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Themotion of waves in water causes the slowmovement of drifting sea targets—

a phenomenon usually ignored in target-drift prediction models for maritime

search and rescue (SAR). This study examined the wave-induced drift’s influence

on field-observation experiments involving two common, differently sized SAR

targets—an offshore fishing vessel (OFV) and a person in the water (PIW)—using

parameter stepwise calibration and machine-learning (ML) methods. The sample

of wave-induced drift velocity was obtained by gradually separating current-

induced (CI) drift’s and wind-induced (WI) drift’s influence from the target-drift

velocity using the least-square method and AP98model. A force analysis method

and three ML methods, long short-term memory (LSTM), back-propagation (BP)

neural network, and random forest (RF), were used to fit the wave-induced drift

velocity by combining eight different parameter schemes. Finally, the drift

trajectories considering the influence of waves were fitted and verified based

on 2 independent samples respectively. Compared with the force analysis

method, the accuracy of the ML methods in the verification test was higher. In

addition, the results show that for OFVs, considering wave-induced drift’s

influence in the ensemble-trajectory prediction could improve the simulation

accuracy. However, for a PIW, no significant improvement was observed. This

result also indicates that wave-induced drift may not be simply ignored in large

SAR targets’ drift prediction.
KEYWORDS

target-drift prediction, search and rescue, wave-induced drift, AP98 model,
ensemble simulations
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Highlights
Fron
• A target drift prediction method considering wave-induced

drift based on stepwise parameter calibration was proposed.

• Drift due to wind and currents is the dominant factor for

small maritime targets.

• The influence of wave-induced drift cannot be simply

ignored for targets whose size is close to the length of waves.
1 Introduction

Maritime search-and-rescue (SAR) policies orchestrated and

implemented by national or relevant authorities in response to

diverse maritime accidents and emergencies cover a multifaceted

suite of search, rescue, and subsequent recovery operations.

As a critical marine safety and security component, SAR has a

direct, vital link to safeguarding the lives and assets of individuals

traversing the seas, as well as preserving the marine environment’s

integrity. In the context of the rapid global marine economy’s

expansion, the maritime SAR sector’s significance has increased,

concomitantly underscoring the necessity for its specialization and

operational optimization (Rani et al., 2022; Luo and Shin, 2019).

Significantly, unmanned technologies’ recent proliferation has

spurred autonomous ships and vessels’ widespread deployment in

marine operations (Yang et al., 2020; Xi et al., 2022). Consequently,

the imperative for these autonomous systems’ efficient location

and retrieval, particularly those carrying hazardous cargo, in a

power failure or loss of navigational capability, cannot be

underscored enough. This point further emphasizes the urgent

need for advancing SAR capabilities to address the unique

challenges posed by unmanned systems’ integration in the

maritime domain.

To mitigate the potential loss of life and property during

maritime disasters, it is critical to estimate the search area

accurately and quickly to improve the success rate of maritime

SAR. Accurately assessing the search area involves the following two

requirements (Otote et al., 2019): (1) The search area contains the

search target with maximum probability; (2) the search area should

be as detailed and as small as possible so that the search force can

search the area with the highest probability in the shortest time.

Accurate, efficient drift prediction is the basis of marine SAR

work, which largely determines the probability of SAR work’s success.

The principal forces influencing a drifting target’s motion at sea are

wind, waves, and currents (Chen et al., 2022). Consequently, drift

prediction in maritime SAR operations essentially entails the accurate

modeling of the target’s response to these forces. Moreover, target-

drift prediction’s precision is contingent upon two pivotal factors: 1)

the fidelity of the models in capturing the target’s dynamics under

these force mechanisms’ influence and 2) the wind, wave, and current

force field-data accuracy. In recent times, remarkable advancements

in oceanic and meteorological environments’ numerical models,

coupled with the proliferation of diverse ocean observation

technologies (Gao et al., 2024), have facilitated the availability of
tiers in Marine Science 02
numerous refined data sources for computing target-drift predictions

in maritime SAR efforts. Despite these advancements, the

complexities inherent in the marine environment’s dynamical

mechanisms persist, resulting in inescapable errors associated with

marine and meteorological data. The target-drift prediction model of

a sea target usually estimates these errors and then uses a numerical

or analytic method to calculate the target’s final position’s

distribution probability based on the error estimation. Among

them, particle tracking’s integration with the Monte Carlo

algorithm has emerged as a prevalent, effective strategy for

maritime target-drift prediction, offering a robust framework for

assessing the likelihood of a target’s location within a given search

area (Deng et al., 2013; Griffa et al., 2007; Zhu et al., 2021).

Presently, most studies have posited that wind and current’s

influences on a drifting target’s drifting motion are the main

components (Breivik et al., 2013). Current’s influence on the

drifting target is relatively simple to derive and is almost equal to

the velocity. By contrast, wind’s effect on drifting sea targets is

relatively complicated, as it is nonlinear. In 1998, Allen and Plourde

(1999) first established the quantitative AP98 model based on the

results of many sea experiments. In the early AP98 model, wind-

induced (WI) drift (LEEWAY) was deconstructed into two

variables—WI drift velocity and divergence angle—both

expressed in polar coordinates. In 2005, Allen (2005) decomposed

wind-induced (WI) drift velocity into two more robust

components, downwind-velocity downwind leeway component

(DWL) and crosswind-velocity crosswind leeway component

(CWL), and first proposed the concept of Jibing. In 2011, Breivik

et al. (2011) strictly redefined Leeway as an object’s drifting motion

caused by sea-surface wind (10 m high) and surface current (0.3–1

m deep). The improved AP98 model provides a more accurate

theoretical basis for target-drift prediction in distress at sea. It is

presently the most widely recognized model for the target-drift

trajectory calculation in distress and has been applied to the

maritime SAR systems of Norway, the United States, Portugal,

and other countries (Medić et al., 2019; Coppini et al., 2016; Breivik

and Allen, 2008; Brushett et al., 2017).

Waves’ influence mechanism on drifting targets’ drifting

motion is more complex, being divided into two forms: the

Stokes drift’s influence on objects and the direct force of waves’

influence on objects. Stokes drift is generally regarded as an

important factor in the study of the drift motion of plankton,

small buoys, and oil-spill particles. However, given that Stokes drift

is mostly caused by wind waves (with a smaller component of swell)

and the vast majority of Stokes drift is downwind, it is difficult to

isolate it in experiments from situations where the surrounding

current has been removed and only the wind has a direct effect on

the object (Brushett et al., 2017). Therefore, most SAR target-drift-

motion models, including the AP98 model, usually do not consider

Stokes drift’s influence alone but, rather, consider that its influence

already exists in the empirical wind drift coefficients. The drift

caused by waves’ direct force is related to the drifting target’s size,

wave height, and wavelength. However, most studies (Zhu et al.,

2023; Allen et al., 2010; Breivik et al., 2011) have suggested that the

wave force is negligible for most SAR targets that are much smaller

in size than the wavelength (less than 30 m). In conclusion, waves’
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influence on object drift motion is rarely considered in existing

target-drift prediction models.

Contrastingly, in some other fields, including the study of ice floes’

drifting motion at sea, the wave force often becomes the main

consideration. For example, Wadhams (1983) pointed out that wave-

induced drift can be a dominant factor for ice floes tens of meters in

size, even in strong winds. Harms (1987) performed laboratory

measurements on the drift of ice-floe models under regular wave

conditions. He obtained an empirical formula to predict these ice floes’

wave-induced drift. Furthermore, Huang (2007) studied the wave-

induced surface drift’s variations in a wave flume with time and in

space. The side-wall surface area’s effects on drift velocity were also

discussed. Tanizawa et al. (2002) conducted measurements of wave

drift speed on both two-dimensional floating body and three-

dimensional floating body, then proposed an estimation method of

wave drift speed which derived from the analysis of measurement

results and covers the entire wave range. Huang et al. (2011) examined,

by a series of laboratory experiments, the drift motion of small rigid

floating objects driven by regular waves in deep water and found that

the constant drift velocity increased with the wave steepness at an

approximately quadratic rate, which is similar to Stokes drift, but the

magnitude was higher than Stokes drift in all cases.

In summary, the mechanism of waves’ influence on the drifting

motion of a target in distress at sea is still insufficient. In one sense,

few field-observation experiments on the drift of SAR targets that

include wave observation have been done. In another sense, the

mechanism of wave drift on targets of different sizes is not clear

enough, especially for some common SAR targets whose sizes are

slightly smaller than a wave wavelength, and the extent of wave

action’s impact remains unquantified.

In this study, based on the field-observation experiments of two

different SAR-target types, a target-drift prediction method considering

wave-induced drift based on stepwise parameter calibration was

proposed. First, according to the analysis of the main components of

the drift motion of the sea target, the drift induced by current and wind

was separated from the target’s drift motion based on the AP98 model.

The remaining velocity residual was used as the output to fit wave-

induced drift. Combined with the field-observation experiments of two

typical SAR targets of an OFV and a PIW, a force analysis method

(FAM) and three ML methods, long short-term memory (LSTM),

back-propagation (BP) neural network, and random forest (RF) were

adopted to fit wave-induced drift with eight different parameter

schemes, including wave direction, significant wave height, and

significant wave period. After the optimal fitting scheme was

obtained, two sets of independent samples were used to compare

and verify the results, and a prediction range of a 98% confidence

interval of the trajectory simulation results for each group was

calculated by the kernel density estimation method. Finally, the wave

drift’s influence on target drift motion was verified by evaluating and

comparing four groups of test results. In two sets of verification

experiments for the OFV, the trajectory prediction errors obtained

by best-fitting wave-induced drift were reduced by 28.1% and 18.5%,

respectively, compared with the trajectory prediction errors without

considering wave-induced drift. The results show that for OFVs,

considering wave-induced drift’s influence in the ensemble-trajectory

prediction could improve the simulation accuracy. However, for the
Frontiers in Marine Science 03
PIW, no significant improvement was observed. The results also

further verified the conclusion that there is a significant correlation

between wave-induced drift and drifting target size.
2 Data and methods

2.1 Field experiments and data processing

The research targets of this study were of two types: horizontal

persons in the water (PIWs) and offshore fishing vessels (OFVs). The

PIW was 1.93 m tall and weighed 65 kg. The PIW was wearing a life

vest, so more of the upper body was above the water. The total length of

the OFV was 26.3 m, the design draft was 2.5 m, and the gross tonnage

was 121 tons. In the previous study (Zhu et al., 2019), a series of

unpowered drift observation experiments were carried out in 2018 for

OFVs (a total of about 1,200 10-min samples were obtained), which

mainly observed the wind and current field around the target, without

carrying wave-observation equipment. For the PIW, a series of field-

observation experiments were carried out in 2019 (306 10-min samples

were obtained) (Tu et al., 2021). During the experiment, the wind,

wave, and current fields around the target were observed, but owing to

the damage in wave-observation equipment, no effective wave-

observation data were obtained. In previous observation experiments

and data analysis, we followed the AP98 model to study the WI drift

and current-induced (CI) drift on the two target types and obtained

their corresponding AP98 model coefficients.

In 2023, to further study and clarify waves’ influence on the drift

motion of different types and sizes of targets, we repeated field

experiments on these two target types and obtained 432 and 316

samples for an OFV and PIW targets, respectively. The experimental

process followed the standard direct-observation method proposed by

Breivik et al. (2011)

Table 1 shows the observation equipment used in the three

experiments and the corresponding experimental data. Figure 1

shows the OFV and the PIW, while Figure 2 shows the drift

trajectories and experimental area in the South China Sea. For the

OFV experiment, all the experimental equipment was installed

directly at the OFV for observation. For the experiment of the

PIW, owing to the small PIW size, only wave buoys and positioning

buoys were directly connected to the PIW for observation, and the

data of wind and current were observed by the experimental mother

ship within the range of 200–500 m near the PIW. During the

experiment, the wind speed in the target sea area was generally

within 15 m/s, and the current speed was within 1.2 m/s.
2.2 Theoretical models and methods

2.2.1 Drift-prediction models for maritime SAR
The target-drift prediction method adopted in this study was

the AP98 model combined with the Lagrange particle-tracking

method adopted by most national SAR departments. According

to the AP98 model, in the process of drifting at sea, the underwater

part of the drifting target in distress is mainly affected by surface

currents and waves, while the above-water part is mainly affected by
frontiersin.org
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wind. The sea target’s drift velocity is generally considered the

superposition of the drift velocity caused by the above three factors

(Allen, 2005; Breivik et al., 2011). Therefore, the drift velocity of a

drifting target V
!

at sea can be approximately expressed as follows:

V
!

= aV
!

sc + L
!

+ V
!

F−wave (1)

where V
!

sc represents the current velocity, and L
!

and V
!

F−wave

denote the WI and wave-induced drift velocities, respectively. The

CI velocity is commonly assumed to be equivalent to the surface

current velocity V
!

sc, so a is generally approximated as 1. In

previous target-drift prediction methods, the AP98 model was

used to fit the remaining velocity (considered the WI drift

velocity) after separating the CI drift velocity from the target-drift

velocity, while the wave-drift velocity was ignored. Based on

previous research, a target-drift prediction method considering

wave-induced drift based on stepwise parameter calibration is

proposed. First, current velocity is used to fit the target-drift

velocity, and the CI drift coefficient a and residual ec are

obtained. Furthermore, wind speed is used to fit the components

of residual ec in the downwind and crosswind direction, and

then the AP98 model coefficients and fitting residual eL are

obtained. Since wind and current are the main contributors to the

target-drift velocity, the remaining fitting residual eL can be

considered to mainly include the wave-induced drift velocity’s

influence. Figure 3 shows the parameters’ stepwise calibration’s

schematic diagram.

Note that this stepwise parameter calibration method actually

assumes that the fitting residual (or unexplained drift) after
Frontiers in Marine Science 04
removing the WI and CI drift velocity is the contribution of

wave-induced drift. This method is based on the assumption that

wave-induced drift is less influential than current and wind. This is

consistent with the idea of extracting WI drift velocity in previous

studies, which essentially interprets WI drift velocity as the fitting

residual after removing flow-induced drift.

The AP98 model (Allen and Plourde, 1999; Breivik et al., 2011)

deconstructed the WI drift velocity into two components, DWL and

CWL (Figure 4). The approximate linear relationship between the

wind speed and these two components of the drifting object is as

follows:

Ld = adW10m + bd + ed   (DWL)

Lc+ = ac+W10m + bc+ + ec+   ( + CWL)

Lc− = ac−W10m + bc− + ec−   ( − CWL)

8>><
>>: (2)

Ld , Lc+, and Lc− represent the WI velocity vectors in the

downwind, right crosswind, and left crosswind directions,

respectively, which are related to the slope a, offset b, and the

error term e . W10m represents the wind speed at a height of 10 m.

The error term e is calculated as e = norm*Sy=x , where norm is a

random variable that follows the standard normal distribution, and

Sy=x represents the regression standard deviation.
2.2.2 Wave-induced drift simulation
After separating the effects of current and wind from the drift

velocity of the target using the AP98 model, we can assume that the

remaining fitting residuals eL mainly include the effects of wave-
FIGURE 1

Horizontal PIW (left) and a typical Chinese OFV (right).
TABLE 1 Instruments utilized in the experiments.

Instruments Sampling frequency/sampling average
2018 2019 2023

OFV PIW OFV PIW OFV PIW

Nortek Signature ADCP 1.0 Hz/10 min √ × √ √ √ √

Nortek AquaDopp 2 MHz ADCP 1.0 Hz/10 min √ × √ √ √ √

AirMar 220WX weather station 1.0 Hz/10 min √ × √ √ √ √

FDW-I small wave
observation buoy

1.0 Hz/10 min × × × √ √ √

GPS receiver 1.0 Hz/10 min √ × √ √ √ √
fron
The "√" (Yes) and "×" (No) indicate the carrying of observation instruments in different experiments.
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induced drift velocity. After obtaining the wave-induced drift

components, we use the numerical method based on FAM and

the ML method to fit the wave-induced drift respectively.
2.2.2.1 Force analysis method
According to Tanizawa et al (2002), the mechanism of wave

drift speed varies with wavelength. In short wave range, wave drift

force due to wave scattering pushes the floating target. Therefore,

drift speed is decided by the equilibrium of wave drift force FW and

fluid drag force FD and it is proportional to the wave slope. Wave

drift speed is obtained from the balance between FW and FD as

follows:

Vffiffiffiffiffiffiffiffi
DRg

p =
1
2

ffiffiffiffiffiffiffiffiffiffiffiffi
l2CW

ACD

s
Hw

l
(3)

where A is projection area of the buoy below the free surface, CD

is drag coefficient of the target,CW is nondimensional wave drift force

andDR is the representative target scale. The values of CD and CW can

be obtained from experiment, database or computation. In this paper,

we call the coefficient a as the linear coefficient of wave drift speed.
Frontiers in Marine Science 05
a =
1
2

ffiffiffiffiffiffiffiffiffiffiffiffi
l2CW

ACD

s
(4)

In long wave range, on the other hand, wave drift force hardly

acts on the floating target, because wave almost transmits the floating

target. Therefore, the drift speed is decided by the wave-current speed

and it is proportional to the square of the wave slope. Assuming that

the drift speed of the target can be approximated by the average wave

current speed on the projection area of the body, it is given by

Vffiffiffiffiffiffiffiffi
DRg

p = b
Hw

l

� �2

= bs 2 (5)

b =
p2

A
ffiffiffiffiffiffiffiffi
kDR

p
Z
A
e2kzds (6)

where d is wave slope Hw/l, and b is the quadratic coefficient of

wave drift speed.

Considering the results in the previous sections, we expected

that wave drift speed in the entire wave range is approximated by

the sum of the speed in the short wave range and that in the long

wave range.
FIGURE 3

The stepwise parameter calibration.
FIGURE 2

Drift trajectories and experimental area in the South China Sea. Drift trajectories of the OFV in 2018 (dash) and 2023 (solid) are plotted in black. Drift
trajectories of the PIW in 2019 (solid) and 2023 (dash) are plotted in red.
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Vffiffiffiffiffiffiffiffi
DRg

p = as + bs 2 (7)

The values of a and b are mainly related to the drag coefficient of

the target, projection area of the buoy below the free surface, etc.,

which can be obtained from experiment, database or computation.

However, under the experimental conditions in this work, since the

wave-induced drift velocity has been obtained, we use the binomial

fitting method to optimize the two values of a and b.
2.2.2.2 ML methods
Machine learning has been widely used in the field of modeling,

including maritime SAR (Gao et al., 2023; Cao et al., 2024). In past

studies, many scholars have explored wave drift’s influence with

different analysis methods and different models. However, all

models agree that wave-induced drift’s main influencing factors

include wave height, wave direction, wave period, and factors

related to the target size (e.g., surface and underwater area).

Therefore, in addition to the factors related to the target,

parameters including wave height, wave direction, and wave
Frontiers in Marine Science 06
period were used as inputs to the wave-induced drift model, and

three ML methods including LSTM, RF, and BP neural network

were used to study wave-induced drift.

The LSTM neural network, a distinct architectural variant of

recurrent neural networks (RNNs) (Hochreiter and Schmidhuber,

1997; Yu et al., 2019), has unique capabilities in processing

sequential data. Figure 5 shows a schematic illustration of the

LSTM structure (Yu et al., 2019). The LSTM model’s main steps

are as follows: Step 1) The forgetting gate determines the

information discarded from the cell state, using the sigmoid

function to map the information values to the interval [0,1],

where 0 indicates complete forgetting and 1 indicates complete

retention; Step 2) the input gate determines which information to

retain in the input information, and then the tanh activation

function generates new candidate information, which is stored in

the cell state; Step 3) the cell state is updated by forgetting a portion

of the information via the forgetting gate and incorporating the

candidate information through the input gate, resulting in a new

cell state; Step 4) The information is entered into the updated cell

state, and the characteristics of the output cell are determined by
FIGURE 5

The LSTM’s schematic illustration.
FIGURE 4

The leeway L consists of a DWL and aCWL.
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running a sigmoid function. The cell state value is transformed into

the range of [−1,1] through the application of the tanh activation

function, subsequently multiplied by the judgment condition

derived from the sigmoid function, ultimately resulting in

pertinent information’s output.

The RF model, a variant of the parallel ensemble model known

as Bagging, was introduced by Breiman, 2001. The RF model

comprises multiple decision trees constructed by randomly

selecting attributes. For regression tasks, predictions are made by

averaging the outputs of these trees. The main steps for wave-

induced drift prediction are as follows: Step 1) Input a training

sample set comprising N combinations of forecast factors and

predictor variables, with a total sample size of K; Step 2) draw m

subsets of training samples, each with a sample size of K, from the

overall training set using simple random sampling; Step 3)

construct m decision trees using the m subsets of training

samples. The node attributes of these trees are determined by

randomly selecting n out of N indicators, following the random

subspace theory; Step 4) based on the decision tree algorithm, each

tree produces a single prediction. The final predicted value is then

obtained by averaging the predictions from all m trees.

The BP neural network (Ding et al., 2011), also known as the

feed-forward neural network, operates based on the fundamental

principle of the BP algorithm, which distinguishes between

forward- and backward-propagation phases during model

execution. During the forward-propagation phase, input data

traverse through the input layer and subsequent hidden layers

and finally reach the output layer. Conversely, in the backward-

propagation phase, the incorrect output (represented in a specific

form) is propagated back from the output layer, traversing through

each hidden layer in reverse order until it reaches the input layer.

The output layer’s primary function is to transmit the error

information along the transmission route, first to the hidden

layers and then back to the input layer, ultimately facilitating the

adjustment of the weights of individual network units. Figure 6

shows the BP neural network’s structure (Ding et al., 2011).
Frontiers in Marine Science 07
3 Model calibration

Three experiments in total were conducted on the OFV and the

PIW, of which wind and current observations were fully recorded in

2018, 2019, and 2023, while wave observations were only of high

quality in 2023. Therefore, for an OFV, a total of 1,632 sample data

points in 2018 and 2023 were used for parameter calibration to fit

the WI drift and CI drift. For the PIW, a total of 622 sample data

points in 2019 and 2023 were used for parameter calibration to fit

theWI drift and CI drift. Based on the fitting coefficients of the wind

and current drift models, combined with the observation data of

2023 (316 PIW samples, 432 OFV samples), the WI and CI drift

velocities were separated from the target-drift velocities, and the

wave-drift velocities were fitted.
3.1 Fitting of CI and WI drift velocities

First, the current velocities in the north–south and east–west

directions were taken as the input, and the drift velocities in the

north–south and east–west directions were taken as the output. The

drift coefficient of the current a was calculated to be 0.96 by the

least-square method. The residuals (residual velocities) e1 obtained
by fitting target-drift velocities with current velocities were used as

the output of WI drift velocity fitting, and the residual velocities

were deconstructed into downwind and crosswind directions. Then,

taking wind speed as input, we used the AP98 model to fit the

downwind, crosswind, and total velocities of residuals.

Figures 7, 8 show the residuals e1 fitted for the OFV and the

PIW drift velocity, respectively, and their corresponding wind

velocities rose plots. From these results, it can be considered that

the residual velocities, after removing the CI drift velocities, were

mainly affected by wind and waves. It also can be found from

Figures 6, 7 that the directions of residual velocities were highly

consistent with the wind direction, and that they were basically

distributed on both sides of the wind direction.
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a1(2)

a2(2)

a3(2) HW,b(x)
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x3
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FIGURE 6

The BP neural network’s structure.
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Figures 9, 10 and Table 2 show the parameter-calibration results

of the AP98 model for the OFV and the PIW using these residuals

e1. Note that for crosswind WI drift, 72% of an OFV’s crosswind

samples fell in the right side of the downwind direction (+CWL),

while 55% of PIWs crosswind samples fell in the right side of the

downwind direction (+CWL).
3.2 Fitting of wave-induced drift velocities

The TensorFlow deep-learning framework was utilized in this

study, and the pre-processed data were subsequently imported into

each of the three neural-network models through Python

programming tools. To ensure a balanced approach to model

development and validation, we allocated 80% of the data for

training purposes and the remaining 20% for testing.

The FDW-I wave buoy model was employed. The observed

wave-related parameters encompassed the mean wave period, mean
Frontiers in Marine Science 08
wave height, main wave direction, significant wave height, and

significant wave period. The mean wave height (period) is the

average of all observed wave heights (periods) in an observation

period, while the significant wave height (period) refers to the

average of the first n/3 waves in a wave train, which is arranged

from the largest to the smallest wave height in an observation

period. During the experiments, the significant wave height ranged

from 0.29 m to 1.31 m, the mean wave height ranged from 0.21 m to

1.13 m, the significant wave period ranged from 2.4 s to 5.0 s, the

mean wave period ranged from 2.6 s to 5.1 s.
3.2.1 Force analysis method

The scales of PIW and OFV were set to 26.3 m and 1.93 m

respectively. The wave-induced velocity V was decomposed into

east-west and north-south components and then brought into the

following quadratic polynomials for fitting.
0%

FIGURE 7

The rose diagrams of wind velocities (left) and residuals e1 (wind and wave-induced drift velocities) (right) for OFV.
0%

FIGURE 8

The rose diagrams of wind velocities (left) and residuals e1 (wind and wave-induced drift velocities) (right) for the PIW.
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Bm =
Vffiffiffiffiffiffiffiffi
DRg

p = as + bs2 (8)

Where, s = Hw
l . Hw is the significant wave height, and l = T2g

2p .

The cost function can be constructed as:

F(a, b,s ) = o
M

m=1
½(asm + bs 2

m) − Bm�2 (9)

Taking the partial derivative of a and b to zero. For PIW, the

optimal solution of a and b are 1.52 and 3.69, respectively. For OFV,

the optimal solution of a and b are 2.18 and 2.29, respectively.
3.2.2 ML methods

To study the difference in prediction effect caused by different

wave-parameter settings (e.g., the angle between wave direction and

wind and current), we set up different schemes (S1–S8, Table 3) to

establish the LSTM, BP neural network, and RF models.
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The LSTM model adopts parameter settings outlined by Zhao

et al., 2017, and the neural-network model’s hyper-parameters were

determined through a trial-and-error approach. After

comprehensive consideration of the model’s prediction results and

calculation time, the number of hidden layers was set to 2, the initial

learning rate was set to 0.005, and the loss rate was set to 0.01. The

model was trained and optimized using the adaptive moment

estimation (Adam) algorithm, the root mean square error (RMSE)

was employed as the objective function for the optimization

procedure, the maximum number of iterations was set to 250, and

the number of hidden-layer neural units was set to 128.

The setting of the BP neural network model’s input parameters

depends on the selected parameter scheme. When the input

parameters are the average wave period, mean wave height, and

main wave direction, the input layer data parameter n_input is 3.

Since the purpose of this experiment was to fit the velocities of

wave-induced drift in the north–south and east–west directions, the

output layer n_output was 2. The number of hidden layer neurons

here was set to 15, while the learning rate was set to 0.0001.
FIGURE 9

Leeway speed (left) and DWL (right) versus wind speed adjusted to a 10-m height for the OFV. Unconstrained linear regression (solid) and 95% of the
confidence levels (dash) are plotted in red, while constrained linear regression is plotted in green.
FIGURE 10

Leeway speed (left) and DWL (right) versus wind speed adjusted to a 10-m height for the PIW. Unconstrained linear regression (solid) and 95% of the
confidence levels (dash) are plotted in red, while constrained linear regression is plotted in green.
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In constructing the RF model, the number of decision trees was

determined to be 100 through the trial-and-error method. In addition,

the minimum number of leaves was set to 5, adhering to the

parameter-setting methodology outlined by Schoppa et al. (2020).

The statistical metrics commonly employed in this field—

namely, the RMSE and scaled Nash efficiency coefficient (NSE)—

were chosen as the primary evaluation metrics to evaluate the

performance of the aforementioned three ML modeling schemes.

NSE = 1 −o
N
i=1(x(t) − x̂ (t))2

oN
i=1(x(t) − �x(t))2

(10)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oN

i=1(x(t) − x̂ (t))2

N

s
(11)

where x(t) and x̂ (t) represent the actual and fitted wave-

induced drift velocities, respectively. �x is the mean value of the

actual wave-induced drift velocity. N is the length of the samples.

The closer the NSE value is to 1, the better the simulation effect. The

smaller the RMSE value, the higher the fitting accuracy.

4 Results and discussions

4.1 ML fitting results of wave-induced
drift velocities

In this study, we employed three distinct ML methodologies to

model the wave-induced drift velocities. Note that the fitting of
Frontiers in Marine Science 10
wave-induced drift velocities was divided into two components:

north–south velocities and east–west velocities. However, we

calculated RMSE and NSE by combining the north–south and

east–west samples to ensure the overall wave-induced drift

velocities’ best fitting.

4.1.1 LSTM neural-network model
The outcomes of the model evaluation, utilizing eight distinct

schemes within an LSTM neural-network framework for two

different targets, the OFV and the PIW, are presented in

Figure 11 and Table 4, respectively. For an OFV, the model

accuracy was the highest when scheme S6 was adopted, for which

the RMSE and the NSE were 0.041 and 0.47, respectively. The

remaining values in the table are the proportion of the increase in

RMSE and NSE values relative to the optimal scheme S6. Similarly,

for the PIW, the model accuracy was the highest when scheme S8

was adopted, and the RMSE and the NSE were 0.055 and 0.34,

respectively. The remaining values in the table are the proportion of

the increase in RMSE and NSE values relative to the optimal

scheme, S8.

4.1.2 Training results of BP neural network
The evaluation results of the BP neural-network model,

employing eight schemes for the OFV and the PIW, are shown in

Figure 12 and Table 5. For an OFV, the model accuracy was the

highest when scheme S6 was adopted, and the RMSE and the NSE

were 0.05 and 0.39, respectively. The remaining values in the table

are the proportion of the increase in RMSE and NSE values relative
TABLE 2 Linear regression of leeway parameters.

OFV PIW

Slope (%) Y (cm/s) Syx (cm/s) Slope (%) Y (cm/s) Syx (cm/s)

Leeway Speed 4.3 0.1 6.51 0.80 8.9 6.77

DWL 3.9 −5.0 7.91 0.71 10.5 6.89

+CWL 2.32 2.20 6.26 −0.15 4.25 3.33

-CWL −0.45 −3.9 4.22 −0.16 −2.36 3.35
TABLE 3 Eight schemes for the fitting of wave-induced drift velocities.

Mean
wave
period

Mean
wave
height

Main
wave

direction

Significant
wave
height

Significant
wave
period

The angle between the
wave direction and

wind direction

The angle between the
wave direction and
current direction

S1 √ √ √

S2 √ √ √

S3 √ √ √ √

S4 √ √ √ √

S5 √ √ √ √ √

S6 √ √ √ √

S7 √ √ √ √

S8 √ √ √ √ √
The "√" in indicate the parameters selected for different schemes.
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to the optimal scheme S6. Similarly, for the PIW, the model

accuracy was the highest when scheme S2 was adopted, and

RMSE and the NSE were 0.059 and 0.32, respectively. The

remaining values in the table represent the proportion of the

increase in RMSE and NSE values relative to the optimal scheme S2.
4.1.3 Training results of the RF model
The evaluation results of the RF model, employing eight

schemes for the OFV and the PIW, are presented in Figure 13

and Table 6. For an OFV, the model accuracy was the highest when

scheme S8 was adopted, and the RMSE and the NSE were 0.048 and

0.42, respectively. The remaining values in the table are the

proportion of the increase in RMSE and NSE values relative to

the optimal scheme S6. Similarly, for the PIW, the model accuracy

was the highest when scheme S2 was adopted, and the RMSE and

the NSE were 0.053 and 0.36, respectively. The remaining values in

the table are the proportion of the increase in RMSE and NSE values

relative to the optimal scheme S2.

By analyzing the evaluation results of the above three ML

models trained with eight different parameter setting schemes, we

could make the following preliminary observations:
Fron
(1) According to the evaluation results of three ML methods,

for an OFV, the LSTM neural network with optimal scheme

S6 had the best-fitting effect on wave-induced drift

velocities, followed by the RF model, and the BP neural
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network. For the PIW, the RF model using the optimal

scheme S2 had the best-fitting effect on wave-induced

drift velocities, followed by the LSTM, and the BP

neural network;

(2) From the evaluation results of eight different parameter

schemes, no matter which ML model was used, the schemes

using the significant wave height and significant wave

period (S2, S6, S7, S8) were generally better than the

schemes using the average wave height and average wave

period (S1, S3, S4, S5);

(3) From the comparison of model evaluation results for two

different target types, the fitting result of wave-induced drift

for an OFV was significantly better than that of the PIW.

This indicates that wave-induced drift of an OFV is more

strongly correlated with waves to a certain extent, which is

also consistent with some previous studies’ conclusions on

the relationship between wave-induced drift and target size.

In addition, factoring in the wave direction, current, and

especially the wind, could also improve the model’s

accuracy to some extent, although its impact was not very

significant compared with all results;

(4) By analyzing the contribution of wind, wave, and current to

the target-drift velocity in all samples, we found that for an

OFV, the average drift velocity caused by current was about

0.429 m/s, the average drift velocity caused by wind was

about 0.227 m/s, and the average drift velocity caused by
FIGURE 11

The comparison between the true value and the fitting value of the wave-induced drift velocity of the OFV (left) and the PIW (right) using the optimal
scheme based on the LSTM.
TABLE 4 Evaluation results of eight scheme models based on the LSTM.

S1 S2 S3 S4 S5 S6 S7 S8

OFV
NSE −40.5% −21.9% −36.3% −32.3% −29.2% 0.47 −13.9% −10.9%

RMSE +28.1% +11.2% +20.6% +19.1% +18.3% 0.041 +12.5% +8.1%

PIW
NSE −14.3% −4.4% −11.8% −11.4% −4.3% −7.9% −9.3% 0.34

RMSE +15.6% +5.1% +13.7% +13.2% +5.2% +8.1% +12.2% 0.055
The bolded values represent the NSE and RMSE values corresponding to the best-fitting schemes.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1532757
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhu et al. 10.3389/fmars.2024.1532757

Fron
waves was about 0.075 m/s. Moreover, for the PIW, the

average drift velocity caused by current was about 0.452 m/

s, the average drift velocity caused by wind was about 0.238

m/s, and the average drift velocity caused by waves was

about 0.041 m/s. Therefore, for both target types, current

was the main factor leading to target-drift motion, the wind

was the second most influential factor, and the wave

influence was relatively small, consistent with our

assumption that the parameter stepwise calibration

method was adopted.
4.2 Comparison of trajectory prediction

To further validate wave-induced drift’s influence on the drifting

behavior of sea targets, the previously established wave-induced drift

model’s optimal schemes [PIW (RF, S2), an OFV (LSTM, S6)] and

the FAM model were used to calculate and compare drift trajectory

and ensemble trajectory predictions for the two targets.

The samples used to calculate drift trajectories and ensemble-

trajectory predictions were independent of the samples used for ML

training and evaluation. Among them, two cases of OFV samples

were used for drift trajectory calculations, with continuous

experimental observation durations of 13 and 9 h. There were

also two cases of PIW samples used for drift trajectory calculations,

with continuous experimental observation durations of 6 and 8 h.
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The prediction of the trajectory was conducted utilizing the

Lagrange particle tracking method (Drouin et al., 2019). The drift

motion of the sea target can be expressed by the following formula:

x!(t) − x0
! =

Z t

0
Vo
�!

(t
0
)dt

0
=
Z t

0
aV
!

sc(t
0
) + L(t

0
)

��!
+ V
!

F−wave(t
0
)

� �
dt

0
(12)

x0
! and x!(t) denote the initial and current position of the target,

respectively. In instances where the wave-induced drift’s influence

was neglected, there was ~VF−wave = 0, Ld = adVwind + bd + ed . Here,

ed = Sy=x · norm, where norm is a random number that followed

normal distribution N(0,1), and Sy=x represents the standard

deviation of WI drift velocities fitted by the AP98 model.

When the effect of wave-induced drift was considered, there was

Ld = adVwind + bd , ~VF−wave = V 0�!
F−wave + ew, ed = Sy=x · norm,

where Sy=x represents the standard deviation of the wave-induced

drift velocities fitted by the corresponding ML model.

Figures 14, 15 show the target drift trajectories obtained by the

AP98 model, the AP98 model combined with the ML methods, and

the AP98 model combined with FAM to simulate wave-induced

drift, respectively. For the OFV cases, the simulated trajectories

utilizing the LSTM to calculate wave-induced drift exhibited closer

proximity to the observed real trajectories. Conversely, for the PIW

cases, the trajectories simulated by the FAM or RF model did not

approximate the real values as closely as those simulated trajectories

directly using the AP98 model. Given that random disturbance

terms were used in both trajectory simulation methods, the results

of a single trajectory simulation were not completely representative.
FIGURE 12

The comparison between the true value and the fitting value of the wave-induced drift velocity of the OFV (left) and the PIW (right) using the optimal
scheme based on the BP neural network.
TABLE 5 Evaluation results of eight scheme models based on the BP neural network. .

S1 S2 S3 S4 S5 S6 S7 S8

OFV
NSE −19.8% −8.8% −11.2% −11.2% −17.7% 0.39 −11.9% −8.2%

RMSE +26.7% +7.6% +15.3% +10.4% +21.3% 0.050 +11.3% +5.9%

PIW
NSE −18.1% 0.32 −23.4% −20.7% −13.9% −9.8% −13.4% −10.1%

RMSE +13.9% 0.059 +17.3% +15.6% +9.6% +5.9% +8.6% +6.4%
The bolded values represent the NSE and RMSE values corresponding to the best-fitting schemes.
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Therefore, the method of ensemble-trajectory prediction was

adopted to calculate the two cases of samples for the OFV and

the PIW.
4.3 Comparison of ensemble-
trajectory predictions

The ensemble-trajectory prediction approach generated 1,000

particles for each case, and the trajectory prediction of each particle

was calculated using Eq. (5). The difference was that for WI drift

velocities, the random disturbance term was the fitting standard

deviation of the AP98 model; for the wave-induced drift, the

random disturbance term was the fitting standard deviation of the

LSTM, RF and FAM model.

The range predicted by the model was determined by the

horizontal position distribution of the simulated particles at

different times. In this work, a closed curve containing 98%

particle positions was calculated using the kernel density estimate

method (Abascal et al., 2009a; Martinez, 2002) and the region

contained in this curve was the predicted search range with a

confidence interval of 98%. For a sample of size n, where each

observation was a d-dimensional vector, Xi, i = 1,…,n, the kernel

density estimate was defined as (Martinez, 2002):
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f̂ Ker(X) =
1

nh1 … hd
o
n

i=1
o
d

j=1
k

xj − Xij

hj

 !( )
(13)

where Xij is the jth component of the ith observation, k is the

kernel function, and h is the smoothing parameter or window

width. The parameter h was defined as

hjKer =
4

n(d + 2)

� � 1
d+4

sj ;  j = 1,…, d (14)

where sj is the standard deviation of the jth component. The

kernel equation for density estimation was considered a Gaussian

function:

k (x) =
1ffiffiffi
2

p
p
exp (

−x2

2
) (15)

The calculation results of different ensemble-trajectory prediction

schemes for the two cases of OFV samples are shown in Figure 16.

Similarly, the results of different ensemble-trajectory prediction

schemes for the two cases of PIW samples are shown in Figure 17.

The area indicated by the gray dashed line is the predicted search area

every hour, while the bold green points on the real trajectory are the

target positions given at each interval of 1 h as well. The statistical

situation of whether the prediction area successfully covered the real

trajectory of the target is shown in Table 7.
FIGURE 13

The comparison between the true value and the fitting value of the wave-induced drift velocity of the OFV (left) and the PIW (right) using the optimal
scheme based on the RF model.
TABLE 6 Evaluation results of eight scheme models based on the RF model.

S1 S2 S3 S4 S5 S6 S7 S8

OFV
NSE −16.9% −8.8% −22.5% −19.1% v17.6% 9.2% +9.7% 0.42

RMSE 19.1% 9.8% 29.3% +23.4% +20.4% +10.6% +11.3% 0.048

PIW
NSE −13.9% 0.36 −13.9% −15.6% −16.8% −8.7% −7.4% −10.7%

RMSE +15.8% 0.053 +15.8% +17.5% +19.4% +10.1% +9.3% +12.2%
The bolded values represent the NSE and RMSE values corresponding to the best-fitting schemes.
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The color of the points in the plot represents the probability of

particle distribution density calculated from the kernel density

estimate. It can be found from Figure 14 that in the prediction

results of an OFV, particles were more concentrated on one side of

the prediction range because the ensemble-trajectory prediction

model took into account that for an OFV, the distribution

probability of the crosswind component was much greater on the

right side than on the left side. The average distance errors of the

ensemble-trajectory prediction for the two target types are shown in

Table 8. The average distance error was calculated every hour, and

the value was equal to the average distance between the position of

1,000 particles simulated at the current time and the real

target position.

It can be found from Table 8 and Figures 16, 17 that the average

prediction errors of different schemes for target trajectory

prediction were superimposed over time. In addition to the

prediction results of the first 5 h in Case 1, the simulation results

of the LSTM and FAM model for the two cases of OFV samples

were superior to the AP98 model, and the longer the prediction
Frontiers in Marine Science 14
time, the greater the difference in prediction accuracy between the

two prediction schemes. When the simulation period was 13 h, the

average distance error of the AP98 model for Case 1 reached 5.33

km, while the average distance error of AP98 combined with the

LSTM model and FAM was 3.83 km and 4.14 km, respectively.

When the simulation period was 9 h, the average distance error of

the AP98 model for Case 2 reached 2.75 km, while the average

distance error of AP98 combined with the LSTM model and FAM

was 2.24 km and 2.45 km, respectively. In addition, it can be seen

from Table 7 that the predicted range of the scheme using the LSTM

or FAM combined with the AP98 model better covered the real

trajectory. Thus, the simulation schemes considering wave-induced

drift played a positive role in the OFV trajectory prediction. For the

simulation of wave drift, the LSTM model was better than FAM in

2 cases.

In the comparison of the two cases for the PIW, the ensemble

prediction trajectory simulated by two different schemes showed

different results. In Case 1, the average distance error of the AP98

model, without considering wave-induced drift, was smaller than
FIGURE 14

The results of particle trajectory obtained by 3 simulation schemes for the OFV.
FIGURE 15

The results of particle trajectory obtained by 3 simulation schemes for the PIW.
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that of the AP98 combined RF model or FAM at every moment.

The average prediction distance error of the AP98 model at the 6th

hour was 2.61 km, while that of the AP98 combined RF model and

FAM was 2.95 km and 2.67 km, respectively. However, the opposite

result was observed in Case 2, where the AP98 model had an

average distance error of 1.66 km at the 8th hour, while the AP98

combined with the RF model and FAM had an average distance

prediction error of 1.53 km and 1.43 km. In addition, it can be seen

from Table 7 that the predicted range of the scheme using RF or

FAM combined with the AP98 model did not better cover the real

trajectory. Therefore, it can be preliminarily found that the RF

model considering wave-induced drift did not significantly improve

the trajectory prediction accuracy for the PIW.
Frontiers in Marine Science 15
5 Conclusions and recommendations

A target-drift prediction method considering wave-induced

drift based on stepwise parameter calibration was studied in this

work. According to the analysis of the main contribution sources to

the drift motion of the sea target, the CI drift and WI drift were

separated from the target-drift motion based on the AP98 model.

The residual velocity errors were derived from fitting the wave-

induced drift velocities. Based on the field-observation experiments

of two typical SAR targets, FAM and three kinds of ML methods

combined with eight different parameter schemes were set up to fit

the wave-induced drift of the OFV and the PIW. For an OFV, based

on the LSTM model, the wave-induced drift fitting had the best
FIGURE 16

The ensemble-trajectory prediction results for two cases of an OFV obtained by 3 simulation schemes. The bold green points on the real trajectory
are the target positions given at each interval of 1 h.
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effect when using the main wave direction, significant wave height,

significant wave period, and the angle between wave and wind as

model inputs. For the PIW, based on the RF model, the wave-

induced drift fitting using the main wave direction, significant wave

height, and significant wave period as model inputs produced the

best effect. Finally, for the two target types, the two ML schemes

with the best-fitting effect were selected to carry out trajectory

simulation and ensemble-trajectory predictions for comparison.

In two sets of verification experiments for the OFV, the

simulation results of LSTM and FAM models considering wave-

induced drift were superior to the AP98 model for both OFV

samples except the prediction results in the first 5 h of case 1. At the

end of the trajectories in Case 1, the trajectory prediction errors

obtained by best-fitting wave-induced drift based on the FAM and
Frontiers in Marine Science 16
ML methods were reduced by 22.3% and 28.1%, respectively,

compared with the trajectory prediction errors without

considering wave-induced drift. For Case 2, the trajectory

prediction errors obtained by best-fitting wave-induced drift

based on the FAM and ML methods were reduced by 10.9% and

18.5%, respectively. From the experimental comparison results,

when the OFV size was close to the wavelength, the ensemble-

trajectory prediction results of the AP98 model combined with the

LSTM model were significantly better than those only using the

AP98 model, which indicates that considering wave-induced drift as

part of the AP98 model can significantly improve the trajectory

simulation accuracy for an OFV. Compared with the two cases of

PIW prediction results, the accuracy of the RF model combined

with the AP98 model or FAM considering wave-induced drift was
FIGURE 17

The ensemble-trajectory prediction results for two cases of PIWs obtained by 3 simulation schemes. The bold green points on the real trajectory are
the target positions given at each interval of 1 h.
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not significantly improved. This result indicates that wave-drift

effect on small targets including a PIW is negligible. When we tried

to fit it with ML methods, the accuracy of drift prediction was even

reduced. There are two main reasons for this result: the possible

overfitting of the wave-induced drift velocity and the observation of

wind and current near a PIW not being as direct as an OFV, which

makes the observation of wind and current more prone to random

errors. However, in general, the conclusion we derived from our

results is basically consistent with the previous research on wave-

induced drift; that is, the effect of wave-induced drift mainly

depends on the relationship between the target size and

the wavelength.
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Even so, this research also had certain limitations, mainly as

follows: According to the experimental results, the drift prediction

accuracy of the two target types was not significantly improved after

considering wave-induced drift, especially for a PIW. In one sense, this

is because from the physical mechanism, wave-induced drift’s influence

on a PIW and an OFV is relatively small compared with wind and

current. In another sense, it is known that ML methods rely heavily on

experimental samples. However, the field-observation data of the two

target types used in this study, especially the data including wave

observation, are relatively small (432 cases for an OFV, 316 cases for a

PIW). Therefore, although the conclusions obtained in this paper

reflect the effect of wave-induced drift on the drift motion of targets at
TABLE 7 The statistical situation of whether the prediction area successfully covers the real trajectory every hour.

1H 2H 3H 4H 5H 6H 7H 8H 9H 10H 11H 12H 13H

OFV-Case1

AP98 √ √ √ √ √ √ × × × × × × ×

AP98+FAM √ √ √ √ √ √ √ √ × × × × ×

AP98+LSTM √ √ √ √ √ √ √ √ √ × × × ×

OFV-Case2

AP98 √ √ √ √ √ √ √ √ √ / / / /

AP98+FAM √ √ √ √ √ √ √ √ √ / / / /

AP98+LSTM √ √ √ √ √ √ √ √ √ / / / /

PIW-Case1

AP98 √ √ √ √ √ √ / / / / / / /

AP98+FAM √ √ √ √ √ √ / / / / / / /

AP98+RF √ √ √ √ × × / / / / / / /

PIW-Case2

AP98 √ √ √ √ √ √ √ √ √ / / / /

AP98+FAM √ √ √ √ √ √ √ √ √ / / / /

AP98+RF √ √ √ √ √ √ √ √ √ / / / /
frontier
The "√" (Yes) and "×" (No) indicate whether the predicted area successfully covers the true trajectory.
TABLE 8 The average distance errors of the ensemble-trajectory prediction for the OFV and the PIW.

The average distance errors (km)

1H 2H 3H 4H 5H 6H 7H 8H 9H 10H 11H 12H 13H

OFV-Case1

AP98 0.31 0.63 0.81 0.99 1.21 1.41 1.94 2.56 3.44 4.14 4.86 5.19 5.33

AP98+FAM 0.30 0.74 1.08 1.21 1.31 1.43 1.62 2.03 2.32 2.75 3.20 3.80 4.14

AP98+LSTM 0.31 0.69 0.96 1.05 1.26 1.36 1.42 1.39 1.70 2.39 2.96 3.57 3.83

OFV-Case2

AP98 0.31 0.73 1.24 1.68 1.92 2.11 2.21 2.38 2.75 / / / /

AP98+FAM 0.31 0.77 0.98 1.41 1.62 1.83 1.96 2.14 2.45

AP98+LSTM 0.32 0.79 1.04 1.38 1.56 1.68 1.75 1.96 2.24 / / / /

PIW-Case1

AP98 0.31 0.84 1.26 1.93 2.44 2.61 / / / / / / /

AP98+FAM 0.32 0.84 1.33 2.01 2.48 2.67

AP98+RF 0.30 0.95 1.37 2.13 2.82 2.95 / / / / / / /

PIW-Case2

AP98 0.20 0.61 0.80 0.97 1.21 1.46 1.58 1.66 / / / /

AP98+FAM 0.19 0.55 0.71
0.80
.

0.98 1.16 1.32 1.43

AP98+RF 0.20 0.59 0.79 0.94 1.15 1.37 1.48 1.53 / / / /
sin.org
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sea to a certain extent, more experimental data are still needed for

verification. This point also has a certain guiding significance for

carrying out field-observation experiments of target-drift motion in

the future. In particular, for experiments involving large targets,

observing wave motion is necessary.
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