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The study focused on analyzing shoreline changes along the western beaches of

Mersin Province, located on Turkey’s Mediterranean coast. Landsat satellite

imagery from 1985 to 2022 was used to detect long-term coastal alterations.

The Google Earth Engine (GEE) platform facilitated data acquisition, classification,

and edge detection. A Support Vector Machine (SVM) classification algorithmwas

applied to distinguish land from water. To enhance classification accuracy,

additional indices—Normalized Difference Water Index (NDWI), Modified NDWI

(MNDWI), and Normalized Difference Moisture Index (NDMI)—were incorporated

alongside Landsat spectral bands. The Canny edge detection algorithm was

employed to delineate shorelines from the classified images. Resulting shoreline

positions were analyzed using the DSAS, an open-source ArcGIS extension, to

quantify erosion and accretion. Key shoreline change metrics— Net Shoreline

Movement (NSM), Shoreline Change Envelope (SCE), End Point Rate (EPR), and

Linear Regression Rate (LRR) —were derived from DSAS outputs. Over the 38-

year study period, maximum shoreline advancement reached 588.59 meters,

while maximum retreat was −130.63 meters. The highest erosion rates were

−3.53 m/year (EPR) and −2.8 m/year (LRR), whereas the most pronounced

accretion rates were 15.91 m/year (EPR) and 15.47 m/year (LRR). To identify

spatial patterns in shoreline change, the Fuzzy C-Means (FCM) clustering

algorithm was applied using the NSM, SCE, EPR, and LRR metrics. The resulting

clusters were then interpreted in relation to land cover data provided by the

European Space Agency (ESA) WorldCover dataset.
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1 Introduction

Monitoring and documenting shoreline changes is crucial for

both human and ecological systems in coastal regions. According to

recent research on population expansion in coastal zones,

approximately 2.15 billion people live near the coast, with 898

million residing in low-elevation coastal areas (Reimann et al.,

2023). Coastal cities are not only three times more densely

populated than their inland counterparts (Small and Nicholls,

2003), but they also offer significant economic, social, and cultural

benefits (Martıńez et al., 2007). Their strategic location along

shorelines or major water bodies provides direct access to the sea,

facilitating efficient trade and transportation by enabling the

movement of goods and people. Historically, these cities have

served as hubs of global commerce, attracting businesses and

stimulating economic development. Their unique environments

support diverse employment sectors, particularly tourism,

fisheries, and marine transport.

In addition, coastal cities often hold substantial geopolitical

significance, shaping trade routes, national defense strategies, and

international relations. They act as global gateways and cultivate

multicultural communities. The aesthetic and environmental appeal

of coastal regions continues to attract both tourists and residents,

which, in turn, elevates quality of life and boosts tourism-driven

economies (Boaden and Seed, 1985; Kus ̧ak, 2006; Seitz et al., 2014).
However, shorelines and coastal landscapes are inherently

dynamic, shaped by both natural processes and human activities.

Physical drivers such as geomorphological processes, climatic

variability, wave dynamics, river discharge, storms, ocean currents,

sediment transport, and tectonic activity contribute significantly to

shoreline evolution (Johnson et al., 2015; Ghanavati et al., 2023).

Human-induced changes result from the spatial and functional

transformation of coastal settlements due to population growth

(Widiawaty et al., 2020), along with intensive land use activities

such as agriculture, mining (Uça et al., 2006), urbanization, tourism

(Yiğit et al., 2022), industrial development, and transportation

infrastructure. Coastal engineering structures—such as groynes,

breakwaters (Sekar et al., 2024), seawalls (Otmani et al., 2020), and

jetties—further alter shoreline dynamics. These constructions are

typically implemented to manage erosion, protect harbors, and

mitigate the impact of wave action (Emam and Soliman, 2020). In

response to these changes, coastal regulations are tailored to each

country’s priorities, including ecosystem protection, public access,

disaster mitigation, and restrictions on coastal development. For

instance, the U.S. Coastal Zone Management Act (CZMA) of 1972

emphasizes coastal ecosystem conservation, disaster resilience, and

the protection of public spaces. Japan’s Shore Protection Law, enacted

in 1956, governs the construction of protective infrastructure to

combat erosion, control flooding, and preserve coastal habitats. In

Turkey, Coastal Law No. 3621 regulates coastal use and protection.

Within these legal frameworks, the ownership and management of

coastlines must be carefully evaluated (Ünel et al., 2020), and

appropriate safeguards must be enforced.

Given the importance of monitoring, documenting, and

managing shorelines for all nations, extensive research has been
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conducted on this topic. A variety of techniques and analytical

methods have been employed to generate beach topography maps

and evaluate shoreline changes driven by both natural processes and

human activities (Mason et al., 2000; Sun et al., 2023; Zhou et al.,

2023). Traditional land surveying remains a widely used approach for

shoreline mapping (Alesheikh et al., 2007). However, with

technological advancements, an array of modern techniques has

emerged alongside conventional methods, including aerial LiDAR

(Wang et al., 2023), video imaging (Ribas et al., 2020), terrestrial laser

scanners (Xiong et al., 2019), surf cameras (Conlin et al., 2022), GPS

measurements (Morton et al., 1993; Harley et al., 2011), unmanned

aerial vehicles (UAVs) (Nunziata et al., 2018; Zanutta et al., 2020),

and satellite images to monitor shoreline dynamics (Marchel and

Specht, 2023; Stateczny et al., 2023; Wang et al., 2023).

Advancements in satellite technology have made satellite

imagery increasingly integral to coastal research. Both active and

passive remote sensing systems provide critical data for a wide

range of applications, including shoreline change detection, habitat

mapping, and environmental monitoring. The appeal of satellite

imagery lies in its broad geographic coverage, multi-temporal

availability, and varying radiometric and spectral resolutions. For

data processing and analysis, researchers use both desktop software

and cloud-based platforms, such as Google Earth Engine (GEE).

Leveraging cloud computing, GEE offers access to a vast archive of

satellite imagery—spanning historical to contemporary periods—

and enables efficient processing, visualization, and analysis of

high-dimensional data (Gorelick et al., 2017). Monitoring coastal

changes requires extensive temporal datasets and a large volume of

imagery, making the computational capabilities of Google Earth

Engine (GEE) particularly valuable during data retrieval and

preprocessing stages. GEE has recently gained traction in coastal

research due to its efficiency and scalability. For instance,

Hamzaoglu and Dihkan (2023) used GEE for image selection,

masking, enhancement, shoreline data extraction, and transect

generation to identify high-risk retreat zones along the Black Sea

coast (Hamzaoglu and Dihkan, 2023). Similarly, Liang et al. (2023)

employed GEE to investigate long-term shoreline dynamics in

Hangzhou Bay, China, assessing both shoreline position and

coastal land use changes (Liang et al., 2023). Mapping tidal flats—

a key driver of shoreline dynamics—is also crucial for sustainable

management and ecological evaluation. In this context, Zhang et al.

(2019) conducted long-term tidal flat mapping along China’s

eastern coast using GEE (Zhang et al., 2019).

Following the pre-processing of satellite imagery, various

techniques—such as band ratio analysis, edge detection, manual

digitization, and both supervised and unsupervised classification—

are commonly applied to differentiate land from sea. Unsupervised

methods, including k-means clustering (Ghaderi and Rahbani,

2020), and fuzzy c-means clustering (Dewi, 2019), have been used

to delineate land-water boundaries. Supervised classification

approaches, such as support vector machines (SVM) and random

forests (RF), are also frequently employed. While traditional

desktop software supports these methods, the GEE platform is

increasingly favored in coastal studies for its scalability

and accessibility.
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After classifying land and water pixels, edge detection

techniques are often used to refine shoreline delineation.

Commonly employed algorithms include the Canny Edge

Detector, Sobel Operator, Prewitt Operator, Roberts Cross

Operator, and Laplacian of Gaussian (LoG). Among these, the

Canny method is particularly popular for extracting shoreline

features from both pre-processed and classified satellite images

(Yu et al., 2019; O’Sullivan et al., 2023a, b). GEE supports several

of these algorithms through its integrated libraries, further

streamlining the workflow.

Shorelines extracted from imagery are typically converted into

vector format, either manually or through automated tools. The

digital shoreline analysis system (DSAS) is widely adopted in

research due to its cost-free availability, user-friendly interface,

and strong documentation. It provides robust methodologies for

assessing shoreline alterations. GEE also enhances methodologies

for quantifying coastal changes, providing robust change rate

estimates and accurate statistical outputs. Standard shoreline

change metrics used in the Digital Shoreline Analysis System

(DSAS), such as Shoreline Change Envelope (SCE), Net Shoreline

Movement (NSM), End Point Rate (EPR), and Linear Regression

Rate (LRR), facilitate detailed assessments of shoreline dynamics

(DSAS 5.1, 2021).

DSAS is a widely used tool that calculates the rates of shoreline

movement, enabling researchers to quantify shoreline movement

trends, supporting analysis of both coastal erosion and accretion.

For instance, a study in Rio de Janeiro, Brazil, revealed significant

spatiotemporal shoreline changes, with areas of both erosion and

accretion. This analysis integrated DSAS with GIS, remote sensing,

and Kalman filter models (Palanisamy et al., 2024). Similarly, on

Phuket Island, Thailand, DSAS was used to compute shoreline

change rates and conduct statistical evaluations of observed

alterations (Nidhinarangkoon et al., 2023). Human activity also

plays a crucial role in shoreline dynamics. In the Mahi River

estuary of Gujarat, India, DSAS facilitated a 40-year analysis of

shoreline changes driven by coastal erosion, sea level rise, and

anthropogenic influences. By accurately quantifying historical

shoreline displacement, DSAS supports the prediction of future

shoreline positions, contributing to improved coastal zone

management and the protection of vulnerable areas from erosion

and flooding (Patel et al., 2021).

Several studies regard the statistical outputs from DSAS as

sufficient for understanding shoreline and coastal changes.

However, other research incorporates clustering algorithms to

explore these results in greater depth. Traditional DSAS metrics

such as SCE, NSM, and LRR often fail to capture complex, non-

linear coastal dynamics. To address this, Burningham and French

(2017) applied hierarchical agglomerative clustering to DSAS data

for the Suffolk coast in eastern England, enabling the identification

of both regional and localized behavioral patterns (Burningham and

French, 2017). Similarly, Kondrat et al. (2021) employed K-means

clustering on DSAS-derived NSM data to delineate shoreline

segments with similar evolutionary trends. This method

effectively distinguished areas influenced by distinct natural and

anthropogenic processes, grouping them according to their
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behavioral characteristics (Kondrat et al., 2021). In another

example, Chowdhury and Tripathi (2013) used agglomerative

hierarchical clustering on DSAS results from the Pak Phanang

region of Thailand to classify coastal segments based on shared

erosion and accretion patterns. This analysis identified six distinct

shoreline types, supporting a comprehensive spatial interpretation

of coastal dynamics (Chowdhury and Tripathi, 2013). Pradeep et al.

(2022) also used K-means clustering on shoreline change data—

including erosion and accretion rates—along the Kerala coast.

Cluster-based curve fitting facilitated future shoreline change

predictions, enhancing the accuracy of erosion and accretion

estimates (Pradeep et al., 2022).

This study focuses on a 210.83 km² coastal stretch extending

from the Göksu Incekum district of Mersin to Antalya province—

an area of significant ecological and economic importance for

Turkey. The research presents a historical assessment of shoreline

dynamics, highlighting the combined influence of natural and

anthropogenic drivers on coastal morphology. Long-term

shoreline variations were analyzed using the DSAS tool (version

5.1, 2021) within ArcGIS 10.8 (ArcGIS 10.8, 2020). Coastline data

were acquired via the GEE, utilizing Landsat satellite imagery.

Preprocessing steps were followed by shoreline extraction using

the SVM classification method, facilitated by GEE. The Canny edge

detection algorithm was applied to enhance shoreline visibility, after

which the imagery was vectorized using ArcGIS. To investigate

spatial patterns in shoreline behavior, fuzzy C-means clustering was

performed using DSAS outputs—NSM, SCE, EPR, and LRR—and

the resulting clusters were interpreted in relation to the 2021 ESA

WorldCover dataset (Zanaga et al., 2022).
2 Materials and methods

The research methodology consisted of three main phases. The

first phase involved defining the study area and its relevance,

selecting appropriate satellite imagery, conducting preprocessing

and classification steps, and applying edge detection algorithms via

GEE. In the second phase, shoreline change statistics were

calculated using DSAS within the ArcGIS environment. The final

phase involved statistical interpretation of results using FCM in

conjunction with ESA WorldCover data. A comprehensive flow

diagram outlines all stages of the workflow (Figure 1).
2.1 Study area

The study area, covering 210.83 square kilometers, lies between

Göksu Incekum in Mersin Province and the Antalya provincial

border. It was delineated using the polygon tool on the Google Earth

Engine (GEE) platform, with special attention to the strip feature to

ensure inclusion of both terrestrial and marine zones. Mersin, a

major coastal city in Türkiye with a 321-kilometer shoreline, is

situated along the Mediterranean Sea, along with Antalya, Adana,

and Hatay. Geographically, the city spans from 32° 56’ E to 35° 11’ E

and from 36° 01’ N to 37° 26’ N (Figure 2a).
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Figure 2b illustrates the shoreline and district boundaries within

the study area, which includes the coastal districts of Silifke, Gülnar,

Aydıncık, Bozyazı, and Anamur. Each district exhibits distinct

ecological and economic characteristics (Sakinan and Gucu, 2010;

Serteser, 2018; Tel et al., 2023). The study region lies in the

Mediterranean’s Tas ̧eli Plateau, notable for its rugged coastal

morphology, including cliffs, sea caves, dunes, and narrow
Frontiers in Marine Science 04
beaches. Natural processes such as tectonic activity, lithological

variation, riverine input, and climatic influences have significantly

shaped the beaches between Silifke and Anamur. The bays

surrounding Yes ̧ilovacık in the Silifke district serve as key

breeding habitats for the endangered Mediterranean monk seal.

Silifke is connected to popular tourist areas like Susanoglu and

Tas ̧ucu. Tas ̧ucu Port, an international maritime facility, began
FIGURE 1

Flowchart of the study.
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operations in 1984, paused in 2009, and resumed in 2017. The

Akkuyu Nuclear Power Plant—Türkiye’s first nuclear energy

facility—is located in the Gülnar district, near the town of

Büyükeceli. Bozyazı’s coastline also supports a vital colony of

Mediterranean monk seals, while Anamur beach provides nesting

grounds for the endangered loggerhead sea turtle (Caretta caretta)

(Ergüden and Ayas, 2021) (Figure 2).
2.2 Data sets

2.2.1 Remote sensing data
The initial stage of this research involved selecting and

processing appropriate satellite imagery to extract coastline data.

Landsat satellite images, operational for over four decades, were

employed to analyze changes along Mersin’s western coastline.

Landsat imagery is widely used due to its extensive temporal and

spectral resolution, despite its moderate 30-meter spatial resolution

(Pardo-Pascual et al., 2018; Bishop-Taylor et al., 2021). Moreover,

Landsat’s shortwave infrared (SWIR) and near-infrared (NIR)

bands offer high accuracy in delineating land-water boundaries

(Pardo-Pascual et al., 2018). Landsat imagery was selected for

this study due to its long-term continuity, broad spatial coverage
Frontiers in Marine Science 05
(Liu et al., 2017), cost-free accessibility (Elnabwy et al., 2020), and

seamless integration with the GEE platform.

Landsat satellite imagery from 1985 to 2022 was obtained from

the Google Earth Engine (GEE) collection to analyze shoreline

changes along the western coast of Mersin Province. Using GEE’s

code editor, spatial and temporal filters were applied to conduct

targeted analyses. The GEE platform enables a wide range of

operations—including image processing, band ratioing, and

classification—through user-defined algorithms. This study

leveraged these capabilities to examine imagery from Landsat 5

TM, Landsat 7 ETM+, and Landsat 8 OLI, utilizing all available

spectral bands except the thermal and panchromatic bands.

To evaluate potential tidal conditions in the study area, sea level

data from the Erdemli tide gauge station (2004–2009) were

analyzed. The lowest annual mean sea level was recorded in 2007

at 6960 mm, and the highest in 2009 at 7020 mm, indicating a 60

mm interannual variation. The uncertainty associated with these

measurements was calculated as 1.4 mm (Holgate et al., 2013;

Permanent Service for Mean Sea Level (PSMSL), 2025). Other

studies in the Eastern Mediterranean report seasonal sea level

variations between 3.0 and 16.6 cm, and semi-annual variations

from 1.8 to 3.2 cm. Interannual changes are primarily driven by sea

surface temperature fluctuations (Simav et al., 2008). Although tidal
FIGURE 2

(a) Location of Mersin province in Türkiye shoreline and (b) The study area and shoreline, which includes locations where man-made objects such as
nuclear power stations and ports are located, as well as Sand Lily growing areas, important accommodation areas for Mediterranean Monk Seals and
Caretta Caretta Turtles.
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effects in the Mediterranean are generally minimal (± 0.2–0.3 m),

sea level may fluctuate by up to ±0.5 m due to barometric pressure

variations (Çiner et al., 2009). Because of the variable acquisition

times of Landsat imagery, it was not possible to directly account for

tidal variations. However, given the region’s minimal tidal range,

their impact is considered negligible. To further reduce potential

tidal influence related to inconsistent image acquisition times, a

multi-year mean shoreline was used.

2.2.2 ESA WorldCover 2021 dataset
To assess land cover characteristics, the 2021 ESA WorldCover

dataset with a 10-meter spatial resolution was employed. The

dataset identifies eleven land cover classes, including tree cover,

shrubland, grassland, cropland, urban areas, and mangroves, with

an overall accuracy of 77%. The data are provided in an ellipsoidal

WGS 1984 coordinate system (EPSG:4326), assuming a terrestrial

radius of 6,378 km (Zanaga et al., 2022).
2.3 Methods

The methodology employed in this study is presented

comprehensively through a flowchart (Figure 1). Flowchart

illustrates the sequence of steps and procedures used during

the study.

2.3.1 Receiving data and processing using the
GEE platform

GEE was actively used in the first part of the study. The study

utilized Google Earth Engine (GEE) for image downloading, index

computation, classification, and Canny edge detection. GEE is a

non-profit tool that analyzes and visualizes geospatial data sets

using scientific methodologies. It archives satellite images and

makes them available to the public. GEE supports Python and

JavaScript for server queries and a graphical user interface for

application development. It is ideal for large-scale, long-term

research projects using petabyte amounts of remote sensing data

(Gorelick et al., 2017). Processing satellite images and presenting

the results is faster and easier when using cloud-based technological

support systems like GEE. There are no limitations on time, space,

or hardware with these platforms.

Landsat images from the years 1985, 1990, 1995, 2000, 2005,

2010, 2013, 2015, 2020, and 2022 were acquired using the GEE

platform, with a cloud cover threshold of less than 5%, with the

mean values of the 12-month images for each specified year applied.

Four stages are necessary for preparing the dataset. We established

the boundary of the study area using the polygon construction

functionality of the GEE platform. The research area is 210.83

square kilometers, reaching the Antalya provincial boundary, and it

has a balanced land and sea region (Figure 2).

Each dataset encompassed in the study spans from January 1 to

December 31. Landsat 5 TM satellite images were used in 1985, 1990,

and 1995, whereas Landsat 7 satellite imagery was employed in 2000.

Images of the research region exhibit data loss resulting from the
Frontiers in Marine Science 06
Landsat 7 sensor malfunction that transpired post-2003. Landsat 5

TM was utilized again in 2005 and 2010 because of its exceptional

efficacy in delineating the shoreline. Landsat 8 OLI satellite images

have been utilized since 2013. Several satellite pictures in the datasets

underwent cloud masking prior to the delineation of the research

region. The average values of the acquired photos were utilized as the

resultant image for each year. The assistance of GEE has facilitated a

significantly expedited progression of the processes. In the 1985

study, 5,478 photographs were processed in the cloud within

seconds, followed by clipping of the application region, application

of the classification technique, and use of the edge algorithm to

generate the final pictures.

2.3.2 Obtaining indices to support the separation
of land and sea

The primary focus of the study, coastal edge line detection, was

explored in the literature, and it was found that many indices,

including the Normalized Difference Water Index (NDWI) (Goksel

et al., 2020; Almeida et al., 2021; Patel et al., 2021), the modified

NDWI (MNDWI) (Adebisi et al., 2021), the Automated Water

Extraction Index (AWEI), and the Automated Water Extraction

Index (WRI), are utilized to distinguish between land and water

areas. As emphasized in the studies on shoreline extraction, these

indices can be used directly or to support the classification process

for the separation of water and land in satellite imagery.

NDWI is a method used to identify open water areas in

remotely sensed images, providing estimates of water body

visibility (McFeeters, 1996). It uses a band ratio approach,

producing grayscale pictures with positive values for water

features and negative values for non-water features, which can be

represented by Equation 1.

NDWI = (Green − NIR)=(Green + NIR) (1)

MNDWI effectively reduces and even eliminates built-up land

noise, vegetation, and soil noise, while also enhancing open water

features (Xu, 2006).

MNDWI formulation can be expressed in Equation 2.

MNDWI = (Green −MIR)=(Green +MIR) (2)

When determining the water content of vegetation, NDMI is

frequently utilized. It is computed using Equation 3 as the ratio of

NIR to MIR values.

NDMI = (NIR −MIR)=(NIR +MIR) (3)

This work calculates the mean of the filtered image collection

for a single year, thereafter deriving the NDWI, MNDWI, and

Normalized Difference Moisture Index (NDMI) indices using GEE.

This study utilized all indicators to validate the accuracy of the

categorization process.

To enhance classification accuracy and facilitate the delineation

of the sea and land regions, we calculated the mean values of NDWI,

MNDWI, and NDMI pictures for each year individually. The

resultant datasets were subsequently clipped for application in the

SVM analysis and classification procedure.
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2.3.3 Classification using supervised machine
learning

Using the JavaScript programming language, GEE supports

complex analysis. One of the specialized libraries available on the

GEE platform is ‘Classifier’. This library provides various

classification methods. Using typical machine learning algorithms,

the classifier package manages supervised classification on Earth

Engine. CART, Random Forest (Arjasakusuma et al., 2021; Zorlu,

2022), Naive Bayes, and SVM (Santra et al., 2023) classifiers were

used for coastal works. SVM uses range maximization, simplifying

classification by projecting the dataset onto a lower-dimensional

feature space. This method is commonly used in land cover

classification, particularly for binary categorization of land and

water. SVM was preferred because it covers a small area, has a

small dataset, involves fewer computational operations and

provides good results when supported by other indices. The

general classification workflow on the GEE platform is the same

as that for a classical SVM. First, training data is collected. Next, a

classifier is created. Using the training data, the classifier is trained.

The SVM classification technique was employed to delineate the

shoreline by categorizing point data into two separate classes: sea

and land. Training and test data were independently gathered for

each region to guarantee precise categorization. The spots were
Frontiers in Marine Science 07
meticulously chosen to ensure uniformity within the research

region. To enhance the study’s accuracy, we quantified the data

according to the sample size. The designated region has around

230,000 pixels, with each Landsat pixel measuring 900 square

meters. A population of 230,000 with a sample size of 1,078

yields a 99.9% confidence level and a 5% margin of error. The

study meticulously examined a sample size of 1050 training and test

data, comprising 525 data points for both water and land, all

delineated within the study region (Figure 3a). The study’s dataset

was partitioned into training and validation subsets. The training

set constituted 75% of the entire data, with the other 25% designated

as test data utilizing the GEE library.

The research employed the SVM method, facilitated by GEE,

especially ee.Classifier.libsvm within the GEE framework, to

identify shorelines. We identified random points for each research

year and then evaluated the accuracy. The results indicate an

accuracy of 0.997 for 1985 and 1990, 1.000 for 1995, 2000, 2005,

and 2010, and 0.998 for 2013, 2015, 2020, and 2022.

2.3.4 Shoreline extraction using Canny edge
detection

Coastal acquisition investigations with satellite images utilize

edge-detection techniques, which employ diverse mathematical
FIGURE 3

GEE Process, (a) SVM classification points, (b) Example of Canny Algorithm Result.
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methods to delineate item outlines in images. Experts have

established numerous edge-detection methodologies, such as

Canny, Deriche, Differential, Sobel, Prewitt, and Roberts Cross.

Although Sobel, Prewitt, and Roberts methods are simple and

accessible, their significant vulnerability to picture noise may

result in erroneous coastline detection. The Canny method offers

reliable edge identification in noisy pictures; nevertheless, it is more

computationally complex and time-consuming compared to

alternative techniques. Compared to other gradient-based edge

detection operators, the Canny method provides better edge

continuity and fewer discontinuities, making it easier to see the

coastline. Its exceptional precision, particularly at maritime and

terrestrial boundaries, is a primary basis for its preference in

research (Colak, 2024).

The study of 98 test samples showed that Canny edge detection

gives much more accurate results, especially when it comes to telling

the difference between natural shorelines and developed areas

(O’Sullivan et al., 2023a). The primary benefit of the Canny edge

detection method is its ability to identify a broad spectrum of edges

and provide detailed, accurate edge maps, enabling a clear

delineation of the coastline. The Canny edge identification

technique is applicable to both multispectral satellite data and

SAR radar imaging for delineating the border between land and

water regions (Zollini et al., 2019). The effectiveness and calculation

time of the Canny method are affected by changeable factors such as

Gaussian filter size and threshold. Minor filters mitigate blurring,

elevated thresholds result in data loss, while diminished thresholds

induce noise and superfluous data. It can accurately delineate the

boundary between ice and ocean in extreme environments like

Antarctica. The Canny method is distinguished by its adaptive

thresholding technique, which mitigates noise and enhances edge

accuracy (Yu et al., 2019). We employed the Canny method in this

investigation due to its benefits.

The GEE platform endorses the Canny library, which this study

utilized. The GEE platform provides many solutions for seamless

edge extraction. Experiments were performed to identify the

coastal-edge line alone, and the minimal values for both

parameters were established (GEE, 2024).

The delineation of the coastline is a crucial aspect of the study;

thus, the threshold and sigma values were selected to be minimal.

We attained superior results by employing values of 0.01 and

0.05 (Figure 3b).

Thereafter, the use of the Canny technique, the images were

vectorized utilizing ArcGIS. All shoreline vectors were manually

inspected individually. Manual adjustments were applied

minimally, especially in nearshore rocky areas or highly complex

shoreline geometries. Additionally, in this study, a manual shoreline

digitization was performed using 2014 orthophoto images with a

spatial resolution of 0.45 m x 0.45 m, and the precision of shoreline

delineation was evaluated. The research included potential

inaccuracies resulting from hand digitizing. The close tool was

utilized to examine proximity values, and the average proximity

findings were computed. Root Mean Square Error (RMSE) values

were calculated to assess accuracy. Due to the lack of additional

orthophotos, we limited the evaluation of coastline accuracy to the
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year 2013. For the study, points were positioned at 5-meter intervals

along both the manually digitized shoreline from the orthophoto

and the Landsat-derived shoreline for 2013. An analysis of the

closeness of the two datasets indicated an average distance of 11.45

meters between the shorelines, accompanied by a root mean square

error (RMSE) of 14.71 meters.

2.3.5 Shoreline change detection using Digital
Shoreline Analysis System

The ability to detect, analyze, and predict changes in the shoreline

over time is critical for coastal monitoring, management, and

analysis. Researchers employ both human and automated

methodologies to study coastal changes. The Digital Shoreline

Analysis System (DSAS) software is one automated method for

analyzing these alterations. Rob Thieler and Bill Danforth created

the DSAS program in the early 1990s, and it has since undergone

several revisions and enhancements (DSAS 5.1, 2021).

DSAS, a free software package, is incorporated into the ESRI

Geographic Information System (ArcGIS). The current version,

which is also favored in the research, is 5.1, which runs onWindows

7 and Windows 10 and supports ArcGIS 10.4 to 10.7. DSAS allows

users to construct rate-of-change statistics using a time series of

vector shoreline locations. The Digital Shoreline Analysis System

automates the process of creating measurement locations,

performing rate calculations, providing statistical data required to

determine rate reliability, and including a beta model for projecting

shoreline position. Transects generated by DSAS are set out

alongshore at a user-specified spacing and cast perpendicular to

the reference baseline. The reference baseline can be constructed

between historical shoreline positions or wholly on one side of the

coastal data; there are no restrictions on its location. DSAS

calculates change metrics like the Shoreline Change Envelope

(SCE), Net Shoreline Movement (NSM), End Point Rate (EPR),

Linear Regression Rate (LRR), Weighted Linear Regression Rate

(WLR), Confidence Interval (LCI/WCI), Standard Error (LSE/

WSE), and R-squared (LR2/WR2). It does this by measuring the

length of a transect between the baseline and each shoreline

intersection. It also combines date information and positional

uncertainty for each shoreline (Himmelstoss et al., 2021).

The distance between the oldest and youngest shorelines is used

to compute the NSM statistic; therefore, units are in meters. The

NSM was calculated using Equation 4.

NSM = di − do (4)

Where; di: The youngest shoreline distance (m), d0: The oldest

dated shoreline distance (m).

The shoreline shows seaward silting with an advancing shoreline

when the NSM value is positive. Conversely, a negative NSM value

causes the shoreline to retreat and erode in the direction of the land.

Several studies have utilized NSM to monitor coastal changes. For

example, in the study conducted for the Jiangsu coastal area, NSM

values in the region were analyzed. Accordingly, it was determined that

the coastlines advanced toward the sea during the 45-year period (Song

et al., 2021). NSM values were also found to provide usable results in

future forecasting studies (Rezaee et al., 2019).
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If the distance between the oldest and the newest shoreline is

divided by time, this is expressed as the EPR statistic. The EPR was

calculated using Equation 5.

EPR =
di − do
ti − to

(5)

Where; di: The youngest shoreline distance (m), d0: The oldest

dated shoreline distance (m), ti: The youngest shoreline time (year),

t0: The oldest dated shoreline time (year).

The EPR’s principal advantages are its straightforward

computation and its requirement for only two shoreline data

points. The primary disadvantage is that when more than two

shorelines are available, the information on shoreline behavior

provided by additional shorelines is disregarded. Consequently,

fluctuations in the direction, magnitude, or cyclical characteristics

of shoreline movement trends may remain undetected.

Notwithstanding this limitation, EPR is significantly favored in

research. It is mostly utilized to identify temporal erosion and

accretion (Baig et al., 2020).

The LRR statistic is a rate of change metric computed by DSAS.

It denotes the mean rate of shoreline displacement over a certain

duration. The least squares approach was employed to determine

the line. This strategy, in contrast to others, considers all shorelines

utilized in the research. The time indicated refers to the year of the

shorelines, and the variable designated as distance represents the

measurement from the start of the main line to the point of

intersection with the shorelines for each transect. The gradient of

the produced line indicates the pace of coastal alteration. For this

reason, it is a more sensitive method than other methods of

calculating the rate of shoreline change. It is preferred in coastal

erosion studies (Rezaee et al., 2019), beach management, effects of

sea level rise (Adebisi et al., 2021), climate change assessments

(Johnson et al., 2015).

LRR equation can be calculated using Equation 6.

Y = mx + b (6)

Where;  Y : Distance from the baseline in meters,   x: The

shoreline date interval in years,  m: Slope of the fitted line,   b: The

y-intercept.

The shoreline change envelope (SCE) provides a distance

instead of a rate. The maximum distance among all shorelines

intersecting a specific transect is denoted by the SCE value. Due to

the absence of a sign in the total distance between two shorelines,

the SCE value remains consistently positive. Values around zero

indicate a few alterations in the coastline over the study period,

attributable to the characteristics of the SCE index. This tool is very

beneficial for analyzing sites that have remained constant

throughout time.

Shoreline maps were initially created in shape file format with

ArcGIS 10.8, aligned with the information offered by DSAS to assess

shoreline changes in the research region. After preparing the

shoreline maps for examination, we created a baseline layer,

approximately 100 meters from the shorelines, using buffer

analysis. The primary determining element in baseline production

is whether the shoreline change rate should be determined using a
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land-based baseline or a seaside baseline. In this study, we assessed

shoreline alteration based on the reference line established along the

coast. After using the DSAS tool’s criteria, the coastline and

reference line layers of the research area were looked at, and the

rate of shoreline change was calculated. We determined the rate of

shoreline change in the study region using 750 m long profile lines

at 50 m intervals. A total of 3,871 profile lines were created to assess

the shoreline alteration in the research region. All transects were

carefully reviewed, particularly in regions with pronounced coastal

indentations and narrow straits, to prevent misalignment with non-

target shoreline segments. This study utilized the statistical data of

the SCE, NSM, EPR, and LRR. NSM, EPR, and LRR are employed to

analyze alterations in the study area, while SCE is utilized to identify

and evaluate analogous pattern regions using the fuzzy C-means

clustering technique alongside other statistical outcomes.
2.3.6 Fuzzy C means clustering algorithm for
pattern detection of transects

Fuzzy C-means (FCM) is an effective technique for grouping

unlabeled data and locating hidden structures in a data set. Fuzzy C-

Means (FCM) is a popular unsupervised learning method that

enhances pattern recognition and computer vision. J.C. Dunn

created fuzzy c-means (FCM) clustering in 1973 (Dunn, 1973),

and J.C. Bezdek improved algorithm in 1981 (Bezdek, 1981).The

technique determines the membership of each data point for a

cluster center based on the distance between the center and the data

point, with closer points being more affiliated with the cluster

center. Membership and cluster centers are adjusted based on

Equations 7, 8 after every iteration:

mij = 1=o
c

k=1

(
dij
dik

)(
2
m−1) (7)

vj = (o
n

i=1
(mij)

mxi)=(o
n

i=1
(mij)

m), ∀j = 1, 2,…… c (8)

Where; ′n′ is the number of data points, ′v′j represents the jth

cluster center, ′m′  is the fuzziness indexm   €  ½1,  ∞� : ′c′ represents
the number of cluster center, mij represents the membership of ith

data to jth cluster center, dij  represents the Euclidean distance

between ith data and jth cluster center.

The fuzzy c-means algorithm’s primary goal is to minimize with

Equation 9:

J(U ,V) =o
n

i=1
o
c

j=1
(mij)

m ∥ xi − vj ∥
2 (9)

Where; ‖ xi − vj ‖   is the Euclidean distance between ith data

and jth cluster center.

The study employed Konstanz Information Miner (KNIME)

software for fuzzy c-means analysis, a dependable open-source

platform for data analytics (KNIME AG, 2024). The approach

proved proficient at identifying patterns within smaller datasets,

such as the one utilized in the study. Fuzzy c-means is an efficient

technique for identifying patterns in smaller datasets, such as the

one used in this study, because of its straightforward framework.
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We used SCE, NSM, LRR, and EPR data from each transect along

with fuzzy c-means clustering to find patterns in the coastline. The

findings offer a definitive elucidation of the influence of human

activities in the studied region.
3 Results

The GEE platform enabled efficient extraction of shoreline

edges, which were subsequently digitized using ArcGIS. DSAS

was then used to analyze shoreline changes in the study area

from 1985 to 2022. The methods and findings are elaborated in

the following sections.
3.1 Digital Shoreline Analysis System results

ArcGIS 10.8 was used to perform raster-to-vector conversions

following Canny edge detection on the classified imagery. Shoreline

data were generated in linear format for each year of analysis.

The statistical outputs from DSAS—NSM, SCE, LRR, and EPR

—were evaluated using Pearson correlation coefficients. A strong

positive correlation (r = 0.734) was observed between SCE and

NSM. EPR and LRR exhibited a perfect correlation (r = 1.000), and

EPR, LRR, and NSM were closely linked, with coefficients ranging

from 0.941 to 1.000 across the dataset. As shown in Table 1, SCE

demonstrated a moderate positive correlation with the other

indicators, as expected.

Each district determined the maximum, minimum, and average

values for NSM, SCE, EPR, and LRRmetrics across the entire shoreline.

This approach facilitated the identification of intra-district variations

and highlighted areas requiring targeted monitoring. The total number

of transects analyzed in Anamur, Bozyazı, Aydıncık, Gülnar, and Silifke

were 807, 781, 640, 390, and 1,253, respectively.

3.1.1 NSM results
The NSM analysis revealed that 57.09% of the transects

exhibited negative displacement, while 42.75% showed positive

displacement, with a mean shoreline change of 1.84 meters.

Assessment of district-wise shoreline change expenditures

showed that Gülnar had the highest positive variation (38.54%),

while Bozyazı exhibited the largest negative variation (40.24%).

Silifke demonstrated both the highest positive (12.04%) and

negative (20.18%) changes relative to the total shoreline (Table 2).
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Shoreline lengths were determined by vectorizing satellite

imagery. The longest shoreline length, 213.92 km, was recorded

in 2015, while the shortest, 202.55 km, occurred in 1985 (Figure 4a).

Areas with both negative and positive NSM values are displayed in

Figure 4b. Notably, a negative shift was observed along the Anamur

shoreline between 1985 and 2022. In contrast, the area surrounding

the Akkuyu Nuclear Power Plant (ANP) experienced a marked

positive NSM shift over the same period (Figure 4b).

3.1.2 Shoreline lengths and SCE results
The Shoreline Change Envelope (SCE) is a key metric for

detecting long-term coastal variation. The SCE analysis revealed

an average shoreline shift of 31.79 meters, with extremes ranging

from 0.04 meters to 595.17 meters. A column chart summarizing all

transects is presented in Figure 5a. Complementary to the Net

Shoreline Movement (NSM) results, a spatial map of SCE was

produced to illustrate shoreline changes across the entire study area

(Figure 5b). The column chart highlights pronounced variations in

the districts of Gülnar, Silifke, Bozyazı, and Anamur, with minimal

change observed in Aydıncık. A specific example of shoreline

change is demonstrated near the Akkuyu Nuclear Power Plant

(ANP), serving as a localized case study (Figure 5c).

3.1.3 EPR results
The study area exhibits an average End Point Rate (EPR) of 0.05

m/year, with erosion observed in 2,167 transects, accounting for

55.98% of the total.

Gülnar was most notably affected, particularly transect 2839,

which recorded a high accretion rate of 15.91 m/year. Bozyazı

followed with a rate of 9.15 m/year. Conversely, transect 2055 in

Aydıncık and transect 2961 in Silifke showed erosion rates of −3.53

and −2.63 m/year, respectively (Table 3).

District-level shoreline comparisons revealed that Gülnar

experienced the most favorable transformation, with a 37.81%

positive change. Bozyazı recorded the most significant adverse

change at 39.65%. In Silifke, the highest positive (11.39%) and

negative (19.61%) changes were observed, although 1.37% of its

shoreline remained unchanged.

EPR and LRR values were classified according to the scale

proposed by (Emam and Soliman, 2020) (Table 4).

Using this classification, a bar graph (Figure 6a), EPR maps

covering the entire shoreline (Figure 6b), and district-specific EPR

tables (Table 5) were generated. As examples, Figure 6c shows a

high-erosion area in Anamur; Figure 6d highlights very high

accretion zones in Gülnar; and Figure 6e illustrates moderate

accretion areas in Silifke.

3.1.4 LRR results
Accretion was identified in 2,296 LRR transects, accounting for

59.31% of the total shoreline.

These classified values were used to generate a column graph

(Figure 7a), comprehensive LRR maps of the entire shoreline

(Figure 7b), and a district-specific results table (Table 5). Regional

erosion and accretion patterns are also visualized: erosion in
TABLE 1 Correlation between statistical results.

SCE NSM EPR LRR

SCE 1.000

NSM 0.734 1.000

EPR 0.734 1.000 1.000

LRR 0.674 0.941 0.941 1.000
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Anamur (Figure 7c) and Silifke (Figure 7e), and accretion in

Gülnar (Figure 7d).

The data indicate that Transect ID 2389, with a positive LRR of

15.47 m/year, significantly affects the Gülnar district. This is

followed by Silifke (9.72 m/year) and Transect ID 2841. In

contrast, Silifke (Transect ID 2993) shows a negative LRR of -2.80

m/year, while Aydıncık (ID 2055) records -1.96 m/year, indicating

adverse effects. Among all districts, Anamur exhibited the highest

proportion of positive shoreline change (55.34%), whereas Bozyazı

experienced the most pronounced negative change (34.59%).

At the broader coastal scale, Silifke shows both the largest share

of positive (18.44%) and negative (13.23%) change.

Analysis of EPR and LRR values (Tables 3, 5) reveals a consistent

trend: the proportion of negative changes exceeds positive changes

across most districts and for the entire shoreline. This discrepancy

stems from the methodological differences between LRR and EPR.
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LRR, which incorporates all shoreline positions over time, captures a

more stable long-term trend. In contrast, EPR reflects only the change

between two endpoints and is more susceptible to short-term

variability. As a result, LRR offers a more reliable representation of

long-term coastal dynamics, particularly relevant to the evolving

shorelines of Aydıncık, Gülnar, and Silifke. To further examine this

trend, comparative graphs of EPR and LRR classes were generated for

the entire coastline and its neighboring areas (Figure 8). Overall,

moderate accretion emerges as the dominant process.

Following classification using Table 4, the correspondence between

EPR and LRR results was evaluated at the transect level. Matching rates

for the entire shoreline were 67.84% in Anamur, 70.26% in Bozyazı,

71.57% in Aydıncık, 66.72% in Gülnar, 67.95% in Silifke, and 64.49%

overall. As mention before the variation in matching rates is attributed

to methodological differences: LRR utilizes regression across all

shoreline positions, while EPR calculates change based solely on two
FIGURE 4

The NSM provides a comprehensive analysis of shoreline results. (a) Shorelines over the years, shoreline lengths, and graph, (b) shows NSM values
on the result map of the whole study area, with examples of negative and positive NSM.
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time points. Notably, both methods indicate that extensive accretion

exceeds extensive erosion across the entire coast. However, this

aggregate trend complicates definitive classification of the overall

shoreline status. A more granular, segmented assessment is necessary

for meaningful interpretation.

According to EPR and LRR results (Figure 8), Gülnar exhibits

the highest accretion rates—10.8% for EPR and 8.2% for LRR—
Frontiers in Marine Science 12
among all districts. Silifke shows the highest erosion rates, at 0.6%

(EPR) and 0.5% (LRR), followed by Bozyazı with 5.6% erosion

(EPR) and Silifke again with 3.9% (LRR). In Bozyazı, mild

degradation dominates in both datasets. The distribution graph of

EPR and LRR classes confirms that moderate accretion and

moderate erosion are the most prevalent categories along the

inter-district coastline.
TABLE 2 NSM Results.

NSM District Border Whole

Max TID Min TID Mean PC PN NoC PC PN NoC

Anamur 206.02 694 -78.79 730 3.62 36.20 31.90 0.00 11.08 9.76 0.00

Bozyazı 338.40 846 -79.64 1154 -5.27 19.51 40.24 0.00 6.59 13.59 0.00

Aydıncık 91.18 2056 -130.63 2055 0.38 29.03 35.48 0.00 7.44 9.09 0.00

Gülnar 588.59 2389 -84.76 2538 30.52 38.54 30.73 0.00 5.61 4.47 0.00

Silifke 335.33 2841 -97.19 2961 -3.05 22.84 38.28 0.29 12.04 20.18 0.15
fro
TID, TransectID; PC, Percentage of Positive Change; NC, Percentage of Negative Change; NoC, Percentage of No Change.
FIGURE 5

Shoreline lengths and SCE results. (a) shows the SCE values graph for transects, (b) shows the SCE values map of the entire study area, and (c)
shows an example of one of the areas where the highest SCE values are observed.
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3.2 Land use land cover and fuzzy
C-means analysis

This section of the study consists of two main phases. First,

DSAS statistical outputs were synthesized to characterize shoreline
Frontiers in Marine Science 13
change patterns. Second, these spatial clusters were examined in the

context of broader land use trends.

The FCM methodology analyzes statistical data generated by

the DSAS software to identify spatial and temporal trends within

the study area. The methodology was implemented using KNIME,
FIGURE 6

EPR, results of shorelines. (a) shows EPR erosion and accretion values graph for each transect, (b) shows EPR values of the whole study area result
map, and (c–e) show examples of maps of regions that show remarkable results.
TABLE 3 EPR results.

EPR District Border Whole

Max TID Min TID Mean PC PN NoC PC PN NoC

Anamur 5.57 694 -2.13 730 0.10 35.18 31.07 1.34 10.85 9.58 0.41

Bozyazı 9.15 846 -2.15 1154 -0.14 18.87 39.65 0.91 6.41 13.46 0.31

Aydıncık 2.46 2056 -3.53 2055 0.01 28.26 34.57 1.30 7.28 8.91 0.34

Gülnar 15.91 2389 -2.29 2538 0.83 37.81 30.21 0.88 5.53 4.42 0.13

Silifke 9.06 2841 -2.63 2961 -0.08 21.36 36.76 2.57 11.39 19.61 1.37
fro
TID, TransectID; PC, Percentage of Positive Change; NC, Percentage of Negative Change; NoC, Percentage of No Change.
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which processed standardized NSM, SCE, EPR, and LRR values

(scaled between 0 and 1) as input. The optimal number of clusters

was determined using the Silhouette score, calculated for varying

cluster quantities. The highest Silhouette score indicated the most
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appropriate cluster count, which was found to be four. These

clusters were labeled C0, C1, C2, and C3. Clustering was

performed with a maximum of 99 iterations to limit runtime for

complex datasets. A fuzziness parameter of 2 was selected to control

the degree of ambiguity in the clustering process. The silhouette

coefficient, which ranges from –1 to +1 and indicates clustering

quality, was calculated for each result. An overall average silhouette

score of 0.693 suggests strong clustering performance. Individual

silhouette coefficients for clusters C0, C1, C2, and C3 were 0.689,

0.697, 0.684, and 0.765, respectively, indicating well-separated and

internally cohesive clusters.

A graph illustrating the clusters assigned to each transect was

generated to visualize the clustering outcomes (Figure 9a). Land use

status at each location was determined by assigning each transect,

which served as the basis for subsequent analysis. The results

indicate that 34.40% of the study area falls under ESA code 10,

representing regions dominated by tree cover. Grassland areas,

classified under code 30, account for 21.87% and are primarily
FIGURE 7

LRR, results of shorelines. (a) shows LRR erosion and accretion values graph for each transect, (b) shows LRR values of the whole study area result
map, and (c–e) show examples of maps of regions that show remarkable results.
TABLE 4 Shoreline EPR and LRR classification (Emam and
Soliman, 2020).

Shoreline Classification Rate of Change (m/year)

Very High Erosion <-2

High Erosion <-1→≥-2

Moderate Erosion <0→≥-1

Stable 0

Moderate Accretion >0→≤+1

High Accretion >1→≤+2

Very High Accretion >+2
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characterized by natural shrub vegetation. Regions with bare or

sparse vegetation—defined as having no more than 10% plant cover

throughout the year and dominated by exposed soil, sand, or rock—

make up 16.65% of the dataset. Built-up areas, including

infrastructure such as buildings, roads, and railways, represent

8.98% of the total land area.

A spatial map of shoreline cluster patterns was also generated

(Figure 9b). High-density areas are concentrated in clusters C0, C1,

and C3, based on the transect cluster distribution. As shown in

Figure 9a, cluster C2 exhibits relatively lower dispersion compared

to the other clusters. The Akkuyu Nuclear Power Plant area

(Figure 9d) shows high concentrations of C0 and C2, while the

Silifke Tas ̧ucu Port region (Figure 9e) is dominated by C0 and C1

clusters. Cluster C1 and C3 regions correspond to less-developed

coastal areas with minimal built-up features (Figure 9c).

ESA’s 2021 WorldCover dataset was used to generate a stacked

bar chart (Figure 9f), presenting land use distributions across the

study area and the associated cluster zones. A spatial join technique

aligned cluster points and transects for accurate land use

categorization. Based on the resulting pixel-level data, land use

percentages were determined for each cluster.

The percentage bar graph (Figure 9f) highlights that C0 regions

are characterized by grassland, bare land, and built-up coverage.

Cluster C1 comprises 8.0% built-up land and 13.8% barren or

partially vegetated terrain, as depicted in Figures 9c and 9e. Cluster

C2 consists primarily of barren land interspersed with structures. In

contrast, Cluster C3 is characterized by dense green vegetation,

particularly concentrated along the Anamur coastline (Figure 9c).

The relationship between shoreline change types (erosion,

accretion, stable) and land cover categories was analyzed for each

cluster (C0–C3) using both End Point Rate (EPR) and Linear

Regression Rate (LRR). The findings are summarized in Table 6,
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which presents detailed percentage distributions of land cover

classes for each shoreline change type and cluster. As shown in

Table 6, Cluster C1 is most strongly associated with erosion,

particularly under EPR, where it contains high proportions of tree

cover (37.86%), grassland (22.05%), and bare or sparse vegetation

(13.73%). Similar trends are seen with LRR values, though slightly

lower, indicating the persistence of these natural cover types in

eroding regions. Cluster C3, also linked to erosion, includes

substantial tree cover (18.07%) and grassland (11.26%), reflecting

a pattern of erosion in less-developed vegetated coasts. In contrast,

Cluster C2 is clearly associated with accretion, exhibiting 57.53%

bare/sparse vegetation and 19.63% built-up land in both EPR and

LRR, signaling coastal growth in highly disturbed or artificial

landscapes. Cluster C0 also appears frequently in accreting areas,

characterized by a mix of tree cover (28.57%), grassland (19.18%),

and bare land (25.77%), implying semi-natural buffer zones. Stable

shoreline segments are sparse across all clusters and land cover

types, with the majority of values falling below 1.5%, highlighting

the overall dynamism of the coastal environment in the study area.

While both EPR and LRR indicate consistent land cover–cluster

relationships, LRR provides a more stable and reliable estimate due

to its use of time series data and statistical smoothing. It effectively

captures long-term trends, minimizing the impact of short-

term anomalies.
4 Discussion

This study provides a historical analysis of shoreline changes,

emphasizing the impacts of both anthropogenic activities and

natural processes on coastal morphology. The methodology

integrates the Google Earth Engine (GEE) platform, the Digital
FIGURE 8

EPR and LRR results of districts.
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Shoreline Analysis System (DSAS), and the Fuzzy C-Means (FCM)

clustering algorithm to support comprehensive monitoring of

erosion and deposition patterns.

GEE proved particularly advantageous as a cloud-based platform,

enabling efficient processing of extensive satellite imagery datasets. Its

capabilities were essential for the long-term analysis of shoreline

dynamics from 1985 to 2022. GEE’s built-in libraries facilitated the

calculation of key indices—NDWI,MNDWI, and NDMI—which were

directly applied using the SVM module (Santra et al., 2023) and

demonstrated strong performance in shoreline delineation.

Additionally, GEE’s flexibility supported the implementation of the

Canny edge detection method.
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The Canny edge detection algorithm, widely used for precise

shoreline identification (O’Sullivan et al., 2023b, a), played a critical

role in this study. By detecting subtle transitions in satellite image

color gradients, the algorithm enhanced shoreline extraction

accuracy and enabled the reliable identification of complex

coastal features.

Changes in shoreline length over time can result from both

natural and anthropogenic factors (Yu et al., 2019; Liang et al.,

2023). The average shoreline length across all measured periods was

approximately 209.71 km. In 2015, the shoreline had increased by

about 11.37 km compared to 1985, and by 2022, it showed an

increase of roughly 8.82 km.
FIGURE 9

Fuzzy c-means and WorldCover results of shorelines. (a) shows fuzzy c-means clusters of transects, (b) shows fuzzy c-means clusters of study area
(c–e) show examples of maps of regions that show remarkable cluster results; (f) shows cluster results and WorldCover distributions.
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To evaluate shoreline erosion, accretion, and length variations

in greater detail, we used the Digital Shoreline Analysis System

(DSAS). This widely adopted tool enables the quantitative

assessment of shoreline dynamics. In this study, DSAS, along

with the Shoreline Change Envelope (SCE), Net Shoreline

Movement (NSM), End Point Rate (EPR), and Linear Regression

Rate (LRR) methods, was employed to identify long-term trends in

shoreline change. The results highlight substantial spatial variability

in shoreline change rates, underscoring the importance of DSAS-

based metrics for coastal management.

Coastal erosion and accretion along the districts of Aydıncık,

Anamur, Bozyazı , Silifke, and Gülnar—situated on the

Mediterranean coast of the Taurus Mountains—are influenced by

geographical features, riverine activity, and human interventions.

Coastal erosion, driven by wave action, currents, and anthropogenic

impacts, results in the landward retreat of the shoreline (Kumar et al.,

2010). The Mersin coastline, particularly low-lying areas such as deltas

and lagoons, is especially vulnerable to sea-level rise and wave energy.

The NSM metric, which measures the shortest distance between

initial and final shoreline positions, provides a preliminary indication

of erosion and accretion. Analysis of NSM values shows that, overall,

erosion and accretion are nearly equally distributed across transects.

Despite the overall balance, certain districts—most notably Silifke and

Aydıncık—exhibit significantly high negative NSM values (Table 2).

Human-made coastal structures significantly influence erosion and

deposition patterns. Unsurprisingly, erosion and accretion often occur

near port facilities (Rezaee et al., 2019; Song et al., 2021; Amara Zenati

et al., 2024; Ozturk and Maras, 2024). According to NSM data,

Anamur exhibits high accretion rates. To better understand these

dynamics, further investigation into sediment sources and wave-

current interactions is necessary. One prominent coastal structure in

the study area is the Akkuyu Nuclear Power Plant in Gülnar. Although

its location was selected based on geological stability and cooling needs,

previous studies have also indicated that such facilities may contribute

to accelerated coastal change (Sheik and Chandraseka, 2011; Thomas

et al., 2023).

The LRR analysis revealed positive values in 59.31% of transects

across the entire coastline. Localized accretion was most prominent

in the Gülnar and Anamur districts. In contrast, Bozyazı exhibited a

predominance of negative values, indicating a net erosional trend.

EPR data (Table 3) support these findings, with significant

accretion particularly evident in Gülnar (Figure 6). Coastal erosion
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in Silifke is exacerbated by rising sea levels and increasing wave

energy. In contrast, steeper coastal gradients in regions such as

Aydıncık reduce susceptibility to erosion (Aykut and Tezcan, 2024).

Accretion occurs when sediments transported by rivers are

deposited in coastal zones. However, anthropogenic structures such

as dams significantly disrupt natural river flow and sediment transport,

often reducing sediment delivery to delta regions and exacerbating

coastal erosion (Darwish and Smith, 2023). Rivers originating from the

Taurus Mountains play a key role in forming coastal plains and deltas

by depositing alluvial sediments. For instance, the Göksu River has

contributed to delta development near Silifke. The study area

encompasses Anamur, where fluvial processes are central to coastal

plain formation. In Anamur, both the Dragon and Sultan Streams have

shaped the Anamur Plain, while wind and wave dynamics influence

longshore sediment transport. A 40-year wind dataset has been

identified as a major factor affecting sediment mobility along the

Anamur coast (Yılmaz et al., 2015).

In Aydıncık, fluvial sediment input contributes to localized

accretion (Table 4). Analysis of shoreline change over the past 6,000

years indicates that the Aydıncık Delta experienced progradation

during the Holocene, with agricultural expansion and settlement

driving delta growth. However, since the mid-20th century,

progradation has slowed while coastal erosion has increased. In

Bozyazı, sea-level changes and sediment dynamics—accelerated by

neotectonic activity—have intensified shoreline advancement.

Holocene delta development in this area reflects both natural forces

and human influence, with tectonic movements and eustatic

fluctuations playing critical roles in shaping the coastline (Bal et al.,

2003). NSM analysis indicates that Bozyazı exhibits the highest erosion

rates, a trend corroborated by LRR and EPR metrics. Coastal

deposition processes have also notably impacted the Gülnar district.

Multiple studies affirm that coastal dynamics are influenced by

storms, waves, tides (Widiawaty et al., 2020; Ghanavati et al., 2023),

and sediment transport (Adebisi et al., 2021). Local assessments of

the study area should focus on seasonal patterns—especially in

February and March—when recession caused by climatic and tidal

variations coincides with sea-level rise driven by southwesterly

winds (lodos). Riverine inputs also warrant close attention,

particularly in regions such as Bozyazı and Anamur, where tidal

effects are observed annually.

Cluster-based segmentation is increasingly used to analyze

shoreline characteristics (Burningham and French, 2017). This
TABLE 5 LRR results.

LRR District Border Whole

Max TID Min TID Mean PC PN NoC PC PN NoC

Anamur 5.57 694 -1.81 727 0.26 55.34 21.75 0.58 14.85 5.84 0.15

Bozyazı 5.02 1314 -1.8 1154 0.00 27.72 34.59 1.55 8.76 10.93 0.49

Aydıncık 2.61 1883 -1.96 2055 0.05 44.96 26.39 1.13 10.26 6.02 0.26

Gülnar 15.47 2389 -1.27 2376 0.73 53.24 21.02 2.36 7.00 2.76 0.31

Silifke 9.72 2841 -2.80 2993 0.05 39.84 28.57 1.51 18.44 13.23 0.70
fro
TID, TransectID; PC, Percentage of Positive Change; NC, Percentage of Negative Change; NoC, Percentage of No Change.
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study employed fuzzy c-means (FCM) clustering to effectively

identify anthropogenic patterns influencing coastal change. The

method enabled cross-validation of DSAS and WorldCover

datasets, facilitating an integrated analysis. Aggregated DSAS

statistics, when combined with WorldCover data (Figure 9),

yielded robust insights. FCM provided a flexible framework for

assessing the interplay between natural and human-induced

shoreline changes, revealing distinct spatial patterns. Notable

contrasts emerged between heavily modified industrial and port

zones and areas dominated by natural processes. The analysis

demonstrated that while human interventions have promoted

accretion in some areas, natural forces have intensified erosion in

others. The Silifke and Gülnar districts exemplify these divergent

trends (Figure 8). Findings from DSAS and GEE datasets further

validated the FCM analysis, enabling a comprehensive evaluation of

coastal transformation.

The integrated application of GEE, DSAS, and FCM enabled a

comprehensive analysis of shoreline dynamics. Google Earth

Engine (GEE) facilitated the processing of large-scale satellite

datasets, DSAS was employed to quantify shoreline change rates,

and Fuzzy C-Means (FCM) clustering was used to identify

underlying spatial patterns. This combined methodology provides

valuable guidance for the development of coastal management

strategies. Protective interventions are particularly recommended

in areas experiencing severe erosion, while the regulation of natural

sediment transport is advised in harbor zones with high sediment
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deposition. The integration of robust tools such as GEE, DSAS, and

FCM represents an effective approach for generating sustainable,

data-driven coastal management plans.

Throughout the study, several challenges were encountered.

While the spatial resolution of the selected Landsat images was

adequate for the overall analysis due to the extensive size of the

study area, future studies aiming for more detailed shoreline

assessments may benefit from using higher-resolution datasets. In

particular, when extracting shorelines using automated methods,

nearshore rocks, land fragments, and shadows can lead to some

inaccurate results along the shoreline. Therefore, it is essential to

carefully inspect and verify these areas, especially after the vector

processing stage. When working with DSAS, parameters such as

transect length, smoothing distance, and transect spacing must be

carefully considered and adjusted. Selecting an excessively long

transect length can lead to inaccurate statistical results. Therefore, a

preliminary assessment of the study area is essential before

proceeding with the analysis.

While this study relied exclusively on Landsat imagery, future

validation using higher-resolution satellite data or complementary

technologies—such as UAVs, LiDAR, or GNSS—is essential. The

methodological framework could also be enhanced by exploring

alternative machine learning or deep learning models to replace the

SVM classifier currently in use. The outcomes of this study offer

important insights not only for the Mersin coast but also for similar

coastal environments worldwide. By incorporating these advanced
TABLE 6 Clusters and EPR/LRR analysis with land cover.

EPR LRR

C0 C1 C2 C3 C0 C1 C2 C3

E
ro
si
on

Tree cover 0.27 37.86 0.00 18.07 0.21 34.42 0.00 9.27

Shrubland 0.18 13.53 0.00 8.55 0.14 11.05 0.00 3.89

Grassland 0.25 22.05 0.00 11.26 0.50 19.14 0.00 6.43

Built-up 0.25 7.97 0.00 4.41 0.11 7.47 0.00 2.96

Bare/sparse vegetation 0.21 13.73 0.00 6.31 0.30 12.08 0.00 3.75

Permanent water bodies 0.05 3.77 0.00 1.11 0.07 3.60 0.00 0.96

A
cc
re
ti
on

Tree cover 28.57 0.38 10.50 15.12 28.64 3.74 10.50 24.00

Shrubland 10.88 0.18 0.00 7.76 10.93 2.54 0.00 12.93

Grassland 19.18 0.19 5.94 10.29 18.99 2.94 5.94 15.60

Built-up 10.29 0.03 19.63 4.13 10.42 0.53 19.63 5.64

Bare/sparse vegetation 25.77 0.04 57.53 7.64 25.80 1.49 57.53 10.50

Permanent water bodies 3.92 0.06 6.39 1.20 3.89 0.24 6.39 1.41

St
ab
le

Tree cover 0.00 0.15 0.00 1.38 0.00 0.24 0.00 1.30

Shrubland 0.00 0.00 0.00 0.74 0.00 0.12 0.00 0.23

Grassland 0.07 0.01 0.00 1.09 0.00 0.18 0.00 0.62

Built-up 0.00 0.00 0.00 0.26 0.00 0.00 0.00 0.21

Bare/sparse vegetation 0.11 0.03 0.00 0.58 0.00 0.24 0.00 0.27

Permanent water bodies 0.00 0.01 0.00 0.10 0.00 0.00 0.00 0.04
fro
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techniques, future studies can achieve more precise evaluations of

shoreline dynamics, contributing to more effective strategies for

mitigating the impacts of climate change and anthropogenic

pressures. Expanding the study area and applying the

methodology across diverse climatic conditions would further

strengthen our understanding of shoreline evolution.
5 Conclusions

This study aimed to monitor shoreline change using remote

sensing and GIS technologies. Shoreline variations along the

western coast of Mersin between 1985 and 2022 were analyzed

using multi-sensor, multi-temporal satellite imagery processed via

the GEE platform. Shoreline change metrics were subsequently

derived using the GIS-based DSAS tool. The highest erosion rates

were recorded as -3.53 m/year (EPR) and -2.8 m/year (LRR), while

the greatest accretion rates were 15.91 m/year (EPR) and 15.47 m/

year (LRR). Both EPR and LRR data indicate substantial erosion in

the Bozyazı district, whereas the highest accretion occurred in the

Gülnar district. Notably, these districts host major infrastructure

developments, including new port facilities and a nuclear power

plant. The findings underscore the dual influence of anthropogenic

activities and natural processes on coastal morphology—an issue of

global relevance. This research offers a foundational dataset for

future investigations and emphasizes the need for continuous

shoreline monitoring and proactive management, especially given

the strategic importance of the region.
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Landgrave, R. (2007). The coasts of our world: Ecological, economic and social
importance. Ecol. Econ. 63, 254–272. doi: 10.1016/j.ecolecon.2006.10.022

Mason, D. C., Gurney, C., and Kennett, M. (2000). Beach topography mapping – a
comparison of techniques. J. Coast. Conserv. 6, 113–124. doi: 10.1007/BF02730475

McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI)
in the delineation of open water features. Int. J. Remote Sens. 17, 1425–1432.
doi: 10.1080/01431169608948714

Morton, R. A., Leach, M. P., Paine, J. G., and Cardoza, M. A. (1993). Monitoring
beach changes using GPS surveying techniques. J. Coast. Res. 9, 702–720.

Nidhinarangkoon, P., Ritphring, S., Kino, K., and Oki, T. (2023). Shoreline changes
from erosion and sea level rise with coastal management in Phuket, Thailand. JMSE 11,
969. doi: 10.3390/jmse11050969

Nunziata, F., Buono, A., Migliaccio, M., Benassai, G., and Luccio, D. D. (2018). “Shoreline
erosion of microtidal beaches examined with UAV and remote sensing techniques,” in 2018
IEEE International Workshop on Metrology for the Sea; Learning to Measure Sea Health
Parameters (MetroSea), Bari, Italy: Clearance Center, 222 Rosewood Drive, Danvers, MA
01923. 162–166 (IEEE). doi: 10.1109/MetroSea.2018.8657843

O’Sullivan, C., Coveney, S., Monteys, X., and Dev, S. (2023a). “Automated coastline
extraction using edge detection algorithms,” in IGARSS 2023 - 2023 IEEE International
Geoscience and Remote Sensing Symposium, Pasadena, CA, USA: Institute of Electrical
and Electronics Engineers (IEEE), Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923. 4135–4138 (IEEE). doi: 10.1109/IGARSS52108.2023.10282621

O’Sullivan, C., Coveney, S., Monteys, X., and Dev, S. (2023b). “The effectiveness of
edge detection evaluation metrics for automated coastline detection,” in 2023 Photonics
& Electromagnetics Research Symposium (PIERS), Prague, Czech Republic: IEEE. 31–40
(IEEE). doi: 10.1109/PIERS59004.2023.10221292

Otmani, H., Belkessa, R., Bengoufa, S., Boukhediche, W., Djerrai, N., and Abbad, K.
(2020). Assessment of shoreline dynamics on the Eastern Coast of Algiers (Algeria): a
spatiotemporal analysis using in situ measurements and geospatial tools. Arab. J.
Geosci. 13, 124. doi: 10.1007/s12517-020-5069-6

Ozturk, D., and Maras, E. E. (2024). Investigation of the effects of small fishing ports
on the shoreline: a case study of Samsun, Turkey. J. Coast Conserv. 28, 20. doi: 10.1007/
s11852-023-01012-3

Palanisamy, P., Sivakumar, V., Velusamy, P., and Natarajan, L. (2024). Spatio-
temporal analysis of shoreline changes and future forecast using remote sensing, GIS
and kalman filter model: A case study of Rio de Janeiro, Brazil. J. South Am. Earth Sci.
133, 104701. doi: 10.1016/j.jsames.2023.104701
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Rastgele Orman Algoritması Kullanarak Incelenmesi (Investigation of the Temporal
Change Rate of Coastal Areas of Mersin Province Using Random Forest Algorithm)
(Mersin: Mersin University). Available at: https://tez.yok.gov.tr/UlusalTezMerkezi/
(Accessed March 25, 2025).
frontiersin.org

https://doi.org/10.1016/j.ecss.2022.107968
https://doi.org/10.1017/cft.2023.3
https://doi.org/10.29252/ijmt.12.9
https://doi.org/10.3390/rs12223717
https://doi.org/10.1007/s42965-023-00321-w
https://doi.org/10.1093/icesjms/fst152
https://doi.org/10.1016/j.nhres.2023.09.008
https://doi.org/10.1007/s11806-011-0551-7
https://doi.org/10.1139/anc-2020-0001
https://doi.org/10.3390/s23115331
https://doi.org/10.3390/s23115331
https://doi.org/10.1080/15481603.2023.2243671
https://doi.org/10.21597/jist.1313399
https://doi.org/10.1007/s10661-023-11015-0
https://doi.org/10.1080/01431160500500557
https://doi.org/10.3390/rs15010253
https://doi.org/10.30871/jagi.v4i1.2020
https://doi.org/10.3390/s19153252
https://doi.org/10.1080/01431160600589179
https://doi.org/10.1007/s12518-022-00431-5
https://doi.org/10.1007/s12518-022-00431-5
https://doi.org/10.1007/s12601-015-0054-9
https://doi.org/10.3390/rs11161844
https://zenodo.org/records/7254221
https://doi.org/10.3390/jmse8010052
https://doi.org/10.3390/rs11080924
https://doi.org/10.3390/rs15194865
https://doi.org/10.3390/rs15194865
https://doi.org/10.3390/jmse8010009
https://tez.yok.gov.tr/UlusalTezMerkezi/
https://doi.org/10.3389/fmars.2025.1457016
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

	An assessment of the long-term change of the Mersin west coastline using digital shoreline analysis system and detection of pattern similarity using fuzzy C-means clustering
	1 Introduction
	2 Materials and methods
	2.1 Study area
	2.2 Data sets
	2.2.1 Remote sensing data
	2.2.2 ESA WorldCover 2021 dataset

	2.3 Methods
	2.3.1 Receiving data and processing using the GEE platform
	2.3.2 Obtaining indices to support the separation of land and sea
	2.3.3 Classification using supervised machine learning
	2.3.4 Shoreline extraction using Canny edge detection
	2.3.5 Shoreline change detection using Digital Shoreline Analysis System
	2.3.6 Fuzzy C means clustering algorithm for pattern detection of transects


	3 Results
	3.1 Digital Shoreline Analysis System results
	3.1.1 NSM results
	3.1.2 Shoreline lengths and SCE results
	3.1.3 EPR results
	3.1.4 LRR results

	3.2 Land use land cover and fuzzy C-means analysis

	4 Discussion
	5 Conclusions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


