key information from the input data, providing a richer and

moremeaningful data foundation for the subsequent BiGRU layer. The

BiGRU layer, on the other hand, leverages its unique bidirectional

structure to not only capture the forward dependencies within the

sequence but also incorporate backward information, enabling a

comprehensive understanding of the contextual relationships within

the sequence. This deeply integrated design allows the CNN-BiGRU

model to more accurately capture key information when processing

complex sequential data, thereby demonstrating superior performance

in tasks such as prediction and classification.
4.3 Comparison of different
prediction models

To further validate the predictive performance of the CNN-

BiGRU model, a comparative analysis was conducted using models

such as LSSVR, ELM, Bagging, XGBoost, BiLSTM, and CNN-

BiLSTM. The training and testing sets remained consistent with

those used for the CNN-BiGRU model, and the evaluation metrics

for the prediction results of each model were compared to assess

their accuracy. As shown in Table 6, which summarizes the

prediction accuracy of the different models, CNN-BiGRU exhibits

the best performance in the prediction task. Compared to LSSVR,
FIGURE 6

Pearson correlation analysis between hydrological and meteorological parameters and buoy attitudes.
FIGURE 7

Scores of selected features.
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TABLE 4 Analysis table of the impact of CVn and CVe features.

Number
of features

Evaluation
criteria

Abs_Heave Abs_Pitch Abs_Roll Valley_Heave Valley_Pitch Valley_Roll

12

RMSE 0.0042 0.1813 0.2038 0.0061 0.2471 0.3425

MAE 0.0027 0.1290 0.1473 0.0039 0.1789 0.2447

R² 98.8128 97.1180 96.9647 98.5578 95.5129 94.3456

14

RMSE 0.0041 0.1514 0.1728 0.0056 0.2113 0.2826

MAE 0.0026 0.1135 0.1272 0.0035 0.1578 0.2132

R² 98.6696 97.8752 97.4499 98.5914 96.6704 95.7045
F
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TABLE 5 Ablation experiment results.

Model Evaluation criteria Abs_Heave Abs_Pitch Abs_Roll Valley_Heave Valley_Pitch Valley_Roll

GRU

RMSE 0.0043 0.1812 0.2022 0.0062 0.2345 0.3358

MAE 0.0027 0.1321 0.1551 0.0039 0.1706 0.2609

R² 98.7627 97.1192 97.0110 98.4908 95.9617 94.5650

BiGRU

RMSE 0.0042 0.1737 0.2147 0.0060 0.2245 0.3598

MAE 0.0026 0.1264 0.1663 0.0037 0.1652 0.2897

R² 98.8230 97.3545 96.6306 98.5719 96.2973 93.7617

CNN-
BiGRU

RMSE 0.0041 0.1514 0.1728 0.0056 0.2113 0.2826

MAE 0.0026 0.1135 0.1272 0.0035 0.1578 0.2132

R² 98.6696 97.8752 97.4499 98.5914 96.6704 95.7045
TABLE 6 Prediction accuracy of different models.

Model Evaluation criteria Abs_Heave Abs_Pitch Abs_Roll Valley_Heave Valley_Pitch Valley_Roll

LSSVR

RMSE 0.0060 0.2967 0.3242 0.0082 0.3755 0.5340

MAE 0.0037 0.2184 0.2398 0.0052 0.2739 0.3975

R² 97.5867 92.2788 92.3167 97.3720 89.6426 86.2551

ELM

RMSE 0.0051 0.2961 0.2951 0.0073 0.3496 0.5016

MAE 0.0034 0.2173 0.2225 0.0049 0.2592 0.3829

R² 98.2454 92.3121 93.6376 97.8868 91.0194 87.8728

Bagging

RMSE 0.0045 0.1849 0.2117 0.0065 0.2538 0.3614

MAE 0.0027 0.1273 0.1517 0.0040 0.1706 0.2587

R² 98.6315 97.0003 96.7232 98.3216 95.2685 93.7052

XGBoost

RMSE 0.0043 0.1675 0.1985 0.0064 0.2359 0.3367

MAE 0.0025 0.1129 0.1427 0.0038 0.1567 0.2366

R² 98.7507 97.5405 97.1191 98.3955 95.9110 94.5364

BiLSTM

RMSE 0.0043 0.1708 0.1944 0.0063 0.2273 0.3388

MAE 0.0027 0.1248 0.1497 0.0040 0.1653 0.2656

R² 98.7292 97.4427 97.2391 98.4605 96.2037 94.4669

(Continued)
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ELM, Bagging, XGBoost, BiLSTM, and CNN-BiLSTM, the CNN-

BiGRU model achieves the following RMSE reductions for

Abs_Heave: 31.67%, 19.61%, 8.89%, 4.65%, 4.65%, and 0%

respectively. For Abs_Pitch, the RMSE reductions are 48.97%,

48.87%, 18.12%, 9.61%, 11.36%, and 3.44% respectively. Similarly,

for Abs_Roll, the RMSE reductions are 46.7%, 41.44%, 18.37%,
Frontiers in Marine Science 12
12.95%, 11.11%, and 1.76% respectively. In terms of Valley_Heave,

the RMSE reductions are 31.71%, 23.29%, 13.85%, 12.5%, 11.11%,

and 6.67% respectively. For Valley_Pitch, the RMSE reductions are

43.73%, 39.56%, 16.74%, 10.43%, 7.04%, and 5.79% respectively.

Lastly, for Valley_Roll, the RMSE reductions are 47.08%, 43.66%,

21.8%, 16.07%, 16.59%, and 7.28% respectively. These results
TABLE 6 Continued

Model Evaluation criteria Abs_Heave Abs_Pitch Abs_Roll Valley_Heave Valley_Pitch Valley_Roll

CNN-
BiLSTM

RMSE 0.0041 0.1568 0.1759 0.0060 0.2243 0.3048

MAE 0.0027 0.1160 0.1298 0.0038 0.1608 0.2251

R² 98.8823 97.8426 97.7387 98.5770 96.3051 95.5220

CNN-BiGRU

RMSE 0.0041 0.1514 0.1728 0.0056 0.2113 0.2826

MAE 0.0026 0.1135 0.1272 0.0035 0.1578 0.2132

R² 98.6696 97.8752 97.4499 98.5914 96.6704 95.7045
FIGURE 8

Fitting conditions of different models (A) Abs_Roll, (B) Valley_Roll.
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indicate that the CNN-BiGRU model significantly outperforms the

other comparison models in terms of accuracy and prediction

performance, demonstrating its strong capability in handling

complex time series prediction tasks. This validates that the CNN-

BiGRU model successfully extracts the high-dimensional nonlinear

mapping relationships between buoy attitude parameters and

environmental parameters.

Taking Abs_Roll and Valley_Roll as examples, Figures 8A, B

respectively display the scatter plots of prediction results and the

fitting equations between predicted and actual values for the

various algorithms applied to Abs_Roll and Valley_Roll features.

Figure 9 illustrates the comparison curve between the predicted

values and the actual values obtained from the CNN-BiGRU

model. Combining the error table and the comparison graphs

of prediction effects, it becomes clearer that the prediction curve

of CNN-BiGRU exhibits a high degree of fitting with the actual

characteristic curve, demonstrating a significantly better

prediction performance than other models. This observation

further validates the superior performance of the CNN-BiGRU

model in the field of buoy platform motion attitude prediction.
5 Conclusions

This paper innovatively constructs a buoy attitude variation

prediction model based on CNN-BiGRU through an in-depth study

of the complex coupling characteristics between ocean

environmental factors and moored buoy attitude, using a hybrid

strategy of filter-based and wrapper-based feature selection. Firstly,

the Pearson coefficient is used to conduct an initial feature

correlation analysis, and RFECV is employed to select the optimal

feature subset, which serves as the final input feature subset.
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Subsequently, CNN-BiGRU is leveraged to deeply mine the

potential information within these feature parameters, enabling

the prediction of moored buoy attitude parameters. The research

results demonstrate that the feature selection algorithm plays a

pivotal role in optimizing data input and enhancing model

prediction accuracy. By screening out the feature subset with the

most significant impact on buoy attitude prediction, not only is

the consumption of computational resources reduced, but the

generalization ability and interpretability of the model are also

significantly improved. Furthermore, based on these optimized

features, the CNN-BiGRU model constructed using them exhibits

higher accuracy and stability in comparative experiments.

Specifically, the prediction accuracy for Abs_Heave, Abs_Pitch,

Abs_Roll, Valley_Heave, Valley_Pitch, and Valley_Roll reaches

98.67%, 97.87%, 97.45%, 98.59%, 96.67%, and 95.70%

respectively, fully validating the core value of feature selection in

complex signal prediction tasks and opening up new avenues and

methodologies for buoy attitude prediction. Additionally, this paper

reveals the intricate coupling relationships among sea surface

elements, which are vital for understanding the dynamic impact

of the ocean environment on buoy attitude. Through in-depth

analysis of these coupling characteristics, valuable reference

information is provided for marine scientific research, ocean

engineering design, and offshore operation safety.

It should be noted that the current research is limited by the

difficulty in obtaining remote ocean environmental parameters and

attitude data, and the data volume is relatively limited. Therefore, in

future work, we will focus on collecting more diverse and higher-

precision ocean data to further enhance the prediction ability of the

model under different sea conditions and environmental

conditions, and continuously improve the accuracy and reliability

of buoy data.
FIGURE 9

Comparison of CNN-BiGRU prediction results with actual values.
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