
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Clea Parcerisas,
Flanders Marine Institute, Belgium

REVIEWED BY

Brigitte Schlögl,
Leipzig University, Germany
Maxence Ferrari,
UPR7051 Laboratoire de mécanique et
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Machine learning to predict
killer whale (Orcinus orca)
behaviors using partially
labeled vocalization data
Sophia Sandholm*

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, United States
Orcinus orca (killer whales) exhibit complex calls. In a call, an orca typically varies

the frequencies, varies the length, varies the temporal patterns, varies their

volumes, and can use multiple frequencies simultaneously. Behavior data is

hard to obtain because orcas live under water and travel quickly. Sound data is

relatively easy to capture. This paper studies whether machine learning can

predict behavior from vocalizations. Such prediction would help scientific

research and have safety applications because one would like to predict

behavior while only having to capture sound. A significant challenge in this

process is lack of labeled data. This paper works with recent recordings of

McMurdo Sound orcas where each recording is labeled with the behaviors

observed during the recording. This yields a dataset where sound segments—

continuous vocalizations that can be thought of as call sequences or more

general structures—within the recordings are labeled with potentially

superfluous behaviors. This is because in a given segment, an orca may not be

exhibiting all of the behaviors that were observed during the recording from

which the segment was taken. Despite that, with a careful combination of recent

machine learning techniques, including a ResNet-34 convolutional neural

network and a custom loss function designed for partially labeled learning, a

96.1% general behavior label classification accuracy on previously unheard

segments is achieved. This is promising for future research on orca behavior as

well as language and safety applications.
KEYWORDS

orca, vocalization, calls, behavior prediction, machine learning, partially labeled
learning, language, semantics
1 Introduction

Marine biologists have recordings of Orcinus orca (killer whale) vocalizations in which

they have identified what they coin “calls” [e.g., Poupard et al. (2021)]. Generally speaking,

calls fall into two categories, whistles or pulsed calls, and are used for communication

(Ford, 1989, 1991). These calls are variable in length and can be classified into discrete call
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1 The ResNet-18 neural network is a type of convolutional neural network,

similar to the ResNet-34 convolutional neural network used in this paper, but

with just 18 layers [He et al., 2016].
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types according to temporal patterns, fundamental frequency, and

duration, among other features (Wellard et al., 2020a; Ford, 1989).

Even within an individual call, an orca varies the frequencies, varies

their volumes, and can use multiple frequencies simultaneously, as

in the case of biphonic calls (Filatova, 2020; Ford, 1989).In addition,

orcas produce echolocation clicks which they use to observe their

surroundings (Ford, 1989; Schevill and Watkins, 1966; Leu

et al., 2022).

Researchers have clustered orca calls into 4 to 91 call types

depending on the study. The call types likely depend on the

population studied (Schröter et al., 2019; Wellard et al., 2020a;

Ford et al., 2011; Ford, 1991, 1989; Schall and Van Opzeeland,

2017; Selbmann et al., 2023). For example, the fish-eating resident

orcas in the Pacific Northwest have sets of calls that are

pod-specific (Ford, 1984, 1991, 1989). Those orcas form pods

that are stable matriarchal social groups (Ford, 1989). The set of

calls such a pod uses is called its vocal repertoire. It consist of 7 to

17 call types (Ford, 1991). Such pods have different but

overlapping vocal repertoires, and they have pod-specific ways

of “pronouncing” calls, which together form the pod’s “dialect”

(Ford, 1991). Orcas in Iceland have a vocal repertoire of up to 91

calls (Selbmann et al., 2023). The orcas studied in this paper, the

Type C orcas in the Ross Sea, have been found to have 28 call

types (Wellard et al., 2020a).

Past studies have found certain links between orca vocalizations

and behavior. For example, Icelandic orcas have been observed

using low-frequency pulsed calls to scare Atlantic Herring into

schools before using tail slaps to immobilize, and subsequently feed

on, the herring (Simon et al., 2006). Additionally, the different

dialects of the resident orcas of the North Pacific are also highly

connected to the social activity and development of the resident

matrilines (Filatova et al., 2012; Deecke et al., 2000; Weiß et al.,

2007; Yurk et al., 2002; Miller and Bain, 2000). Ford (1989) found

that certain calls, namely variable, aberrant, and discrete calls, may

be used as social calls by the resident orcas of the Pacific Northwest.

Weiß et al. (2006) found that the resident orcas of the North Pacific

use more of their unique pod-specific calls for several weeks after

the birth of a calf. Weiß et al. (2006) theorize this shift in vocal

behavior is an effort to get the calf to learn the pod-specific calls.

However, there is still little understanding of what these calls convey

(Schröter et al., 2019). This is because orcas live underwater and

move quickly, making it difficult for researchers to record the orcas

with a camera. Thus, the sound recordings are rarely accompanied

by other data that would support such reasoning.

While the types of calls used by orcas have been extensively

studied, it is still quite difficult to determine an orca’s behavior from

vocalization data alone. I aim to develop a machine learning-based

software system that makes it easier to determine orca behavior

from vocalization data. I use a recent orca sound recording

collection that is rare in the sense that it includes auxiliary data

about the orcas’ behaviors (Wellard et al., 2020b, a). I segment these

recordings to isolate continuous orca vocalizations that are typically

many times as long as individual calls. In a segment, the orcas may

not be exhibiting all of the behaviors that were observed during the

recording from which the segment was taken. This yields a data set
Frontiers in Marine Science 02
where the segments are labeled with potentially superfluous

behaviors. This presents a significant problem: a lack of fully

labeled behavior data. I use a custom loss function which is

designed for learning on partially labeled data to combat this

issue (Feng et al., 2020). By carefully combining and tailoring

select modern machine learning techniques, I show that sound

segments—call sequences or even more general structures—can be

used to predict orca behavior with 96.1% accuracy (although

classification accuracy varied considerably among behavioral

categories). Since the data is partially labeled, accuracy is

determined based on the general behavior labels. The model’s

performance concerning the actual behavior or behaviors shown

in a given segment cannot be assessed.

To my knowledge, this paper is the first to use partially labeled

learning to study animal vocalizations and the first to use machine

learning to analyze orca sound segments beyond individual calls.

Prior research on whale sounds has primarily focused on

identifying whales in passive acoustic listening and identifying

individual call types. For example, Bergler et al. (2019a) used

unsupervised learning to cluster orca calls. Bergler et al. (2019b)

worked on classifying orca calls using a ResNet-18 neural

network.1 Deecke et al. (1999) used a neural network to analyze

the differences in the calls of different orca dialects. Bergler et al.

(2019c) created a system using convolutional neural networks that

can differentiate orca calls from environmental noise. Beyond

orcas, studies involving the identification of certain species of

whale with vocalization data using machine learning have been

conducted on false killer whales (Murray et al., 1998), sperm

whales (Jiang et al., 2018; Bermant et al., 2019; Andreas et al.,

2022), long-finned pilot whales (Jiang et al., 2018), right whales

(Shiu et al., 2020), beluga whales (Zhong et al., 2020), fin whales

(Best et al., 2022), humpback whales (Allen et al., 2021), and blue

whales (Miller et al., 2022). Also, the PAMGUARD software has

been developed to identify cetacean presence in passive acoustic

listening data (Gillespie et al., 2009).

The recent sound recordings of Wellard et al. (2020b, a) that I

use last between 51 seconds and 41 minutes each, for a total of 3.42

hours of recordings of Type C Ross Sea orcas from the McMurdo

Sound in Antarctica. The Type C orca is a primarily fish-eating

ecotype of the Southern Hemisphere orcas (Pitman and Ensor,

2003). However, Pitman and Ensor (2003) note that there have been

speculative reports of Type C orcas hunting penguins and seals.

Wellard et al. labeled each recording with all the orca behaviors that

they observed during that recording: (T) for traveling, (F) for

foraging, (S) for socializing, and (M) for milling/resting. Each

recording can therefore have a combination of behavior labels.

(Wellard et al. also identified different types of calls in that dataset.

The shortest call type was on average 0.19 seconds long and the

longest was on average 1.81 seconds long.)
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2 Materials and methods

2.1 Sound preprocessing pipeline

Wellard et al. collected the recordings on the McMurdo Sound

in Antarctica using a hydrophone. The recordings were in a.wav

format. The recordings had a sampling rate of 96kHz with a

bandwidth of 48 kHz or a sampling rate of 44.1 kHz with a

bandwidth of 22.05 kHz. They recorded the orcas nine times

throughout December, 2012 and January, 2013. The number of

individuals sighted during each of the nine encounters can be seen

in Table 1. There were two days, January 8 and January 11, where

the orcas were recorded at two separate locations on the same day.

Wellard et al. (2020a) also documented which call types were

observed during each of the nine encounters
2.

I accessed the recordings through the Dryad Digital Repository

(Wellard et al., 2020b). These recordings ranged from 51 seconds to

41 minutes long. Based on the four possible behavior labels in the

data— traveling (T), foraging (F), socializing (S), and milling/resting

(M)—the recordings could in principle have any one of the 24 − 1 =

15 possible label combinations. However, in reality each recording

had one of the following six label combinations: {T}, {F, S}, {T, S},

{T, F}, {T, F, M}, or {T, F, S, M}. The raw data files in the database

are not labeled directly with their behavior labels. Instead, they are

labeled with dates and no finer-grained information such as time

stamps of the recordings. I extrapolated the data labels associated

with each recording by comparing the behaviors observed on each

recording day and the date labels on the sound files (Wellard

et al., 2020b).

At the heart of my study is the analysis of sound segments—call

sequences or even more general structures—not just individual calls.

For this purpose, I segmented the recordings to create the sound

segments for analysis by my system. Figure 1 shows two examples of

segments and the recording from which they originated.

I conducted the segmentation manually using an audio software

called Audacity (version 3.4.2) to view the spectrograms of the

recording and used the following rules to define a segment.
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• The orca vocalizations in any segment needed to be seen on

the spectrogram in Audacity and be audible when played

back at full volume on a laptop speaker
3.
Criterion 1 was chosen to be half a second to make sure that the

network would have enough data in each segment based on which

to classify. Criterion 2 was chosen with the intention of capturing

sequences of calls, as opposed to singular calls, while making sure

that there was not a large gap between vocalizations. If these criteria

were changed, there would be potential for a decreased amount of

data, as is the case for loosening Criterion 2, as well as decreased

data quality, as is the case for changing Criterion 1.

The numbers of sound segments after segmentation, with their

associated label combinations, are shown in Table 2. Additionally,

Table 1 shows the number of segments originating from each of the

nine encounters and their associated behavior labels. The segments’

lengths ranged from 0.5 to 82.7 seconds and the mean length was

7.4 seconds. Segments of length 0.5 to 0.6 seconds, of which there

were 144 in my dataset, consisted of one to two calls. The segments

with a length of around 8.0 seconds all had at least five and at most

11 calls. An example of one such segment in .wav format can be

seen in Figure 2a.

Next, the segments were resampled to a sampling rate of 21,900

samples per second using a Python (version 3.9.13) program which

I wrote using the Librosa and NumPy libraries (McFee et al., 2022;

Harris et al. 2020). The sampling rate of 21,900 samples per second

was chosen since this is the smallest sampling rate I have seen for

orca vocalization recordings and I wanted the system to be

applicable to the majority of available data. The segment

spectograms were also cut from the bottom and the top to have a

minimum frequency of 100 Hz and a maximum frequency of 9000

Hz in order to remove superfluous noise. The minimum frequency

was set at 100 Hz since this was the minimum frequency observed

by (Wellard et al., 2020a) for the orca vocalizations. I did not

carefully tune the top cutoff, but 9000 Hz led the system to reach a

bigger gap between sound classification accuracy and silence

classification accuracy (shown in Table 3) than a cutoff of 11350

Hz, suggesting that the lower top cutoff helped the system focus on

orca vocalizations rather than session-specific ambient high-

frequency sounds. These steps were taken to standardize the

images of the spectrograms so that the convolutional neural

network could perform the necessary matrix calculations on

the image.

Then, in order for my deep learning system, which is explained

in detail in Section 2.2, to effectively analyze the segments, I

transformed the waveforms of the segments into decibel Mel

spectrogram images that is, decibel spectrogram images that use

the Mel frequency scale as opposed to Hz—as follows. I first

transformed the waveforms into Mel spectrograms. A

spectrogram takes the Fast Fourier Transform at every time block

(i.e., time window); in this case, the window size was 2048 samples
o steps were taken to improve audibility. I generated the spectrograms

dacity using the ”Frequencies” algorithm, a Hann window, window size

48, zero padding factor of 1, and the Mel frequency scale.
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with a “stride” of 512, that is, the next window overlaps the previous

window by 75%. It ends up being a picture with discrete time steps

on the x-axis, frequency in Hertz (Hz) on the y-axis, and strength of

each particular frequency as the intensity of the (monochrome)

color. This enables one to not only study frequencies that are

present in the sound but changes in the frequencies across time.

Then, to get a Mel spectrogram, I transform the frequency axis

nonlinearly so that the spacing between the harmonics is

normalized. Then, I transformed the Mel spectrograms to decibel

Mel spectrograms by putting the color intensity (i.e., strength of

each frequency) on a log scale. As shown in Figure 2b, this

transformation makes the patterns dramatically more noticeable.

Finally, I normalize the decibel Mel spectrograms to have values

between 0 and 255, which creates a normalized decibel Mel

spectrogram image. The image does not look any different than

the decibel Mel spectrogram. I used a program I wrote in Python to
Frontiers in Marine Science 04
complete this process. I used these images as inputs for my deep

learning system.

When the images are loaded into the deep learning system as

input, 3 zero pixels of padding are added to each of the four sides of

the spectrogram image. Such padding is used to prevent the

convolution layers from unduly focusing on the center of the

image. The number 3 is the standard amount of padding given

that the convolution kernels are of size 7x7.
2.2 Deep learning system and dealing with
potentially superfluous behavior labels

The deep learning system, which I coded in Python using the

PyTorch and NumPy libraries, leverages a pre-trained ResNet-34

convolutional neural network and a custom loss function. ResNet-
FIGURE 1

Examples of two segments contained within a sample recording. The bottom spectrogram is a 135 second long portion of a 5 minute and 15 second
long recording from Wellard et al. This recording had the behavior label {T}. The two spectrograms at the top of the diagram are two segments
contained within the recording. These segments’ places within the recording are marked in red.
TABLE 1 Date, behavior labels, numbers of sound segments, number of individuals sited by Wellard et al. (2020a), and duration (minutes:seconds) of
recording for each of the nine encounters.

Date Label combination No. of sound segments No. of individuals present Duration

12/26/2012 {F, S} 49 65 22:54.4

12/29/2012 {F, S} 73 19 26:44.6

01/03/2013 {T, S} 30 31 06:46.9

01/04/2013 {T, F, S, M} 19 63 05:34.9

01/08/2013 {T, F} 71 6 22:06.2

01/08/2013 {T} 76 7 15:16.4

01/09/2013 {T, F, M} 112 46 47:36.3

01/11/2013 {T, S, F, M} 16 59 13:03.3

01/11/2013 {T} 48 21 53:08.0
frontiersin.org

https://doi.org/10.3389/fmars.2025.1232022
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Sandholm 10.3389/fmars.2025.1232022
34 is a modern convolutional neural network architecture that

includes ReLU units and skip connections (He et al., 2016). It has 34

layers which alternate between convolutional layers and pooling

layers4. The final output layer is a fully connected layer. The

motivation for pretraining is that the network is likely to learn on

small datasets better and learn the real task faster if it is pretrained

in advance. Note, however, that ResNet-34’s pretraining was on

images (ImageNet) not sounds5. I used the pretrained weight file

ImageNet1K V1 [res]. ResNet-34 was originally designed for 1,000

outputs, that is, classes of images. Since our data set only has four

orca behaviors that the network is trying to predict, I modified the

ResNet architecture to be four-headed, that is, to have four outputs.

Additionally, I modified the ResNet architecture further by

removing the normalization. Each input sound segment has a

different length. The ResNet34 architecture is able to

accommodate different-sized inputs. However, the Pytorch

dataloaders, which I use to create minibatches for the network,

cannot accommodate different-sized data within a single batch. This
4 A ReLU unit is a neural network unit (that is, an artificial neuron) where the

output activation is zero if the weighted sum of inputs is negative, and equal

to the weighted sum of inputs otherwise. Skip connections are connections

that skip at least one layer in the network. Convolution layers apply kernels,

i.e., filters, to the image matrix. These kernels transform the image matrix for

further processing. Pooling layers reduce the image size to make the image

faster for the network to process.

5 The ImageNet dataset is a preexisting dataset consisting of millions of

images of thousands of types of object.

Frontiers in Marine Science 05
meant that I had to set the batch size to 1. It is well known that batch

normalization layers in Resnet34 do not work well with small batch

sizes. Indeed, I tried batch normalization, layer normalization,

instance normalization, and no normalization, and no

normalization performed best. Thus, I decided to go with no

normalization by making the normalization layers simply be the

identity mapping.

Capturing fine-temporal-resolution orca behavior data together

with sound would be extremely difficult. Wellard et al. (2020a)

labeled their sound recordings with all the behaviors observed

during the recording period. For this reason, the majority of the

sound segments had potentially superfluous labels. This is due to

the fact that, while the orcas were doing all of the labeled behaviors

during a given recording, they may not have been doing all of those
FIGURE 2

Key steps of the programmatic part of my sound processing pipeline illustrated on a 10-second orca sound segment. (a) Raw recorded sound signal
(that is,.wav format) that shows pressure (amplitude) at the sampling points. (b) Resampled Decibel Mel spectrogram. (The padding is not shown in
these figures. It would show as a narrow, dark border around the entire image. The normalization of the decibel Mel spectrogram to make a decibel
Mel spectrogram image is also not shown. The decibel Mel spectrogram image looks the same as the decibel Mel spectrogram.).
TABLE 2 Numbers of sound segments with the various
label combinations.

Label combination Number of sound segments

{T} 124

{F, S} 122

{T, S} 30

{T, F} 71

{T, F, M} 112

{T, F, S, M} 35

Total 494
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behaviors in each sound segment within the recording, so the

segments have potentially superfluous labels. The potentially

superfluous labels on the segments create a difficult classification

problem since there is no ground truth (except for certain sound

segments where the only behavior label was T, Table 2).

I developed the following approach for dealing with the issue of

potentially superfluous behavior labels. We assume that only one

behavior was present during each sound segment6. This enables us

to leverage recent theory of partially labeled learning (PLL). In PLL,

each training instance may have multiple labels, but only one of

them is correct. For PLL, Feng et al. (2020) proved that the loss

function seen in Equation 1 is risk consistent7. They also introduced

a classifier-consistent loss function but showed that especially when

using deep learning as the classifier, the risk-consistent loss function

performs significantly better in practice. They also showed that the

risk-consistent loss function outperforms prior techniques for PLL

from the literature (Feng and An, 2019; Cour et al., 2011; Zhang and

Yu, 2015; Zhang et al., 2017; Hüllermeier and Beringer, 2005). For

these reasons, I use it as the custom loss function for the neural

network. This custom loss function enables the network to learn

from training data with potentially superfluous labels.

R̂ (f ) =
1
no

n

o=1
o
k

i=1

p(yo = ijxo)
oj∈Yo

p(yo = jjxo)
L(f (xo), o, i)

 !
(1)

Here the index o is used to sum over instances and the index i to

sum over labels. The feature vector (decibel Mel spectrogram in my

setting) is xo. The network’s prediction for instance o is yo. The label

set of training instance o is Yo. The values p(y = i x)j are, of course,

not accessible given the data, so we compute them as the softmax’d

version of the network’s output fi(x) but only if the label is actually a

candidate label in the label set (as Feng et al. (2020) do). The formal

definition of the softmax is shown in Equation 2

gi(x) =
efi(x)

oje
fj(x)

(2)
6 It is conceivable that this assumption may not be fully accurate for some

sound segments in the orca context, but as I will show, I get high classification

accuracy with it. Also, it is conceivable that multiple orcas could be producing

overlapping or back-to-back vocalizations in a given segment and/or that

different orcas in a pod could be exhibiting different behaviors during a

segment. However, these are not a problem for the model.

7 Risk consistency means that the empirical loss approaches the minimum

possible loss as the amount of training data approaches infinity.
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and p(y = i x)j is computed as shown in Equation 3:

p(y = ijx) =
gi(x)  if    i ∈ Yo

0  otherwise :  

(
(3)

Finally, L is the cross entropy loss of the softmax’d predictions,

as shown in Equation 4.

L(f (xo), o, i) =
−log gi(xo)  if    i ∈ Yo

0  otherwise :  

(
(4)

As is typical in neural network applications, the neural network

was trained using backpropagation with the Adam algorithm

(Kingma and Ba, 2014). My software changed the learning rate

on a schedule. It started with a learning rate of 8 · 10−5. It decreased

the learning rate by a factor of 10 every 15 training epochs.
2.3 Experimental methodology

I evaluated the machine learning model over 20 cross-validation

repetitions. Each network in the cross-validation was trained for 30

epochs. I split the sound segments (i.e., instances) into a validation

set and a training set so that 20% of the data went to the validation

set and 80% went to the training set—in a way that the numbers of

segments with each of the behavior label combinations were 80–20

proportionate across the training and validation set. The validation

set was not used for training and was used to evaluate the model’s

classification accuracy and validation set loss at each epoch. For

each repetition in the cross-validation, the validation and training

sets needed different instances. For this reason, I shuffled the

segments before assigning them to the validation or training set. I

used mini-batches of size 1 training instance (sound segment) for

training and testing.

One potential concern one might have is that the system could

be learning to classify different groups of orcas (with their group-

specific vocal repertoire and behaviors) instead of learning to

predict behavior based on vocalizations. To provide evidence

against that, I also conducted an experiment where I trained the

network on the data from the other encounters and tested the

system on the data from the remaining one encounter. This

experiment also mimics a real-world scenario where the deep

learning system would be trained on previous encounters but

used on novel encounters. I performed this experiment six ways,

using the data from the six encounters on 01/11/2013, 01/08/2013,

12/26/2012, 12/29/2012, and 01/03/2013 that did not have the labels

{T,F,M} or {T,F,S,M}. I did not use the encounters which had the

labels {T,F,M} or {T,F,S,M} since, due to the classification being

considered correct if one of the behaviors in the behavior label

combination is the predicted label, these experiments by random

guessing would have a 75% and 100% validation set classification

accuracy, respectively. Additionally, I conducted an analysis shown

and explained in the Appendix where I used the model’s second-to-

last layer activations as points for UMAP (McInnes et al., 2018)

dimensionality reduction. This analysis suggested that the model

learned to classify behaviors, as desired, as opposed to

recording session.
TABLE 3 The system’s weighted mean accuracy and weighted mean
validation set loss when classifying silence extracts from all recordings.

Weighted mean accuracy Weighted mean
validation loss

86.1% 1.4
One silence extract of one to two seconds in length was taken from every recording in
(Wellard et al., 2020b) that had silences and yielded segments. The silence extracts were
weighted to be proportional to the number of segments coming from the same recording as
the silence extract. The silence extracts were classified by the 20 networks from the cross-
validation in Section 3.1.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1232022
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Sandholm 10.3389/fmars.2025.1232022
3 Results

3.1 Main experiment

As a performance benchmark and a sanity check, I calculated

the accuracy that would be achieved by guessing randomly or by

always guessing the same single behavior. I found that guessing

uniformly at random would achieve 52.9% accuracy. Always

guessing T, the most prevalent behavior (with 372 of the

segments having T as a possible label), would achieve 75.3%

accuracy, as shown in Table 4.

I defined the accuracy on the validation set so that if the

network’s highest-predicted-probability behavior was among the

(potentially more than one) labels assigned by Wellard et al. for the

sound recording from which the sound segment came, the

prediction is considered correct. For example, the network could

classify a {T,S,F,M} file as either {T}, {F}, {S}, or {M}, but could only
Frontiers in Marine Science 07
classify a {T} file as {T} in order to get the classification correct. The

machine learning model achieved 96.1% classification accuracy on

the validation set, converged to 1.03 loss on the validation set, and

converged to 0.66 loss on the training set, shown in Figures 3–5,

respectively. The high accuracy and the loss converging to a low

value means that the system was able to learn the task well.

Given that the system achieved 96.1% accuracy, which is higher

than the 75.3% achievable by guessing the most prevalent class, one

can see that the orca sound segments had predictive value for

behavioral labels. Even at bottom 5% percentile, the model achieved

94.0% accuracy, seen in Figure 5, which is higher than the 75.3%

accuracy that the model would achieve if guessing the most

prevalent class. Therefore, the model is better than always

guessing the most prevalent class with more than 95% statistical

significance. These results strongly show that orca sound segments

contain indications of behavior.
3.2 Testing on new encounters

As seen in Figures 6 and 7, the system had a validation set

classification accuracy ranging from 13.9% to 68.8% (52.6 +/- 19.8)

and a loss of 0.64 to 0.78 (0.69 +/- 0.06). The exact values for the

mean classification accuracies and training losses for these

experiments can also be seen in Table 5.
3.3 Examples of what the system predicted

In this section, I show six examples of the system’s predictions

for six exogenously chosen sound segments. I show resampled

decibel Mel spectrograms of these segments in Figures 8–13,

respectively. I show the softmax’d predictions, i.e., the networks
TABLE 4 Sanity check: accuracy that would result from various guessing
schemes based on data from Table 2.

Guess Analytically calculated
accuracy

Uniform random among T, F, S, and M 52.9%

Uniform random among only T, F, and S 60.7%

Uniform random among only T and F 72.1%

Always guess T 75.3%

Always guess F 68.8%

Always guess S 37.9%

Always guess M 29.8%
FIGURE 3

Training set loss R̂ (f) as a function of training epochs (with 20-fold cross-validation). The plot starts before the first training epoch has
been completed.
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predicted probabilities for each behavior class, that the system

outputs in Table 6.

Figure 8 is a resampled decibel Mel spectrogram of a segment

that is spuriously labeled as {T,F,S,M} in the input data, that is, the

input data has no information about the correct behavior: having all

the labels in the label set means that the input data has no

information on that instance. The system classifies this sound as

indicating behavior T. This is shown in Table 6. The system assigns

probability 43.9% on the behavior being T out of all four behaviors.

The network was very sure that the behavior was not M, showing
Frontiers in Marine Science 08
that the system was able to find predictive structures within the

segment. It is also possible that certain orca behaviors have

structures within the sound segments that are more similar to

certain behaviors than to others. In this example, the network was

43.9% sure that the behavior was T and 32.5% sure that the behavior

was F. This may suggest that the traveling and socializing have

similarities in their vocalization structures.

Figure 9 is a resampled decibel Mel spectrogram of a sound

segment that had label set {T,F} in the input data. The system

assigns probability 48.7% on the behavior being T, shown in
FIGURE 4

Validation set loss R̂ (f) as a function of training epochs (with 20-fold cross-validation). The plot starts before the first training epoch has
been completed.
FIGURE 5

Validation set classification accuracy (%) as a function of training epochs (with 20-fold cross-validation). The plot starts before the first training epoch
has been completed.
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Table 6. The system assigned small probabilities of 8.9% and 6.0% to

the behaviors S and M, respectively, which shows that the system

was able to detect the two correct labels in this case.

Figure 10 is a resampled decibel Mel spectrogram of a sound

segment that had the potentially superfluous label set {T,F,M} in the

input data. The system assigns a probability 44.3% on the behavior

being T. Although S was the only behavior not included in the set of

potential labels, the system assigned a probability of 12.5% to the

behavior being S, which is higher than the 10.4% probability the

system placed on the behavior being M. In fact, as seen in Table 6,

the system assigned the lowest probability to the behavior M for all
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6 examples. This may be due to the small amount of segments with

the potential label M when compared to the other behaviors.

Figure 11 is a resampled decibel Mel spectrogram of a sound

segment that had the label set {T,S}. The system assigned a

probability 43.8% on the behavior being F. The system assigned a

probability of 14.6% on the behavior being S, which shows that the

system was able to differentiate between the two possible labels well.

While the socializing behavior was in the set of potential behaviors

for this segment, the system predicted that the socializing behavior

likely did not occur during this segment. This is a reasonable real-

world possibility for this segment, but cannot be fully verified due to
FIGURE 6

Training set loss R̂ (f) as a function of training epochs (with 20-fold cross-validation). (a) The 12/29/2012 encounter with the label combination {F,S}
is used as the validation set. (b) The 12/26/2012 encounter with the label combination {F,S} is used as the validation set. (c) The 01/11/2013
encounter with the label combination {T} is used as the validation set. (d) The 01/08/2013 encounter with the label combination {T} is used as the
validation set. (e) The 01/08/2013 encounter with the label combination {T,F} is used as the validation set. (f) The 01/03/2013 encounter with the
label combination T,S is used as the validation set. The plot starts before the first training epoch has been completed.
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the partially labeled nature of the data. The system assigned a

probability of 32.2% on the behavior being F, which is rather high

considering that F was not one of the correct labels. Additionally,

the system is fairly certain that the label was not M, assigning a

probability of 9.2% on the behavior being M. It is worth noting that

for all the examples where T was a potential label, the system placed

the highest probability on the behavior T, followed by F, S, and M in

that order. This may be influenced by the high prevalence of

segments with the labels T and F in the dataset. However, as seen

in Table 4, it is not possible to achieve the system’s 96.1%

classification accuracy by simply always guessing T or F.
Frontiers in Marine Science 10
Figure 12 is a resampled decibel Mel spectrogram of a

sound segment that had the label set {F,S}. The system

assigned a 84.2% probability on the behavior being S and a

14.2% probability on the behavior being F, revealing that the

system could differentiate between the two potentially correct

labels for this segment. The system was very certain that the

behaviors were not T or M, assigning probabilities of 0.9% and

0.8%, respectively.

Figure 13 is a resampled decibel Mel spectrogram of a sound

segment that had the label set {T}. The system assigned a 44.8%

probability on the behavior being T. The probability assigned on the
FIGURE 7

Validation set classification accuracy (%) as a function of training epochs (with 20-fold cross-validation). (a) The 12/29/2012 encounter with the label
combination {F,S} is used as the validation set. (b) The 12/26/2012 encounter with the label combination {F,S} is used as the validation set. (c) The
01/11/2013 encounter with the label combination {T} is used as the validation set. (d) The 01/08/2013 encounter with the label combination {T} is
used as the validation set. (e) The 01/08/2013 encounter with the label combination {T,F} is used as the validation set. (f) The 01/03/2013 encounter
with the label combination T,S is used as the validation set. Epochs are labeled from 0, so the plot starts before the first training epoch has
been completed.
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behavior F was rather high, with the system assigning the

probability 31.9% on the behavior being F.
4 Discussion

Orcinus orca (killer whales) have complex vocalizations that use

multiple frequencies simultaneously, vary the frequencies, vary their

intensities, and vary their temporal patterns. I used a recent orca
Frontiers in Marine Science 11
sound recording collection that is rare in the sense that it has

auxiliary behavior data (Wellard et al., 2020b, a). In particular, it has

partially labeled behavior data. By carefully combining and tailoring

select recent machine learning techniques, I showed that previously

unheard sound segments can be used to predict orca behavior with

96.1% accuracy (although classification accuracy varied

considerably among behavioral categories). This revealed the

highly predictive properties that orca sound segments have when

it comes to classifying behavior. The fact that the sound segments

can be used to classify behavior suggests that orcas convey behavior

through their vocalizations.

There are many further features of orca vocalizations that may

have aided the deep learning system with the task of classifying

behavior. These include acoustic markers of directionality,

echolocation clicks, the frequency of certain call types in the

segments, and features that capture overlapping calls. I will now

discuss these, broken out by behavior.

The mammal-eating transient orcas in the Pacific Northwest are

known to vocalize primarily after a successful hunt, whereas their

fish-eating counterparts, the resident orcas, are known to vocalize

more consistently (Deecke et al., 2005). Deeke et al. suggested that

the difference in the transient and resident populations’ vocal

behavior is due to their feeding habits. According to Barrett-

Lennard et al. (1996), fish-eating orcas also echo-locate using
TABLE 5 Date, behavior label, mean validation set classification
accuracy, and mean training set loss for each of the six encounters used
as a validation set in Section 3.2.

Encounter
date

Label
combination

Mean accuracy
on validation

set

Mean
training
set loss

12/29/2012 {F,S} 13.9% 0.65

12/26/2012 {F,S} 64.1% 0.64

01/11/2013 {T} 52.7% 0.73

01/08/2013 {T} 58.7% 0.78

01/08/2013 {T,F} 68.8% 0.66

01/03/2013 {T,S} 57.33% 0.66
FIGURE 8

Resampled decibel Mel spectrogram of a 2.6-second-long {T,F,S,M} segment which the system classifies.
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sonar trains more frequently than mammal-eating orcas.

Additionally, they found that the fish-eating residents were more

likely to echo-locate during foraging than any other behavior. Given

that the Type C orcas whose vocalizations are analyzed in this paper

are primarily fish eaters and echolocation clicks were analyzed as
Frontiers in Marine Science 12
part of the vocalizations, it is quite possible that the echolocation

clicks provided a feature that may have contributed to the

classification accuracy of foraging. Indeed, segments that had

foraging in their behavior label set were classified better than

those that did not include foraging, with the exception of the
FIGURE 9

Resampled decibel Mel spectrogram of a 8.0-second-long {T,F} segment which the system classifies.
FIGURE 10

Resampled decibel Mel spectrogram of a 7.3-second-long {T,F,M} segment which the system classifies.
FIGURE 11

Resampled decibel Mel spectrogram of a 8.6-second-long {T,S} segment which the system classifies.
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segments from the 12/29/2012 encounter. While echolocation clicks

are thought to be a way for orcas to observe their physical location

and not socially communicating, they still add to the underwater

soundscape and may serve as a form of indirect communication.

Regardless, for the purposes of determining orca behavior from

vocalization data, the echolocation clicks may be a useful feature for

the model.

Ford (1989) found that during socializing, resident orcas were

highly vocal and exhibited high frequencies of certain calls, namely

whistle, aberrant, and variable calls. It is possible that in my study

such higher frequencies of these calls may have contributed to the

classification accuracy of socializing. Additionally, socializing
Frontiers in Marine Science 13
implies that many individuals are present so there is a possibility

that overlapping calls from many orcas provided a classifiable

feature in socializing segments.

Lastly, orcas are known to exhibit significantly less vocal activity

during milling than the other three behavioral states (Ford, 1989).

The reduced frequency of calls and vocal activity, in general, may

have contributed to the classification accuracy of milling segments.

My methodology of removing quiet periods longer than two

seconds between vocalizations would have mitigated this.

However, it is possible that this effect is still present to some

extent because milling recordings may have had more quiet

periods of length less than two seconds.

The system had some difficulty when classifying segments from

novel encounters. This can be seen by the low classification

accuracies in Table 5. The classification accuracy for the 12/29/

2012 encounter with behavior label F,S was particularly low with a

mean accuracy of 13.9%. This may be due to the fact that the

segments from the 12/29/2012 encounter contain significantly more

echolocation clicks than most of the segments from the other

encounters. Since the dataset used is small with only 494

segments, removing the data from an encounter removes a

significant amount of potential training data. This may have

contributed to the low accuracies. However, as seen by the low

training loss values in Table 5, the system was able to learn on the
FIGURE 12

Resampled decibel Mel spectrogram of a 15.9-second-long {F,S} segment which the system classifies.
TABLE 6 The system’s softmax prediction values for the {T,F,S,M} sound
in Figure 8, {T,F} sound in Figure 9, {T,F,M} sound in Figure 10, {T,S} sound
in Figure 11, {F,S} sound in Figure 12, and {T} sound in Figure 13.

Class {T,F,S,M} {T,F} {T,F,M} {T,S} {F,S} {T}

T 43.9% 48.7% 44.3% 43.8% 0.9% 44.8%

F 32.5% 36.4% 33.1% 32.2% 14.2% 31.9%

S 24.1% 8.9% 12.5% 14.6% 84.1% 12.6%

M 9.2% 6.0% 10.4% 9.2% 0.8% 10.6%
FIGURE 13

Resampled decibel Mel spectrogram of a 11.5 -second-long {T} segment which the system classifies.
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training set. This may be an indication of overfitting on the

training set.

A major limit to my study, the lack of ground truth, comes from

our use of partially labeled data. The lack of ground truth means
Frontiers in Marine Science 14
that I am not able to determine with greater precision the accuracy

of the network. As an extreme example, for a {T,F,S,M} segment,

any behavior classification is considered correct. Additionally, the

data being only partially labeled made it impossible to analyze the
FIGURE 14

Scatter plot of the UMAP dimensionality-reduced activations from the second-to-last layer of the model. The behavior label combination
corresponding to the majority of the points in each cluster is also shown.
FIGURE 15

Scatter plot of the UMAP dimensionality-reduced activations from the second-to-last layer of the model using the network’s prediction probabilities
for each behavior as the opacity for each point. (a) The model’s prediction probabilities for behavior {T} are used as the opacity for each point. (b)
The model’s prediction probabilities for behavior {F} are used as the opacity for each point. (c) The model’s prediction probabilities for behavior {S}
are used as the opacity for each point. (d) The model’s prediction probabilities for behavior {M} are used as the opacity for each point.
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classification accuracy for each behavior class separately. A way to

remedy this issue would be to train the network on fully

labeled data.

Another limitation of this study is potential differences in the

segments based on group identity rather than behavior. The data set

did not include associated group identity information, so it was not

possible to determine explicitly that group identity was independent

of the behavior labels of the segments. Subject to the available data, I

conducted the experiments in Section 3.2 where I used each

individual encounter as the validation set in turn. The

classification accuracies for these experiments were low, although

four out of the six experiments had mean accuracies that were better

than random guessing. It is possible that the low classification

accuracies are a result of removing significant amounts of data from

the training set. If this is true, the classification accuracies in these

experiments may increase if the system is trained on more data.

It is also possible that the system learned to classify the

recording session as opposed to the behaviors. However, as

shown in Table 3, I used the system to classify silence extracts

from each of (Wellard et al., 2020a)’s recordings. These silence

extracts should contain the session information. The system

performed significantly worse on the silence extracts compared to

the sound segments, which suggests that the system did not just

learn the session instead of the behaviors. Additionally, as shown in

the Appendix, the system’s activations at the second-to-last layer

differentiated between behavior label combinations, suggesting that

the system learned behavior instead of recording session.

To my knowledge, this paper is the first to use partially labeled

learning to study animal vocalizations and the first to use machine

learning to analyze orca sound segments beyond individual calls.

As shown by Williams et al. (2024), pretraining on bioacoustics

data can help machine learning systems achieve better performance on

bioacoustics tasks. While this was not implemented in this study,

incorporating such pretraining could be an avenue for future research.

This work and system could help marine biologists study orca

behavior with greater capacity. Currently, observing orca behavior

is quite difficult since orcas live under water and their behaviors

may not be obvious to an above-water observer. The system would

be helpful for marine biologists because it would allow marine

biologists to record orca vocalizations and identify orca behaviors

with greater ease and efficiency. Naturally, users would need to

understand that the predictions are not perfect and vary across
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predicted behaviors. Further prediction accuracy could be achieved

with fully labeled training data.

The system could also aid further research into whale language.

For example, one could use the segments that the algorithm

classified as being associated with a certain behavior and compare

the structure of segments where the orcas are exhibiting different

behaviors to study the differentiating features. This would give

researchers insight into the potential grammar structure of orca

language. The algorithm may also contribute to the development of

more data sets with behavior labels, which would allow researchers

working on orca language to have more data with which to work.

For one, this could allow for greater ease and creativity when

studying orca language with machine learning.
5 Appendix

To further address the concern of the model learning recording

session instead of behavior, I completed an additional analysis

where I took the activations of the second-to-last layer of the

network and used UMAP (McInnes et al., 2018) to reduce the

dimensions of these high-dimensional points to two dimensions 8. I

then plotted these dimensionality-reduced points and colored the

points by recording session. This plot can be seen in Figure 14. I also

plotted the dimensionality-reduced points using the network’s

prediction for each behavior as the opacity of the points. I also

marked the behavior label combination to which the majority of the

points in each cluster in Figure 14 corresponded. These plots can be

seen in Figures 15a–d.

As seen in Figure 14, the points formed six clusters, each of

which corresponded to one of the six behavior label combinations.

In each cluster, the overwhelming majority of the points had the

corresponding label combination. The cluster corresponding to the

{T,F,S,M} behavior label combination contained more points with

other behavior label combinations than the other clusters. This

could be because the network may have mapped points where the

network was more uncertain of the behavior label to that cluster.

Additionally, three of the clusters contained points from multiple

recording sessions. The three clusters that did not contain many

points from multiple recording sessions corresponded to behavior

label combinations that were only observed during a single

recording session. Thus, the points appear to be clustered based

on behavior label combination. This suggests that the network

learned behavior, as desired, as opposed to the recording session.

The percentage of data points in each cluster with the

corresponding behavior label combinations can be seen in Table 7.

As seen in Figures 15a–d, the network placed high probabilities

on only correct behaviors for five out of the 6 behavior label

combinations. This further suggests that the network learned

behavior instead of the recording session. The one cluster where

high probabilities were placed on an incorrect behavior was the {F,

S} cluster, where a relatively high probability was placed on the

incorrect behavior {T} for many of the points in this cluster.
TABLE 7 The percentage of points in each UMAP cluster with the
behavior combination of the majority of points in that cluster.

Cluster Behavior
Label Combination

Percentage of Points in Cluster
with Given Label Combination

{F,S} 99.2%

{T,S} 96.0%

{T,F,S,M} 73.5%

{T} 97.5%

{TF} 95.8%

{T,F,M} 99.1%
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librosa/librosa. doi: 10.5281/zenodo.6759664

McInnes, L., Healy, J., Saul, N., and Grossberger, L. (2018). Umap: Uniform manifold
approximation and projection. J. Open Source Softw. 3, 861. doi: 10.21105/joss.00861

Miller, B. S., Madhusudhana, S., Aulich, M. G., and Kelly, N. (2022). Deep learning
algorithm outperforms experienced human observer at detection of blue whale d-calls: a
double-observer analysis. Remote Sens. Ecol. Conserv. 9, 104–116. doi: 10.1002/rse2.297

Miller, P. J., and Bain, D. E. (2000). Within-pod variation in the sound production of
a pod of killer whales, orcinus orca. Anim. Behav. 60, 617–628. doi: 10.1006/
anbe.2000.1503

Murray, S. O., Mercado, E., and Roitblat, H. L. (1998). The neural network
classification of false killer whale (Pseudorca crassidens) vocalizations. J. Acoust. Soc.
America 104, 3626–3633. doi: 10.1121/1.423945

Pitman, R., and Ensor, P. (2003). Three forms of killer whales (orcinus orca) in
Antarctica. J. Cetacean Res. Manage 5, 131–139. doi: 10.47536/jcrm.v5i2.813

Poupard, M., Symonds, H., Spong, P., and Glotin, H. (2021). Intra-group orca call
rate modulation estimation using compact four hydrophones array. Front. Mar. Sci. 8.
doi: 10.3389/fmars.2021.681036

resnet34 ResNet34 Weights. Available online at: https://docs.pytorch.org/vision/
main/models/generated/torchvision.models.resnet34.htmltorchvision.models
(Accessed May 17, 2025).

Schall, E., and Van Opzeeland, I. (2017). Calls produced by ecotype c killer whales
(orcinus orca), off the eckstrom¨ iceshelf, Antarctica. Aquat. Mamm. 43, 117–126.
doi: 10.1578/AM.43.2.2017.117

Schevill, W. E., and Watkins, W. A. (1966). Sound structure and directionality in orcinus
(killer whale). Zool.: Sci. contrib. New York Zool. Soc. 51, 71–76. doi: 10.5962/p.203283

Schröter, H., Nöth, E., Maier, A., Cheng, R., Barth, V., and Bergler, C. (2019).
“Segmentation, classification, and visualization of orca calls using deep learning,” in
Frontiers in Marine Science 17
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
(NY, USA: IEEE). 8231–8235.

Selbmann, A., Deecke, V. B., Filatova, O., Fedutin, I., Miller, P. J., Simon, M., et al.
(2023). Call type repertoire of killer whales (orcinus orca) in Iceland and its variation
across regions. Mar. Mamm. Sci. 39, 1136–1160. doi: 10.1111/mms.13039

Shiu, Y., Palmer, K. J., Roch, M. A., Fleishman, E., Liu, X., Nosal, E.-M., et al. (2020).
Deep neural networks for automated detection of marine mammal species. Sci. Rep. 10,
607. doi: 10.1038/s41598-020-57549-y

Simon, M., Ugarte, F., Wahlberg, M., and Miller, L. A. (2006). Icelandic killer whales
orcinus orca use a pulsed call suitable for manipulating the schooling behavior of
herring clupea harengus. Bioacoustics 16, 57–74. doi: 10.1080/09524622.2006.9753564

Weiß, B. M., Ladich, F., Spong, P., and Symonds, H. (2006). Vocal behavior of
resident killer whale matrilines with newborn calves: The role of family signatures. J.
Acoust. Soc. America 119, 627–635. doi: 10.1121/1.2130934

Weiß, B. M., Symonds, H., Spong, P., and Ladich, F. (2007). Intra- and intergroup
vocal behavior in resident killer whales, orcinus orca. J. Acoust. Soc. America 122, 3710–
3716. doi: 10.1121/1.2799907

Wellard, R., Pitman, R. L., Durban, J., and Erbe, C. (2020a). Cold call: the acoustic
repertoire of Ross Sea killer whales (Orcinus orca, type c) in McMurdo Sound,
Antarctica. R. Soc. Open Sci. 7, 191228. doi: 10.1098/rsos.191228

Wellard, R., Pitman, R. L., Durban, J., and Erbe, C. (2020b). Cold call: the acoustic
repertoire of Ross Sea killer whales (Orcinus orca, type c) in McMurdo Sound,
Antarctica. Dryad Data Reposit. 7. doi: 10.5061/dryad.37pvmcvfr

Williams, B., Merrienboer, B. v., Dumoulin, V., Hamer, J., Triantafillou, E.,
Fleishman, A. B., et al. (2024). Leveraging tropical reef, bird and unrelated sounds
for superior transfer learning in marine bioacoustics. arXiv. doi: 10.48550/
arXiv.2404.16436

Yurk, H., Barrett-Lennard, L. G., Ford, J. K. B., and Matkin, C. O. (2002). Cultural
transmission within maternal lineages: vocal clans in resident killer whales in southern
Alaska. Anim. Behav. 63, 1103–1119. doi: 10.1006/anbe.2002.3012

Zhang, M.-L., and Yu, F. (2015). “Solving the partial label learning problem: An
instance-based approach,” in International Conference on Artificial Intelligence (IJCAI)
(Washington DC, USA: AAAI Press). 4048–4054.

Zhang, M. L., Yu, F., and Tang, C.-Z. (2017). Disambiguation-free partial label
learning. IEEE Trans. Knowl. Data Eng. 29, 2155–2167. doi: 10.1109/TKDE.69

Zhong, M., Castellote, M., Dodhia, R., Ferres, J. L., Keogh, M., and Brewer, A. (2020).
Beluga whale acoustic signal classification using deep learning neural network models.
J. Acoust. Soc. America 147. doi: 10.1121/10.0000921
frontiersin.org

https://doi.org/10.1007/11552253_16
https://doi.org/10.1016/j.apacoust.2018.06.014
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1121/10.0010450
https://doi.org/10.5281/zenodo.6759664
https://doi.org/10.21105/joss.00861
https://doi.org/10.1002/rse2.297
https://doi.org/10.1006/anbe.2000.1503
https://doi.org/10.1006/anbe.2000.1503
https://doi.org/10.1121/1.423945
https://doi.org/10.47536/jcrm.v5i2.813
https://doi.org/10.3389/fmars.2021.681036
https://docs.pytorch.org/vision/main/models/generated/torchvision.models.resnet34.htmltorchvision.models
https://docs.pytorch.org/vision/main/models/generated/torchvision.models.resnet34.htmltorchvision.models
https://doi.org/10.1578/AM.43.2.2017.117
https://doi.org/10.5962/p.203283
https://doi.org/10.1111/mms.13039
https://doi.org/10.1038/s41598-020-57549-y
https://doi.org/10.1080/09524622.2006.9753564
https://doi.org/10.1121/1.2130934
https://doi.org/10.1121/1.2799907
https://doi.org/10.1098/rsos.191228
https://doi.org/10.5061/dryad.37pvmcvfr
https://doi.org/10.48550/arXiv.2404.16436
https://doi.org/10.48550/arXiv.2404.16436
https://doi.org/10.1006/anbe.2002.3012
https://doi.org/10.1109/TKDE.69
https://doi.org/10.1121/10.0000921
https://doi.org/10.3389/fmars.2025.1232022
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

	Machine learning to predict killer whale (Orcinus orca) behaviors using partially labeled vocalization data
	1 Introduction
	2 Materials and methods
	2.1 Sound preprocessing pipeline
	2.2 Deep learning system and dealing with potentially superfluous behavior labels
	2.3 Experimental methodology

	3 Results
	3.1 Main experiment
	3.2 Testing on new encounters
	3.3 Examples of what the system predicted

	4 Discussion
	5 Appendix
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


