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Hybrid machine learning
algorithms accurately predict
marine ecological communities
Luciana Erika Yaginuma1,2*, Fabiane Gallucci2,
Danilo Cândido Vieira2, Paula Foltran Gheller1,
Simone Brito de Jesus2, Thais Navajas Corbisier1

and Gustavo Fonseca2

1Instituto Oceanográfico, Universidade de São Paulo, São Paulo, Brazil, 2Instituto do Mar, Universidade
Federal de São Paulo, Santos, Brazil
Predicting ecological communities is highly challenging but necessary to

establish effective conservation and monitoring programs. This study aims to

predict the spatial distribution of nematode associations from 25 m to 2500 m

water depth over an area of 350,000 km² and understand the major

oceanographic processes influencing them. The study considered data from

245 nematode genera and 44 environmental parameters from 100 stations. Data

was analyzed by means of a hybrid machine learning (ML) approach, which

combines unsupervised and supervised methods. The unsupervised phase

detected that the nematodes were geographically structured in six

associations, each with representative genera. In the supervised stage, these

associations were modeled as a function of the environmental features by five

supervised algorithms (Support Vector Machine, Random Forest, k-Nearest

Neighbors, Naive Bayes, and Stochastic Gradient Boosting), using 80% of the

samples for training, leaving the remaining for testing. Among them, the random

forest was the best model with an accuracy of 86.4% in the test portion. The

Random Forest (RF) model recognized 8 environmental features as significant in

predicting the associations. Depth, the concentration of dissolved oxygen in the

water near the bottom, the quality and quantity of phytodetritus, the proportion

of coarse sand and carbonate, the sediment skewness, pH, and redox potential

were the most important features structuring them. The inference of each

association across the whole study area was based on the modeling results of

the 8 significant environmental features. This model still correctly classified 90%

of test data. Such findings demonstrated that it is possible to infer the spatial

distribution of the nematode associations using only a small set of environmental

features. The recommendation is thus to permanently monitor these

environmental variables and run the ML models. Implementing ML approaches

in monitoring programs of benthic systems will increase our prediction capacity,

reduce monitoring costs, and, ultimately, support the conservation of

marine systems.
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1 Introduction

Monitoring and predicting the state of marine ecosystems are

essential for baseline studies, management actions, and

conservation programs (Nichols and Williams, 2006). Assessing

the state of ecosystems requires knowing the biological

communities, their variability in space and time, and their

response to environmental changes. Nevertheless, modeling the

species composition of communities is still a challenge. It has been

traditionally done based on classical statistical methods, such as

canonical and redundancy analysis, which frequently return a low

proportion of the explained variance (Makarenkov and Legendre,

2002; Vieira et al., 2019) and whose predictions are rarely explored.

Part of this limitation is related to model assumptions and the

nature of the data, such as a large number of zeros, unbalanced

designs, multi-normal distribution, and missing data (Xu and

Jackson, 2019). Machine learning (ML) modeling handles some of

these limitations (Olden et al., 2008; Fonseca and Vieira, 2023).

Furthermore, the principle of ML is to evaluate the model’s

predictive performance, a desirable aspect in the context of

monitoring programs to anticipate undesirable environmental

changes (Schuwirth et al., 2019).

There are various ML techniques with different degrees of

learning complexity (Joshi, 2020). Each approach must be used

considering the nature of the data and the problem itself (Zhou,

2012; Stupariu et al., 2022). In some specific tasks, to enhance model

performance, a combination of complementary ML algorithms is

performed in a sequence of analytical steps, commonly termed

hybrid models (Ippolito et al., 2020; Bastille-Rousseau and

Wittemyer, 2021; Kruk et al., 2022; He et al., 2023). A common

approach among them is to reduce the dimensionality of a

multivariate dataset based on an unsupervised learning method

and then use the obtained groups as the response variable in a

supervised learning method (Krueger et al., 2020; Carcillo et al.,

2021; Pinto et al., 2021). In community ecology, such a two-phase

hybrid approach could be useful. The first phase would consist of

detecting distinct taxonomic groups, a common practice among

ecologists (Clarke et al., 2014), followed by a supervised learning

phase where the environmental data are used to predict the

occurrence of the groups.

For oceanographic studies, ML holds promise (Rubbens et al.,

2023). Environmental data like bathymetry, temperature, and

surface primary productivity are obtained in high spatial-

temporal resolution with sonars and satellite images, while

biodiversity data are sparse and logistically challenging to obtain

(Balmford and Gaston, 1999; Heink and Kowarik, 2010),

particularly offshore. Accurate inferences of biodiversity based on

environmental data are crucial for marine ecosystem monitoring

and conservation (Guisan and Zimmermann, 2000; Guisan and

Thuiller, 2005; Holon et al., 2018). One challenge of modeling

marine biodiversity is that oceanographic processes are dynamic,

differ in spatial extent, and interact with each other (Sonnewald

et al., 2021). As such, while accurate predictions are needed, it is also

important to extract the model features and the interactions within

environmental data (Murdoch et al., 2019). It is based on the
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response of biological data and interactions between

environmental variables that the major oceanographic processes

can be understood and monitored.

The objective of this study is to predict, through a hybrid model,

the spatial distribution of nematode associations from 25 m to 2500

m water depth over an area of approximately 350,000 km² along the

Brazilian continental margin and understand the major

oceanographic processes influencing them. Free-living marine

nematodes are microscopic organisms mostly smaller than 0.5

mm that belong to the meiofauna (Giere, 2009). In marine

sediments, nematodes are usually the most abundant component

of the meiofauna. They are known as one of the best ecological

indicators due to their ubiquitous presence in diverse ecosystems,

with high abundance, diversity, and sensitivity to multiple

environmental changes (Ridall and Ingels, 2021).
2 Methods

2.1 Study area and sampling design

The Santos Basin (SB) is located in the southeastern region of

the Brazilian margin between the Campos Basin and Pelotas Basin.

It is limited to the north by Cabo Frio High (22°S) and to the south

by Florianopolis High (28.5°S). The basin occupies an area of

approximately 350,000 km2, bordering four Brazilian states along

271 km of the southeast coast and reaching down to 3000 m water

depth in the São Paulo Plateau. The continental shelf is narrower

(70 km) in the Cabo Frio region (Rio de Janeiro state, RJ) and wider

off Santos city (230 km), in São Paulo state (SP), with declivity

ranging from 1:600 to 1:1300 and shelf break depth varying from

120 m to 180 m (Mahiques et al., 2010).

Environmental and nematode assemblage data were obtained

from sediment samples of the Santos Project – Santos Basin

Environmental Characterization – by PETROBRAS/CENPES

(Moreira et al., 2023). A total of 100 sampling stations were

distributed in eight transects perpendicular to the coast and at 11

isobaths (25 m, 50 m, 75 m, 100 m, 150 m, 400 m, 700 m, 1000 m,

1300 m, 1900 m, and 2400 m). Twelve additional stations were

sampled within the São Paulo Plateau region, between 1900 m and

2400 m, where most of the oil and gas production takes place.

Sampling cruises were conducted in July 2019 at the continental

slope and plateau (isobaths from 400 m to 2400 m) and in

November 2019 at the continental shelf (from 25 m to 150 m).
2.2 Sampling and sample processing

Sediment samples were taken in three replicates with a spade-

type box corer (0.25 m² surface area) or a modified Van Veen grab

(231 L, 0.75 m² surface area), depending on the grain size of the

sediment. Sampling was incomplete in stations P1 and B5, with only

2 successful replicates; in A7, H4, and G9, with only one successful

replicate; and in G11 with no successful sampling. The nematode

samples were taken from the larger samplers with a cylindrical corer
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(5 cm diameter, 10 cm high, 19.63 cm² area), and were stored and

fixed with 10% buffered formalin. Samples for 38 environmental

variables were obtained from the same box corer or Van Veen. The

variables were related to the content of phytopigments, organic

matter, and carbonates, and the granulometry of the sediment and

were analyzed by other research parties. Details of the variables such

abbreviation, name, analytical method, and the reference for more

information are provided in the Supplementary Table S1.

Addit ional ly , s ix variables related to bottom water ’s

physicochemical properties and topographic characteristics were

measured at each sampling station, totaling 44 environmental

variables. More details about sampling and methodological

analyses of the environmental variables are available in Moreira

et al. (2023).

In the laboratory, nematodes were extracted from the sediment

by density flotation technique (Somerfield et al., 2005) with Ludox

TM 50 (Sigma-Aldrich) adjusted to the specific gravity of 1.18 g/

cm3, repeated 3x with each sample. Organisms were then

transferred to 10% formalin and stained with Rose Bengal.

Nematodes were counted in a Dollfus plate and abundances were

adjusted to no. individuals/10 cm². For the genus identification, 200
Frontiers in Marine Science 03
specimens were randomly separated to be mounted on glass slides

for identification, after a diafanization process with glycerol 5%

(Seinhorst, 1962; De Grisse, 1965). After mounting, nematodes were

identified to genus level or family level, in case the genus could not

be identified, using the Nemys database (Nemys Eds, 2023) and

pertinent nematode taxonomic literature. The nematode slides were

deposited in the Biological Collection “Prof. Edmundo F. Nonato”

(ColBIO-IOUSP, 2023). Identification counts were adjusted to

sample abundance. The abundance, Shannon evenness, and

relative dominance (abundance of the most abundant genus

divided by the total number of individuals) were calculated per

station. After sample processing, the mean abundance data of 261

Nematoda genera from 99 samples were used for analysis.
2.3 Data preprocessing

The proposed hybrid model combined unsupervised and

supervised machine learning methods (Fonseca and Vieira, 2023).

A total of 27 analytical steps, which were separated into five phases,

were performed in this pipeline (Figure 1). The first phase consisted
FIGURE 1

Analytical workflow highlighting the hybrid modeling approach implemented for the nematode assemblage data and the main outcomes. The
analytical scheme is represented in five phases: Data collection, Unsupervised, Supervised-Training, Supervised Up-scaling, and Supervised-Test.
Geometric forms represent the analytical processes and outputs, while the arrows represent the sequence of analytical steps. Depth, bathymetric
data; Env, environmental data; Fauna, nematode genera data; Coord, coordinates data; SOM, Self Organizing Map analysis; HC, Hierarchical
Clustering analysis; Assoc, taxonomic association data; MLclass, classification Machine Learning training model; FI, Feature Importance analysis; Envsig,
significant environmental features data; MLregres, regression Machine Learning training model; Envsig_Grid, significant environmental features modeled
in a higher resolution grid data; Assoc~Envsig, the trained model of the associations as function of the significant environmental features; AssocPred_*,
Associations predicted using the EnvTest (*Test) or the EnvSig_Grid (*Grid) as predictors; SelectTest_points, selection of the gridded data to the points of the
Test dataset.
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of the data collection (yellow contour color in Figure 1) and the pre-

processing steps (light blue rectangle in Figure 1). At this stage,

imputation was used to fill in missing environmental data using a

bagged tree model for each variable (as a function of all the others;

Fonseca and Vieira, 2023). Also, highly correlated environmental

variables were removed (cut off = 0.75), considering the largest

mean absolute values of pairwise Spearman correlations (Kuhn,

2008; Supplementary Figure S1). After removing those variables, 24

features remained in the environmental data (Supplementary

Figure S2). Hereafter, they are referred to as features since they

have become input variables in the model. For the nematode data, a

logarithm (log10) transformation was applied.
2.4 Unsupervised phase

The second phase concerns the unsupervised analysis (light

purple contour color in Figure 1), which involved a self-organizing

map followed by a hierarchical clustering analysis (process box SOM

+ HC in Figure 1), to access and reduce the multivariate structure of

the fauna into clusters (Assoc parallelogram in Figure 1). The self-

organizing map (SOM) analysis is an unsupervised neural network

method (Kohonen, 2001) used to aggregate similar samples into

neurons, also termed map units (Best-Matching units – BMU). Here,

we employed a SOM version with multiple layers (Wehrens and

Buydens, 2007; Wehrens and Kruisselbrink, 2018). The dimensions

of the grid was 7 x 10 neurons, with a hexagonal topology and a non-

toroidal grid. The neighborhood function used was the Gaussian. The

first layer was the nematode genera data with a weight of 0.95 and

based on the Bray-curtis similarity index. The second layer was their

respective coordinates, with a weight of 0.05 and based on the

Euclidean distance. The second layer was implemented to account

for potential spatial correlation between samples. For training, the

complete dataset was presented 500 times to the network. Each

neuron of the final map is composed of a weighted list of species

termed codebook, meaning that all samples within a neuron will

share the same codebook. Using the codebook provided by the SOM

analysis, a hierarchical clustering (based on the Ward method with

squared differences, “Ward2”) was applied to group similar BMUs

and their respective samples. To choose the number of groups formed

by the clustering analysis a split moving window analysis was

performed to detect a discontinuity in the relation between the

number of groups and the within-cluster sum of squares (WSS).

The groups of neurons are referred to hereafter as taxonomic

associations (Assoc, Figure 1) and used as a descriptor of the fauna.

The abundance, evenness, and relative dominance of each association

were compared among the associations through analysis of variance

(ANOVA). The ANOVA tests were performed in R language.
2.5 Supervised training

Following the unsupervised step of the hybrid model, each

taxonomic association (Assoc, Figure 1) was further used as a

response variable in the Supervised Training phase (black contour
Frontiers in Marine Science 04
color in Figure 1). This phase aims to use the best set of

environmental features to model and predict those clusters

through machine-learning classification algorithms. First, samples

were split for validation purposes in a way that ensured a balanced

partition among the associations. The training dataset (80% of the

data) was used for model fitting and the test dataset (20%) for

further evaluation. Then, multiple machine learning classification

algorithms were performed and compared: Naïve Bayes (NB),

Support Vector Machine (SVM) Learning (linear and radial), K-

nearest neighbor (knn), Random Forest (RF), and Stochastic

Gradient Boosting Regression Trees (sgboost). Before running the

SVM and knn algorithm, the environmental features were scaled by

the root mean square. All the algorithms were performed using a

cross-validation method with 5 folds and 10 repetitions, and a

maximum of 10 tuning combinations were chosen, except for the

sgboost. For each algorithm, the highest accuracy value was used to

select the optimal model among the tuning combinations. The RF

models were based on 500 trees. For the sgboost models, parameter

shrinkage (or learning rate) was set at 0.1 and 0.05, the minimal

number of observations in the terminal nodes of the trees was 10,

the number of trees was 250 and 500 and the interaction depth was

performed with 1 and 2. The model with the highest accuracy and

Kappa metrics was selected to be used in the following steps

(process box MLclass in Figure 1).

The significant environmental features (Envsig parallelogram in

Figure 1) from the most accurate model were retrieved using a

feature importance analysis (box FI in Figure 1). Except for the RF

algorithm, the importance of each feature of the environmental

model was obtained by random permutation of the feature/variable

while the others were kept unchanged (Breiman, 2001). This

process disrupts the relationship between the feature and the

target variable (Assoc). Permutations were repeated 100 times,

corresponding to the null normally distributed population, and

the observed metric (non-permuted model) was compared to it. The

statistical significance (p-value) was obtained by retrieving the

proportion of extreme permuted values higher than the observed

one. For the RF algorithm, the significant environmental features

were obtained using the randomForestExplainer package (Jiang

et al., 2020). To get a more efficient model (Assoc~Envsig in

Figure 1), only the significant environmental features (Envsig)

data were then used to train the model of the associations

(Assoctraining parallelogram in Figure 1) using the same MLclass
algorithm selected before. Additionally, boxplots of the

environmental features were performed to understand the

differences in the environmental conditions among the associations.
2.6 Supervised upscaling

Once the model Assoc~Envsig had been trained, the next step

was to predict the taxonomic associations in a 2 km x 2 km grid

(orange contour color in Figure 1). To achieve this, we first modeled

each significant environmental feature (Envsig) obtained from the

feature importance analysis (FI) as a function of water depth and

geographical coordinates. The most accurate regression ML
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algorithms among the SVM Learning (linear and radial), knn, RF,

and sgboost were used to build each model. The hyperparameters of

the algorithms used in this phase were the same as those used in the

Supervised Training phase. After running all the models, we

obtained 100,555 data points for each significant environmental

feature (Envsig_Grid parallelogram in Figure 1). This newly created

dataset was then used as predictors for the Assoc~Envsig model

(orange dotted arrows in Figure 1) to obtain the predictions of the

taxonomic associations in a 2 km x 2 km grid (AssocPred_Grid
parallelogram in Figure 1).
2.7 Supervised test

To evaluate the performance of our predictions (blue contour color

in Figure 1), the observed associations separated for test (AssocTest,

Figure 1) were compared to those inferred from the environmental

features from the test dataset (AssocPred_test parallelogram in Figure 1)

and those inferred from the environmental features modeled in the

upscaling phase (AssocPred_Grid parallelogram in Figure 1). Both

comparisons were made based on a confusion matrix, performance

metrics (accuracy and Kappa coefficient), and individual predictions at

each sampling station. Based on these outcomes, it is possible to

determine how much information is lost, or not, when inferring the

community associations solely based on the inferences from the

environmental models.
2.8 Software

All the analytical steps and outputs were done in the iMESc - An

Interactive Machine Learning App for Environmental Science,

which is an open-source application built on R language (Vieira

et al., 2025) that can be downloaded at https://zenodo.org/record/

7278042. A user guide to the application is available at https://

danilocvieira.github.io/iMESc_help/#introduction. The dataset and

the analysis are accessible by downloading the Savepoints at https://

github.com/DaniloCVieira/imesc_savepoints and restoring them

following the guide “Savepoint” at the help page of the iMESc.

The selection of points from the gridded data to the points of the

test data (box SelectTest_points in Figure 1) and the calculation of

metrics between the predictions of the Test data and the gridded

data (box Models evaluation in Figure 1) were made using R

language. The code script can also be download at the provided

link for the Savepoints. More information about the iMESc

application is available in Vieira et al. (2025).
3 Results

3.1 Unsupervised phase of the hybrid model

3.1.1 Nematode associations
A total of 245 nematode genera were identified. The most

abundant genera were Sabatieria, Halalaimus, Acantholaimus, and

Microlaimus, representing 14.1%, 5.3%, 4.2%, and 4.2% of all
Frontiers in Marine Science 05
individuals, respectively. The SOM analysis stabilized after a

learning rate of around 0.045 for the nematode data and 0.06 for

the coordinate data. The SOM network explained 75.65% of the data

variance with a mean topographic error of 0.41 (Table 1). The

hierarchical clustering analysis revealed that the optimal number of

taxonomic associations (Assoc) was 6, with association number 6

being the most different (Figure 2A) and with more samples

(Figure 2B). The spatial distribution of the associations followed a

depth pattern throughout the basin and a north-south pattern on the

continental shelf, where each association showed a distinct spatial

extent (Figure 2D). Association 1 occurred in the shallowest region

along the basin, Associations 3 and 4 occurred in the northern region

of the continental shelf, while Association 2 occurred in the southern.

Associations 5 and 6 were respectively restricted to the slope and

plateau regions along the whole basin. The most abundant genus,

Sabatieria, was dominant in Associations 2, 3, 4, and 5 (Table 2).

Association 1 was characterized by higher abundances of

Chomadorina, Microlaimus, Daptonema, and Sabatieria. In

Association 6, Monhystrella and Acantholaimus predominated.
3.1.2 Univariate descriptors of the
nematode associations

Abundance per station varied from 40 to 1,758 individual/10

cm2 (mean = 511 ± 392 individual/10 cm2), genus richness from 43

to 105 genera, evenness from 0.64 to 0.88 (mean value = 0.80 ±

0.04), and relative dominance from 0.07 to 0.43 (mean value = 0.18

± 0.06). All measures varied significantly among the associations

(Supplementary Table S2). Abundance was higher in Association 3,

followed by Associations 1, 2, and 5, and lower in Associations 4

and 6 (Figure 2C). Associations 1 and 5 showed higher richness

than Associations 2 and 6. Association 2 differed from Associations

1, 3, 5, and 6 by showing lower evenness, and Association 1 showed

higher evenness than Associations 2 and 4. The relative dominance

of Associations 2 and 4 was significantly higher than that of

Associations 1, 5, and 6.
3.2 Nematoda associations model

The accuracy of the training models of the six ML algorithms

varied from 0.80 to 0.88 and the kappa index from 0.69 to 0.83

(Table 3). The Random Forest (RF) algorithm was the most
TABLE 1 Quality measures of the nematode and coordinate layer and
the mean value of the trained SOM.

Nematoda Coordinates Mean

Quantization error 50.89 0.77 25.83

Percentage of
explained variance

66.87 84.42 75.65

Topographic error 0.01 0.82 0.41

Kaski-Lagus error 11.85 3.06 7.46

Neuron Utilization error 0.24
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FIGURE 2

Nematode associations from the unsupervised phase of the hybrid model. (A) Dendrogram obtained by the hierarchical clustering of the neurons
from the Self Organizing Map (SOM); (B) SOM with neurons grouped by the respective clusters; (C) box-plot of Richness, Abundance, Evenness, and
Relative Dominance of each association, with the whiskers representing the minimum and maximum, the box the 25% and 75% quartiles, the line the
median value and the dots the outliers; (D) map of the associations at each sampling station at the Santos Basin.
TABLE 2 Mean abundance, standard deviation (± SD) and relative abundance (%) of the most abundant genera (mean relative abundance >2% in at
least one association) by each association.

Genus

1 2 3 4 5 6

Mean
± SD

%
Mean
± SD

%
Mean
± SD

%
Mean
± SD

%
Mean
± SD

%
Mean
± SD

%

Sabatieria 36.2 ± 29.2 4.6 127.9 ± 60.1 20.9 249.2 ± 89.2 18.8 47.1 ± 37 24 132.7 ± 54.3 16.7 19.5 ± 25 7.1

Monhystrella 0.3 ± 0.8 0 0.7 ± 1.8 0.1 1.1 ± 1.6 0.1 1.5 ± 1.1 0.8 22.6 ± 22.5 2.8 33.4 ± 23.6 12.1

Acantholaimus 6.9 ± 15 0.9 1.7 ± 3.1 0.3 1 ± 1.6 0.1 4.8 ± 3.1 2.4 34 ± 24.7 4.3 32.9 ± 21.9 12

Microlaimus 42.3 ± 41 5.4 57.5 ± 66.3 9.4 50.2 ± 39.3 3.8 3.7 ± 3.9 1.9 12.2 ± 9.2 1.5 4.8 ± 4.9 1.7

Halalaimus 15.4 ± 10.5 2 14.7 ± 8.5 2.4 52.8 ± 21.2 4 11.2 ± 6.3 5.7 50.2 ± 15.9 6.3 25.4 ± 18.7 9.3

Richtersia 29.9 ± 41.2 3.8 23.3 ± 32.5 3.8 49.1 ± 14.5 3.7 14.2 ± 19.1 7.2 9.1 ± 13.7 1.1 0 ± 0.1 0

Cervonema 1.1 ± 2 0.1 4.4 ± 3.4 0.7 23.3 ± 9.9 1.8 1.1 ± 0.8 0.5 48.1 ± 28.3 6 9.4 ± 12.2 3.4

Chromadorina 43.2 ± 42 5.5 0.5 ± 1.1 0.1 7.4 ± 7.7 0.6 1.4 ± 1.2 0.7 1.9 ± 3.4 0.2 0.4 ± 1.2 0.1

Terschellingia 7.4 ± 10.8 0.9 31.4 ± 67.1 5.1 21 ± 17.8 1.6 0.4 ± 0.4 0.2 4 ± 3.4 0.5 0.4 ± 0.5 0.2

Daptonema 36.4 ± 63.4 4.6 15.1 ± 14.7 2.5 35.2 ± 29.4 2.7 4.7 ± 3.6 2.4 17.9 ± 5.9 2.2 5.3 ± 7.3 1.9

(Continued)
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accurate and the radial Support Vector Machine (SVM radial) was

the least accurate. Considering the test part of the data, the Random

Forest (RF) showed the best performance, with an accuracy of 0.91

and a Kappa index of 0.88 (Table 3), and was selected as the best

model (MLclass) to be used in the following steps of the analytical

workflow. Among the 24 environmental features, eight were

significant (significance level = 0.05; Figure 3A) selected by the
Frontiers in Marine Science 07
RF model. Among them, water column depth (Depth) was the most

important feature with a mean minimal depth of 1.29, followed in

decreasing order by the Chlorophyll-a/Phaeopigments ratio

(Chloa_Phaeo), sediment redox potential (Redox), content of

carbonates (Carbonates), angle of the slope, content of coarse

sand (CSand), sediment pH, and concentration of phaeopigments

(Phaeo) in the sediment. Recalculating the model based solely on
TABLE 2 Continued

Genus

1 2 3 4 5 6

Mean
± SD

%
Mean
± SD

%
Mean
± SD

%
Mean
± SD

%
Mean
± SD

%
Mean
± SD

%

Desmoscolex 9.1 ± 7.3 1.2 1.2 ± 1.8 0.2 28.6 ± 18.5 2.2 7.9 ± 1 4 17 ± 13.1 2.1 5.8 ± 5.1 2.1

Molgolaimus 11.6 ± 11.6 1.5 23.5 ± 35.9 3.8 31.7 ± 18.4 2.4 1.6 ± 0.5 0.8 19.4 ± 23.2 2.4 1.4 ± 1.8 0.5

Neotonchus 4.2 ± 6.4 0.5 10.6 ± 8.3 1.7 44.2 ± 36.9 3.3 2.5 ± 4.6 1.3 7.3 ± 8.9 0.9 0.1 ± 0.3 0

Pseudometachromadora 0.8 ± 1.4 0.1 4.7 ± 7.7 0.8 42.4 ± 46.5 3.2 2.4 ± 4.6 1.2 5.2 ± 9.3 0.7 0 ± 0.2 0

Metasphaerolaimus 0.3 ± 0.7 0 1.2 ± 1.3 0.2 18 ± 19.1 1.4 0.3 ± 0.4 0.2 12.7 ± 10.8 1.6 7.9 ± 8.4 2.9

Comesoma 22.6 ± 32.7 2.9 1.1 ± 4.7 0.2 6.3 ± 11.4 0.5 0.1 ± 0.2 0.1 2.6 ± 6.4 0.3 0 ± 0 0

Thalassomonhystera 1.6 ± 3.7 0.2 0.3 ± 0.6 0 0.7 ± 1.3 0.1 1.2 ± 1.4 0.6 9.6 ± 9.8 1.2 7.4 ± 5.6 2.7

Pselionema 7.2 ± 4.8 0.9 13.5 ± 12.3 2.2 32.6 ± 25.1 2.5 1.5 ± 1.5 0.8 8.9 ± 5.3 1.1 2.8 ± 2.7 1

Paramonohystera 8.4 ± 14.4 1.1 14.3 ± 14.7 2.3 19.7 ± 13.9 1.5 0.4 ± 0.5 0.2 6.4 ± 3.8 0.8 2.2 ± 2.4 0.8

Rhynchonema 18 ± 13.8 2.3 0.9 ± 3.3 0.1 0 ± 0 0 0.1 ± 0.2 0 0.1 ± 0.4 0 0 ± 0 0

Paramphimonhystrella 0 ± 0 0 5.6 ± 7.5 0.9 11.2 ± 20 0.8 2.1 ± 2.2 1.1 18.1 ± 14.2 2.3 3.8 ± 4.5 1.4

Odontophora 5.6 ± 4.2 0.7 8.2 ± 12.3 1.3 29.6 ± 24.6 2.2 0 ± 0 0 0.5 ± 1.7 0.1 0 ± 0.1 0

Echinodesmodora 17.1 ± 15.2 2.2 0.6 ± 1.6 0.1 1.3 ± 2.3 0.1 3.5 ± 5.1 1.8 1.3 ± 4.4 0.2 0 ± 0.1 0

Leptolaimus 5.7 ± 7.9 0.7 13.1 ± 10.7 2.1 14.1 ± 18.6 1.1 2.7 ± 1.1 1.4 16.8 ± 12.1 2.1 5.9 ± 4.7 2.1

Amphimonhystrella 0.1 ± 0.3 0 1.7 ± 2.4 0.3 7.3 ± 13.2 0.6 1.5 ± 1.2 0.7 11.8 ± 15.2 1.5 5.7 ± 6.8 2.1

Syringolaimus 0 ± 0 0 0.1 ± 0.3 0 0 ± 0 0 2.6 ± 2.7 1.3 7 ± 6.3 0.9 5.7 ± 6.2 2.1

Campylaimus 3.7 ± 5.3 0.5 12.6 ± 15 2.1 24.4 ± 15.5 1.8 0.7 ± 0.6 0.3 4.8 ± 2.7 0.6 1.2 ± 1.1 0.4
frontiers
The relative abundance of the four or five most abundant genera in each association are highlighted in bold. Number of observations in Associations 1 to 6 was 8, 18, 7, 5, 12, and 49, respectively.
TABLE 3 Accuracy and Kappa index of the six models for the training and test sets.

Model
Training Test

Accuracy Kappa Accuracy SD Kappa SD Accuracy Kappa

RF 0.884 0.825 0.059 0.094 0.909 0.875

sgboost 0.844 0.763 0.071 0.108 0.818 0.740

SVM* linear 0.814 0.725 0.090 0.140 0.818 0.743

SVM* radial 0.798 0.688 0.070 0.110 0.682 0.543

knn* 0.798 0.690 0.081 0.133 0.773 0.677

NB 0.823 0.737 0.077 0.115 0.864 0.809
SD, standard deviation; NB, Naïve Bayes; SVM, Support Vector Machine; knn, K-nearest neighbor; RF, Random Forest; sgboost, Stochastic Gradient Boosting Trees. *environmental features data
was scaled by the root mean square. Training set: 77 samples; Test set: 22 samples.
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those significant environmental features, the accuracy slightly raised

to 0.89 (± 0.06) and the kappa index to 0.83 (± 0.09). Association 3

showed the highest error (0.45), misclassifying part of the samples

as Association 1 or 2 (Figure 3B).
3.3 Simulated environmental features

The accuracy of the RF models (MLregres) of the significant

environmental features (Envsig) as a function of the depth, latitude,

and longitude varied from 0.45 for coarse sand to 0.74 for carbonate

(Table 4). The spatial distribution of the environmental features

showed that the ocean floor of the basin was heterogeneous
Frontiers in Marine Science 08
(Figure 4). The sediment in the northern region of the continental

shelf showed a higher content of coarse sand (Figure 4F). In this region,

samples were classified as Associations 1 and 3 (Figure 2D) and were

characterized by coarser sediment (Supplementary Figure S3D). The

concentration of phaeopigments was higher on the continental shelf,

with maximum values around the isobaths of 75 m and 100 m

(Figure 4H). Samples of those isobaths were classified as Association

2 in the south and Association 3 in the north (Figure 2D), and

presented the highest concentration of phaeopigments in the

sediment (Supplementary Figure S3F). However, values were slightly

higher in the shelf southern region, reflecting a lower proportion of

fresh phytopigments, compared to the north, the slope, and the plateau

(Figure 4B, Supplementary Figure S3A). The carbonate content was
FIGURE 3

The Minimal Depth distribution (A) of the eight significant environmental features and (B) the confusion matrix from the training of the Random
Forest model based on the significant environmental features. Depth: water column depth (m); Chloa_Phaeo: chlorophyll-a/phaeopigments ratio;
Redox: sediment redox potential (mV); Carbonates: sediment content of carbonate; Slope: angle of the slope (°); CSand, sediment content of coarse
sand; pH, sediment pH; Phaeo, sediment concentration of phaeopigments (μg/g).
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lower near the coast and increased towards the deep, thoughmarked by

a high peak around the 150 m isobath (Figure 4D). This peak matches

the location of samples from Association 4 (Figure 2D), which

exhibited a high carbonate content in the sediment (Supplementary

Figure S3C). Both the redox potential and the pH of the sediment

revealed an evident difference between the continental shelf and the

slope and plateau, with lower values in the first region (Figures 4C, H).
3.4 Association predictions and
model validations

The results of the model of the associations (Assoc~Envsig)

using the simulated significant environmental features in the 2 km x

2 km resolution grid (Envsig_Grid) evidenced the depth-related

arrangement of the taxonomic associations (Figure 5A) and the

difference along the continental shelf between the South and North.

Association 1 occupied the shallowest region, restricted by the 25 m

isobath, along the entire basin. The continental shelf was occupied

by Association 2 in the southern region and Associations 3 and 4 in

the northern region. Association 5 occurred along the whole basin

in a narrow band on the upper slope, around the 400 m isobath.

Finally, Association 6 occupied the deeper region of the basin, from

the middle slope to the plateau.

Comparing the observed association of the test dataset

(AssocTest in Figure 1) with the predictions of the supervised

model based on the unseen environmental features (AssocPred_Test
in Figure 1) and the simulated significant environmental features

(AssocPred_Grid; Figure 1) showed that both models classified all the

associations of the test samples equally (Figure 5B). The total

accuracy was 0.91 and the kappa index was 0.87. Specifically,

both models misclassified only two of the 22 samples (Figure 5B).

4 Discussion

The proposed hybrid model predicted with 91% accuracy the

spatial distribution of nematode associations as a function of a small
Frontiers in Marine Science 09
set of important environmental features. From a theoretical

standpoint, the reduction of dimensionality of the nematode data

into associations, along with accurate predictions, suggests that the

Basin is formed by distinct local communities, constituting a

metacommunity (Wilson, 1992; Leibold et al., 2004). As shown

by the feature importance analysis, these local communities are

probably structured by depth, supply of potential food sources, such

as Chlorophyll-a and Phaeopigments, topography, and the

properties of the sediments, as well as other environmental

variables that were highly correlated with them (Supplementary

Figure S1).

Although depth is a key variable in predicting nematode

associations, it is not, per se, an environmental driver of

community structure; instead, it is a geographical variable that

reflects a strong environmental gradient. Towards the deep, as we

move away from the continental sources of sediments and

organic matter and into less energetic environments, the

granulometric characteristics of the sediment change, as well as

its physicochemical properties and food availability (Suess, 1980;

Mahiques et al., 1999; Restreppo et al., 2020). Along the Santos

Basin, this was not different. On the continental shelf, sediment was

coarser, with lower redox and pH values, and a higher contribution

of fresher organic matter (Carreira et al., 2023; Figueiredo Jr. et al.,

2023). On the other hand, muddy sediments extended over the

slope and plateau, where the organic matter was scarcer and less

fresh (Carreira et al., 2023; Figueiredo et al., 2023). The contrasting

environmental conditions between the continental shelf and slope

were also reflected in the fauna. The food-rich conditions of the

continental shelf supported higher abundances of nematodes, as

observed for Associations 1, 2, and 3 in contrast to Associations 4

and 6. The differences are also present in the taxonomic

composition. For instance, Associations 1, 2, and 3 showed a

greater abundance of typical genera from continental shelves

worldwide, like Sabatiera , Microlaimus, and Daptonema

(Muthumbi et al., 2004; Vanreusel et al., 2010; Muthumbi et al.,

2011). In contrast, Association 6 was dominated by Acantholaimus,

Monhystrella, and Halalaimus, common genera from slopes and
TABLE 4 Results of the regression RF models of the significant environmental features (Envsig) in predicting the nematode associations.

Variable
Training Test

RMSE R2 MAE RMSE SD R2 SD MAE SD RMSE R2 MAE

Chloa_Phaeo 0.07 0.64 0.06 0.01 0.13 0.01 0.06 0.84 0.04

Redox 101.58 0.51 71.27 17.65 0.15 12.56 64.77 0.75 48.61

Carbonates 0.11 0.74 0.08 0.02 0.10 0.02 0.08 0.78 0.06

Slope 0.76 0.60 0.49 0.17 0.15 0.11 1.48 0.24 0.98

CSand 0.08 0.45 0.06 0.02 0.26 0.01 0.07 0.28 0.05

pH 0.18 0.70 0.13 0.05 0.13 0.03 0.18 0.66 0.13

Phaeo 2.96 0.68 1.83 0.96 0.17 0.46 2.44 0.80 1.45
RMSE, root mean square error; R2, percentage of variance explained; MAE, mean absolute error; SD, standard deviation. Chloa_Phaeo, chlorophyll-a/phaeopigments ratio; Redox, sediment
redox potential (mV); Carbonates, sediment content of carbonate; Slope, angle of the slope (°); CSand, sediment content of coarse sand; pH, sediment pH; Phaeo, sediment concentration of
phaeopigments (μg/g).
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deep-sea habitats (Vanreusel et al., 2010; Macheriotou et al., 2021;

Armenteros et al., 2022, 2024).

In the continental shelf, the north-south pattern was evidenced

by Association 2 in the south and Associations 3 and 4 in the north.

Such a pattern results from the boundary between two
Frontiers in Marine Science 10
sedimentation zones related to different oceanographic processes

(Mahiques et al., 1999). The south receives low-salinity and cold

nutrient-rich waters from the Sub-Antarctic Argentinian shelf, the

La Plata River runoff, and the Patos Lagoon (Piola et al., 2000; de

Souza and Robinson, 2004; Brandini et al., 2018). The interaction of
FIGURE 4

Spatial distribution maps of the significant environmental features (Envsig) in predicting the nematode associations. Values plotted in the maps are the
predictions of the random forest models of the environmental features as a function of depth and geographical coordinates in a 2 km x 2 km grid. (A)
Depth: water column depth (m); (B) Chlorophyll-a/Phaeopigments ratio; (C) Redox: sediment redox potential (mV); (D) Carbonates: sediment content of
carbonate; (E) Slope: angle of the slope (°);(F) Coarse Sand: sediment content of coarse sand grain fraction; (G) pH: sediment pH; (H) Phaeopigments:
sediment concentration of phaeopigments (μg/g).
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those waters with the meandering of the Brazil Current and the

morphology of the shelf increases the productivity and

sedimentation rates, resulting in the predominance of finer and

homogeneous sediments with an accumulation of organic matter

(Carreira et al., 2023; Mahiques et al., 2010). High organic matter

inputs in sediments stimulate bacterial activity, which leads to a

reduced environment (Li et al., 2022). Genera like Sabatieria,

Microlaimus, and Terschellingia, which were the most abundant

of Association 2, are known to dominate sediments under such
Frontiers in Marine Science 11
conditions (Van Gaever et al., 2009; Vanreusel et al., 2010). In the

northern portion of the basin, high productivity events also occur

here due to the onshore motion in the mid-shelf and the coastal

upwelling of the South Atlantic Central Water (SACW). It

promotes the deposition of higher-quality organic matter to the

bottom (Brandini et al., 2018), impacting the benthic systems

(Sumida et al., 2005; De Léo and Pires-Vanin, 2006). However,

sediments are coarser and more heterogeneous in this region due to

the complex hydrodynamics associated with the coastline shape and
FIGURE 5

(A) Predicted spatial distribution map of the nematode associations of the hybrid model: values plotted in the maps are the predictions of the six
associations as a function of the simulated environmental features on a bathymetric grid of 2 km x 2 km (AssocPred_Grid in Figure 1); (B) Observed
(Test) and predicted (Pred_Test, Pred_Grid) associations of the test samples: Pred_Test was predicted using the environmental features from the test
dataset as predictors and Pred_Grid using the simulated environmental features in a 2 km x 2 km grid.
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narrower shelf (Mahiques et al., 1999, 2010; Figueiredo et al., 2023).

Though genera like Sabatieira andMicrolaimus remained abundant

in Associations 3 and 4, typical genera of coarser sediment, like

Richtersia, and deeper areas, like Halalaimus, become more

abundant. Particularly for Association 4, characterized by

carbonates from bioconstruction fields (Figueiredo et al., 2023),

the abundance ofDesmoscolex increased. This taxon is known for its

affinity to habitats with carbonated structures (Vanreusel et al.,

2010). As we go deeper, towards the slope and plateau,

environments with muddy sediments and scarce organic matter

dominate (Carreira et al., 2023). While Association 5 showed a

transition in taxa composition between the shelf and the deeper

stations, Association 6 was typical from deep seas worldwide, with

low abundances and dominance of typical deep-sea genera

(Vanreusel et al., 2010; Lins et al., 2017).

The results of this study improve our understanding of the

spatial structure of the benthic community of the Basin. Our study

provided a comprehensive analysis of the entire Santos Basin,

different from studies with macrofaunal and foraminiferal

communities in the same basin which were restricted to the shelf

or slope and plateau areas (Araújo et al., 2023; Moura et al., 2023).

As suggested by meiofauna higher taxa data, the upwelling of the

South Atlantic Central Water (SACW) and the intrusion of waters

from the south with the contribution of the La Plata River are the

main processes structuring the benthos in the continental shelf

(Gallucci et al., 2023; Moura et al., 2023). Compared with the

patterns observed for the meiofauna, the present study analytically

confirmed the existence of 6 benthic zones in the Basin. Both studies

recognized the Lower Slope and Plateau, the Upper and Mid-Slope,

and the Upwelling as unique zones. Nonetheless, while the

meiofauna study separated the southern portion of the

continental shelf in two, observing a tradeoff in the abundances of

kinorhynch, polychaete, and copepods associated with the

concentrations of phytodetritus (Gallucci et al., 2023), the

nematode genera data separated a coastal area (Association 1)

from the rest of the southern portion of the continental shelf

(Association 2). It is suggestive that copepods, kinorhynchs, and

polychaetes are more sensitive to changes in phytodetritus

deposition (Landers et al., 2020; Pruski et al., 2021), while

nematodes to changes in granulometric properties of the

sediment. The differences in responses between nematodes and

other meiofauna taxa have already been reported (e.g. Stark et al.,

2020). Such findings demonstrate the importance of monitoring

multiple ecological indicators since each may respond differently to

environmental changes.

Compared to traditional analytical tools commonly applied in

community ecology, our hybrid approach offers at least three

advantages. The first is the possibility of making accurate

predictions; the second is the selection of the essential

environmental variables to make the predictions, and the third is

the possibility of continuous learning with the increment of new

data. Accurate predictions are essential in regions with limited data,

especially regarding biodiversity data. Since human activities are

constantly pressuring the systems, knowing ahead of the
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biodiversity of an unsampled location gives us better support for

management decisions. As some data are less laborious and

expensive to obtain than others, such as granulometry versus

biodiversity data, selecting a set of predictors by the hybrid model

permits optimizing sampling strategies, data processing, and

ultimately, the efficiency of monitoring programs. Particularly for

the Santos Basin, it is crucial now to include additional variability,

such as temporal variation or data from unsampled regions, to

validate the model’s performance and enhance our understanding

of the system. This can be done continually, allowing the model

to improve with each new income (Fonseca and Vieira, 2023). The

hybrid model approach can be applied to any scenario involving the

simultaneous analysis of multiple species along with a set of

environmental variables. By employing such a methodology, we

move from the traditional hypothesis testing approach commonly

applied to community ecology to a predictive modeling approach.

Comprehensive baseline studies coupled with robust predictive

models are the first steps toward implementing effective

monitoring programs (Lindenmayer and Likens, 2010; Fonseca

and Vieira, 2023). Based on them it is possible to predict the

response of multiple ecological indicators to environmental

changes and therefore build a roadmap for the validation of

monitoring programs. This is a significant step towards the

conservation of natural ecosystems.
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