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Decoding growth parameters
of small pelagics: a critical
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effectiveness with a focus
on the European anchovy
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MaJosé Zúñiga1, Fernando Ramos1 and Jorge Tornero1

1Centro Oceanográfico de Cádiz, Spanish Institute of Oceanography (IEO), National Spanish Research
Council (CSIC), Cádiz, Spain, 2European Commission, Joint Research Centre, Ispra, Italy
Traditionally, parameters defining life history traits, such as growth, were solely

determined through length or age–length databases and then included as fixed

in integrated stock assessment models. In current practice, growth parameters

are usually estimated within these models (“inside”) and fitted to other datasets.

However, for short-lived and small pelagic species, challenges may arise,

particularly when there is a high variability in the age–length data or sampling

biases are inadequately identified or addressed by these models. To test model

effectiveness in capturing the growth dynamics of these species, we propose a

comparative analysis following recommended practices for incorporating age–

length data into integrated stock assessment models for the specific case of

anchovy (Engraulis encrasicolus) stock in the Gulf of Cadiz. The reason is

twofold: its significant ecological and economic importance and the need to

improve the accuracy of growth parameter estimates used to inform total

allowable catch (TAC) scientific advice. The overarching goal of this analysis is

to identify the optimal model configuration that provides accurate growth

parameter estimates. Our approach shows that random effects can effectively

estimate growth in species with high age–length variability. Furthermore, using

the obtained estimates as fixed in the stock assessment model reduces

computational time and enhances the goodness of fit, resulting in a more

efficient model. The results address a significant gap in existing integrated

models used for scientific advice, which often do not have the “random effects

on parameters” feature. Notably, this framework is widely applicable to other

short-lived small pelagic species that typically exhibit a high data variability,

offering a valuable solution for improving efficiency and robustness in fisheries

management decision-making.
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1 Introduction

Estimating fish growth is a fundamental step to evaluate fish

populations and plays a crucial role in stock assessment models and

fisheries management (Lee et al., 2024). Generally, growth can be

defined as the change in length or weight over the life of an

individual and directly influences fish survival, sexual maturity,

reproductive success, as well as movement and migration (Peters,

1986). Accurate growth estimation enhances the understanding of

fish population dynamics, productivity, and sustainability,

particularly for short-lived, small pelagic species like anchovy,

which are ecologically and commercially significant (Costalago

et al., 2011; Gebremedhin et al., 2021). Within most stock

assessment models used, growth is typically estimated through

age-based approaches, relying on age determination techniques

such as otolith analysis or length–frequency data (Rodrıǵuez

Mendoza, 2006). These models, when incorporating data for all

the ages and lengths, help to evaluate the size composition and age

structure and to estimate biological parameters accounting for

growth changes produced by the effect of fishing. These

advantages, among others (Lee et al., 2024), facilitate an informed

decision-making process (Cope et al., 2023). However, estimating

fish growth within stock assessment models may also present

limitations since these models, used to handle a large amount of

data, often assume that growth is uniform across the entire

population, provide parameters not representative of the species

biology influencing the stock status estimation (Lee et al., 2024), or

require high computational time. This is the case of the integrated

model Gadget (Globally applicable Area Disaggregated General

Ecosystem Toolbox) (Begley and Howell, [[NoYear]]; Begley,

2004), which is an extensively used and a very flexible model that

includes age–length dynamics [compared to others that only

include length or age (Punt et al., 2020)]. However, Gadget could

be very slow to run because it is not coded such that the gradients of

the objective function with respect to the parameters are computed

automatically, and it does not allow to include random effects on the

parameters (Punt et al., 2020). It should be noted that other models

extensively used, such as Stock synthesis, MULTIFAN, or CASAL,

do not account random effects properly and that the ability to do so

for several parameters is one of the essential features that the next

generation of stock assessment models should have (Punt

et al., 2020).

In contrast, estimating growth empirically, external or “outside”

stock assessment models, offers greater flexibility in data selection,

allowing researchers to incorporate representative age–length data

and length–frequency distributions and to choose parameter values

according to their expert knowledge on the species’ biology. In

addition, estimation “outside” enables the use of more appropriate

calculation methods, such as the use of random effects on the

parameters through non-linear mixed models which have been

proven to fit better when there is a high variability in the data

(Pilling et al., 2002; Stewart et al., 2022). However, implementing

these methods “inside” remains computationally intensive (Maunder

and Punt, 2013). Despite these advantages, empirical growth

estimation is subject to several challenges arising from uncertainties

in age determination (Campana, 2001), sampling bias, and increased
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variability driven by environmental factors, including gear selectivity

and oceanographic conditions (Pennino et al., 2020; Fernández-

Corredor et al., 2021), among others (Lee et al., 2024).

European anchovy (Engraulis encrasicolus) inhabiting the Gulf of

Cádiz (hereafter, GoC), ICES Subdivision 9.a, serves as a compelling

case study in the context of estimating fish growth. This species is a

small pelagic species (<20 cm) with a short life cycle (living up to

approximately a maximum of 3 years), whose population fluctuations

are governed by environmental drivers (particularly temperature,

wind regimes, and the Guadalquivir river discharges), and therefore

recruitment success depends highly on meteorological and

oceanographic conditions during the early stages of their vital

development (Ruiz et al., 2006; Ruiz et al., 2009; Rincón et al.,

2016). The GoC is a highly productive coastal ecosystem that

supports a significant anchovy fishery, yet growth patterns have

fluctuated in recent decades, necessitating a better understanding of

growth dynamics (Costalago et al., 2011). Research on anchovy

growth in the GoC dates back to the 1990s, with early studies

reporting life cycle characteristics such as length–frequency

distributions, length–weight relationships, age structure, and

reproduction (Rodrıǵuez-Roda, 1977). Thereafter (Millán, 1999),

described the reproductive biology of this species, highlighting

variations in growth in response to environmental conditions. The

first growth parameter estimates for GoC anchovy were derived from

monthly length–frequency samples collected in three commercial

ports in the area during 5 years, yielding estimates of   L∞=18.95 cm

and k = 0.90 using ELEFAN I and   L∞=18.69 and k = 0.90 using

Powell–Wheterall methods (Bellido et al., 2000). Currently, for the

European anchovy inhabiting Atlantic waters, including the GoC, the

ICES Working Group on southern horse mackerel, anchovy, and

sardine (WGHANSA) provides scientific advice on fishing

opportunities (ICES, 2022) using a Gadget stock assessment model

since 2018. This model growth parameters estimates are as follows:

  L∞=29.17 cm and k = 0.08 (ICES, 2018b).

To test model effectiveness in capturing the growth dynamics

for short-lived small pelagic species, we propose a comparative

analysis following recommended practices outlined by (Lee et al.,

2024) for incorporating age–length data into a Gadget-integrated

stock assessment model for the specific case of anchovy (Engraulis

encrasicolus) stock in the Gulf of Cadiz. Our approach involves a

three-step process: initially, conducting an exploratory analysis of

the length-at-age datasets available to identify potential variability

and biases; secondly, fitting a von Bertalanffy growth function in a

random effects’ framework aligned with the data properties

previously identified; and finally, comparing the outcomes of the

existing model with two alternative Gadget implementations

(Figure 1). In one approach, we fix the growth parameters based

on values derived from the previous step, while the other permits

the model to autonomously calculate the parameters. For these

alternative implementations, goodness of fit (likelihood scores),

computational time, and their ability to accurately reflect the

biology of the species were considered as performance indicators.

The overarching goal of this analysis is to determine the optimal

model configuration in terms of both efficiency and accuracy,

exploring the possibility to include random effects in growth

estimation “outside” the integrated model by fixing the resulting
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parameters. This study seeks to determine the best approach for

incorporating length–age data into integrated models when datasets

exhibit high variability and limited age classes, particularly when

random effects cannot be directly implemented “inside” the model.

This could offer a valuable solution to improve the precision and

effectiveness of stock assessments and, therefore, to inform adaptive

fisheries management strategies.
2 Methods

The methods used here include the identification of potential

variability and biases in the age–length datasets available, an

exploratory analysis of non-linear models with fixed and random

effects to fit a von Bertalanffy growth function “outside” the model,

the selection of the most suitable methodology considering the data

properties, the conditioning of two different Gadget models with the

data available: one fixing the values for growth parameters using

those estimated in the previous step and another allowing the model

to estimate them, and lastly, the comparison of the outcomes of the

model used to provide scientific advice in 2023 (ICES, 2023) with

the two alternative Gadget implementations described in the

previous step in terms of computational time and total

likelihood score.
2.1 Data

The age–length data used comes from all anchovy biological

sampling undertaken by the Spanish Oceanographic Institute and

the Instituto Português do Mar e da Atmosfera in the GoC which

corresponds to ICES division 27.9a South. These data include

quarterly age–length keys, obtained from otoliths readings of

commercial samples from 1989 to 2022 and those from research
Frontiers in Marine Science 03
surveys conducted by Spain and Portugal [see (ICES, 2010) for

more information]. For instance, the research surveys data used in

this work is presented in Table 1 and Figure 2.

It is worth to remark that the data used for the model that

provided scientific advice in 2023 (ICES, 2022) did not include the

ECOCADIZ-RECLUTAS and age 0 data from the ECOCADIZ

survey due to lack of enough observations when the model was

benchmarked [please refer to (Rincón-Hidalgo et al., 2023) and to

(ICES, 2018a) for more information]. Considering that a sufficient

number of observations are currently available and that recruitment

data are crucial for this stock (Ramos et al., 2018; Ruiz et al., 2006;

Drake et al., 2007), as well as for other small pelagic species—given

that these individuals are the basis of stock productivity—it was

decided to incorporate the ECOCADIZ-RECLUTAS and age 0

ECOCADIZ time series.

In summary, four distinct age–length datasets were analyzed:

commercial landings and three scientific survey series:

ECOCADIZ-RECLUTAS, ECOCADIZ, and PELAGO. The data

cover a range of ages from 0 to 3 years, represented as relative years

(fractional years), and were collected across different months of the

year. It is noteworthy that the data from the commercial fleet are

quarterly; however, for the purposes of this study, months 2, 5, 8,

and 11 were considered to represent quarters 1, 2, 3, and 4,

respectively. Additionally, the convention of assuming that

individuals are born only in the third and fourth quarters, with

the birth date set to January 1, was considered (there are no age 0

individuals in the first and second quarters and they move to age 1

group on January 1 (ICES, 2010; ICES, 2020).
2.2 Data exploratory analysis

An exploratory analysis of age–length data was conducted to

identify its statistical properties following best-practice
FIGURE 1

Illustration of the three-step approach undertaken for this work.
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recommendations provided by (Lee et al., 2024). Thus, variations in

fish lengths were evaluated according to age and sampling month

for all available data sources. The primary objective was to identify

potential biases in sampling methods and the availability of

incomplete data, which could impact the estimation of

growth parameters.

For each age group, the minimum, maximum, mean, and

standard deviation of fish lengths were calculated. Mean lengths
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at age were determined using an age–length key, while standard

deviations were estimated according to the method described by

(Bettoli andMiranda, 2001) to avoid treating the data as if they were

randomly selected.

Additionally, age proportions and their standard errors were

calculated from the age–lengths keys following (Quinn and

Deriso, 1999).
2.3 Exploratory methodology analysis

Anchovy growth “outside” the model was investigated using von

Bertalanffy growth function (vBGF). Estimating fish growth using this

function is a commonly employed approach that describes the growth

of individual fish over time. This model assumes that fish growth

follows a sigmoidal pattern derived from a generalized logistic function

and can be represented mathematically as follows: Lt = L∞  (1 −

  e−k(t−t0))  where Lt is length at age t, with age considered as a

continuous variable, k is the growth rate coefficient, t0 is the

theoretical age when size is zero, and L∞   is the asymptotic length.

The parameters L∞  , k, and t0 were estimated by fitting the

model to the observed length–age data using non-linear regression

and non-linear mixed-effects techniques. The primary objective was

to minimize the discrepancy between the observed and predicted

lengths by identifying the optimal values of these parameters.

Initially, a non-linear regression technique was implemented.

Two scenarios were explored to illustrate correlation among

parameters when fixing t0 since all of the length variations at age
FIGURE 2

Area covered by the survey data used in this work.
TABLE 1 Survey data used in this work.

Survey
(season)

Years Number of
individuals
by age

More info on
surveys and
data refer to

ECOCADIZ acoustic
surveys (summer)

2006–
2020

Age 0 = 2,344
Age 1 = 8,991
Age 2 = 1,486
Age 3 = 183
Total = 13,004

(ICES, 2024; ICES,
2018b; Rincón-Hidalgo
et al., 2023)

ECOCADIZ-
RECLUTAS acoustic
surveys (autumn)

2012–
2021

Age 0 = 3,903
Age 1 = 2,081
Age 2 = 391
Age 3 = 2
Total = 6,377

(ICES, 2024; ICES,
2018b; Rincón-Hidalgo
et al., 2023)

PELAGO acoustic
survey (spring)

2015–
2022

Age 0 = 0,
Age 1 = 1,474
Age 2 = 302
Age 3 = 56
Total = 1,832

(ICES, 2024; ICES,
2018b; Rincón-Hidalgo
et al., 2023)
The details of each survey are described in the references provided.
The bold values represent the total number of individuals, considering the grouped ages.
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0 have effects on the curvature of the growth function, i.e.,

increasing t0, lowering k, and increasing L∞   because the three

parameters are highly correlated (López Veiga, 1979). In the first,

the parameters L∞   ,   k   and t0 were estimated independently, while

in the second, the parameter t0 was fixed at zero.

Subsequently, a non-linear mixed-effects (mixed-effects

hereafter) model was fitted to the data. This methodology allowed

to address the non-independence between the parameters (Thorson

and Minto, 2015) and to account for intra-annual variability by

considering them as random effects according to the sampling

month. Six different scenarios were evaluated, among all of the

possible combinations of t0,   k, and L∞   as random effects among

the groups defined by the sampling month.

The estimated parameters and Akaike Information Criterion

(AIC) (Akaike, 1987) and Bayesian Information Criterion (BIC)

(Schwarz, 1978) values were used to select the most suitable method

framework and scenario for anchovy growth data. Additionally,

bootstrap techniques were applied to the non-linear model to

estimate parameter uncertainties, while in the mixed-effects

model, uncertainty calculation relied on the covariance matrix of

the estimated parameters. This was summarized through length-at-

age plots, showcasing length predictions and corresponding

confidence intervals, alongside standardized residual plots and

their trends for model evaluation.
2.4 The model

Gadget is an age–length-structured model that integrates

different sources of information in order to produce a diagnosis

of the stock dynamics. It works by making forward simulations and

minimizing an objective (negative log-likelihood) function that

measures the difference between the model and data; the

discrepancy is presented as a likelihood score for each time

period and model component.

The general Gadget model description and all of the options

available can be found in the Gadget manual (Begley and Howell,

[[NoYear]]) with implementation examples documented in (Taylor

et al., 2007; Bartolino et al., 2011; Elvarsson et al., 2018; Rincón-

Hidalgo et al., 2023).

Particularly for this work, the specification and implementation

for the Gadget model used as reference are the same as that used to

provide scientific advice for anchovy in the GoC in 2023 where

growth parameters are estimated “inside” the model using as input

the data described in the data section except for ECOCADIZ-

RECLUTAS and ECOCADIZ age 0 data. A detailed likelihood

component description and particular specifications are available at

(Rincón-Hidalgo et al., 2023).
2.5 Growth parameters estimation “inside”
the model

The growth function used by Gadget is a simplified version of

the vBGF, defined in (Begley and Howell, [[NoYear]]) as the

LengthVBSimple growth function. The length increase for each
Frontiers in Marine Science 05
length group of the stock is given by the equation below:

Dt   =   (L∞  −   l)(1  −   ekDt),

where Dt is the length of the timestep, and L∞ is the terminal

length and k is the growth rate coefficient as defined before. The

value t0 can be calculated from the vBGF by replacing Dt by reca, the
age for recruitment, and l by the recruitment length (recl) as follows:

t0   = reca +
log   (1 − recl

L∞
)  

k
,

where reca = 0  , and recl is estimated by the model.
2.6 Performance indicators for
Gadget models

Two performance indicators were used: the total weighted

likelihood and the computational time. Total weighted likelihood

accounts for differences between data observed and the model

estimates. This calculation is performed in Gadget adding and

iteratively re-weighting different likelihood components

(Elvarsson et al., 2014; Elvarsson et al., 2018; Rincón et al., 2019).

For the Gadget implementations in this work, biomass surveys and

length distributions likelihood components were used together with

understocking and penalties (Begley and Howell, [[NoYear]]).
2.7 Implementation

The Simple Fisheries Stock Assessment Methods FSA R

package, version 0.9.5 (Simple Fisheries Stock Assessment

Methods [R package FSA version 0.9.5], 2023), was used for data

analysis as well as for non-linear estimation of growth parameters.

Additionally, non-linear mixed-effects models were conditioned

through the nmle R package, developed by (Pinheiro and Bates, 2006),

version 3.1-164 (Lindstrom and Bates, 1990; Pinheiro and Bates, 1996).

Bootstrap techniques were implemented with the nlstools R package,

version 2.1-0 (Baty et al., 2015). Furthermore, confidence intervals for

the non-linear mixed-effects models were estimated using the nlraa R

package, version 1.9.7 (Archontoulis and Miguez, 2015).

Both of the Gadget models conditioned were implemented

using Gadget2 (version 2.3.5) software in the CESGA

supercomputing center servers. Input data and running and

weighting processes were implemented in R using mfdb [version

7.2-0 (Lentin and Elvarsson, 2021)] and Rgadget [version 0.5

(Elvarsson and Lentin, 2016)].
3 Results

3.1 Data exploratory analysis

A statistical overview of the relationship between fish length and

age is presented in Table 2. Spanning various age groups, the

recorded minimum and maximum ages ranged from 0 to 3.92

years, with corresponding age intervals, measured in terms of
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sampling months, spanning from 0.58 to 3.92 fractional years. Fish

lengths varied between 37.5 and 194.0 mm, with mean lengths

ranging from 104.7 to 163.1 mm. Within each age group, standard

deviations of length fluctuated between 10.6 and 19.7 mm. There

was a notable variation in sample sizes across age groups, with the

largest sample size observed for age 1 (n = 61,131) and the smallest

for age 3 (n = 449). Furthermore, the proportion of the sample

relative to the total varied across age groups, ranging from 0.005 to

0.665. The age groups with the highest variability were ages 0 and 1,

with standard deviations of 16.6 and 19.7 mm, respectively.

The variability observed in the age–length data can be attributed

to several factors. Firstly, age data predominantly comes from

commercial samples, which, in turn, are derived from fishing

trips in Spanish waters of the Gulf of Cadiz. These data are not

georeferenced and may be collected far from areas where

oceanographic surveys typically detect larger specimens (in terms

of both size and age), often located near or within Portuguese

waters. Consequently, most age 3 data come from oceanographic

surveys, which are conducted punctually (once per year, with three

annual surveys contributing to this data source). These surveys may

be influenced by natural variations in the age distribution of

anchovy due to environmental conditions and/or factors related

to feeding and reproduction (Pennino et al., 2020; Fernández-

Corredor et al., 2021).

This variability can lead to certain age classes being

underrepresented in specific years, reflecting the shifting

distribution of anchovy populations in the Gulf of Cadiz. As a

result, the sample coverage of older age classes is often limited.

Notably, similar limitations could also affect smaller sizes and

younger age classes in more coastal waters. Regarding selectivity,

commercial purse seine fisheries are subject to technical regulations

designed to prevent the capture of individuals below the minimum

conservation reference size of 9 cm in the Gulf of Cadiz. As a result,

such individuals are excluded from landings, introducing a degree

of bias in the commercial samples, particularly during months

corresponding to the recruitment season.

Given these challenges, mixed-effects models were selected to

address the imbalances, discrepancies, and gaps in the data. As

explained above, these models provide a more responsive

framework for tracking growth changes over time and adjusting

management strategies accordingly.

All available data are graphically represented in Figure 3, which

shows the length at age by sampling month for age groups between

0 and 3 years old. It shows that, as the age to the sampling month
Frontiers in Marine Science 06
increases, the mean length also tends to rise, indicating a growth

pattern consistent with anchovy biology. However, it is important

to note that this trend comes with significant variability, as reflected

in the standard deviations calculated for each age group (Table 1).

This suggests that while there is a general growth trend, there is a

wide range of lengths within each age group, possibly attributed to

observation error and individual or seasonal factors.
3.2 Exploratory methodology analysis

The comparison of parameter estimates and model fit for non-

linear and mixed-effects models is presented in Table 3. That

comparison shows that allowing t0 to be estimated freely in non-

linear models results in a higher estimate of L∞  . In contrast, fixing

t0 results in lower estimates of L∞   and higher estimates for k.

Among these approaches, the mixed-effects model assuming

random effects for t0 and k provides the best fit to the data, as

indicated by the lowest AIC and BIC value. This suggests that

incorporating random effects may effectively address for the high

variability in the data.
TABLE 2 Summary of fish length relative to age.

Age (year) Age (fraction year) Length (mm)

minAge maxAge minL maxL meanL sd N prop

0 0.58 0.92 37.5 172.5 104.7 16.6 22,735 0.247

1 1.17 1.92 37.5 193.0 126.0 19.7 61,131 0.665

2 2.17 2.92 82.5 194.0 154.9 13.7 7,646 0.083

3 3.17 3.92 130 188.0 163.1 10.6 449 0.005
The statistics include minimum and maximum values for age and length, mean length, standard deviation, sample size, and proportion of the sample relative to the total.
FIGURE 3

Length at age by sampling month for age groups between 0 and 3+
years old.
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In addition, the best non-linear and mixed-effects model fit

according to AIC and BIC criterion are presented together with

their standardized residuals in Figure 4. The first with t0 as a free

parameter and the second assuming random effects over t0 and k.

The results reveal that the non-linear model does not capture the

von Bertalanffy growth pattern. Furthermore, the standardized

residuals show that this non-linear model has a good fit only for

lengths between 150 and 163 mm, while the mixed-effects results in

a good fit for lengths below 163 mm. The 95% confidence intervals

are also broader for the non-linear model compared to the mixed-

effects model. However, neither approach achieves a satisfactory fit

for sizes exceeding 163 mm, likely due to the reduced sample size

and length range in these older age groups (Table 1).
3.3 Growth parameters estimated by
Gadget and performance indicators

As explained before, the outcomes of the existing model are

compared with two alternative Gadget implementations. In one

approach, we fix the growth parameters based on values derived

from the previous step, the values corresponding to the best von

Bertalanffy model corresponding to the lowest AIC and BIC

(Table 4), while the other permits the model to autonomously

calculate the parameters using only the most representative datasets.

Table 4 shows the results of the three implementations, the

value for the estimated growth parameters, and a comparison in

terms of computational time needed and total weighted likelihood

score. The performance indicators for the assessment model in 2023

were included as a reference as they are not comparable with the

other Gadget implementations due to differences in the data input.

Nevertheless, the values of the parameters estimated are not very

different among Gadget implementations when they are calculated

“inside” the model, L∞   value, and the growth rate result was slightly

smaller when using the whole data set as model input. This suggests

a leftward shift of the von Bertalanffy function when ECOCADIZ-

RECLUTAS and ECOCADIZ age 0 data is incorporated into the

model. In addition, L∞   values are 63.7 and 92.2 mm higher than the

L∞   from the best von Bertalanffy model (L∞  =199.5), for Gadget
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implementations with and without the whole dataset, respectively;

on the other hand, the growth rate results were much smaller in

both cases.

Finally, a comparison between the two approaches: calculating

the growth parameters “inside” and “outside” the gadget model with

the same data input results in lower likelihood score and

computational time when the growth parameters are fixed.
4 Discussion

In this study, the guidelines proposed by (Lee et al., 2024) were

applied to incorporate length-at-age data into a specific integrated

fisheries stock assessment model (Maunder and Punt, 2013),

demonstrating that the efficacy of the random effects approach for

estimating growth in short-lived species was also characterized by high

variability in age–length data, like the anchovy in the GoC, where

existing growth parameter estimates were inaccurate and outdated.

Notably, for the anchovy in the Gulf of Cádiz, a comprehensive

data and methodological revision was necessary due to the

limitations of existing growth parameter estimates. The initial

estimation for the growth parameters of this species, published in

2000 (Bellido et al., 2000), had been widely referenced. Since 2018,

these parameters are also used as initial values in the current model

for providing scientific advice on TACs (ICES, 2022). However, the

estimated growth parameters in this model fail to accurately capture

the species’ biology, highlighting a need for improvement. This

limitation led to a re-examination of the approach to integrating

length-age data in models, resulting in a new research question: how

to effectively incorporate length-age data in integrated models when

dealing with highly variable datasets and limited age classes.

In order to address this question, the guidelines proposed by

(Lee et al., 2024) were applied to the anchovy in the GoC. A

thorough analysis of the anchovy data available until 2023 was

conducted, resulting in the inclusion of a new dataset focused on the

recruited population. The data analysis revealed a great variability,

and also with length classes overlapping for ages 0 and 1, where the

minimum length is the same for both ages and the maximum length

is only 20.5 cm higher for age 1 (see Table 2 and Figure 3), which
TABLE 3 Comparison of parameter estimates and model fit between non-linear and non-linear mixed-effects models.

Method Random effect L∞   k t0 AIC BIC

Non-linear free t0 – 427.17 0.10 -1.99 781,165 781,203

Non-linear fixed t0 – 149.65 1.34 0 795,342 795,370

Mixed-effects

t0 226.62 0.31 -1.15 776,750 776,726

k 251.55 0.24 -1.40 777,271 777,248

L∞ 274.37 0.20 -1.55 777,465 777,442

t0 and k 199.58 0.46 -0.74 775,272 775,188

t0 and L∞   208.93 0.40 -0.86 775,424 775,346

k, and L∞   243.11 0.30 -1.13 775,817 775,719
The parameter estimates include t0,   k, and L∞   . Additionally, the AIC (Akaike Information Criterion) and BIC (Bayesian Information Criterion) values are provided for each model.
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FIGURE 4

Non-linear and mixed-effects model fit (left panels) and their standardized residuals (right panels). Top left panel: Model fit (black line) and 5th to
95th percentile confidence intervals (gray shaded area) for a mixed-effects model assuming random effects over t0 and k. Bottom left panel: Model
fit (black line) and 5th to 95th percentile confidence intervals (gray shaded area) for a non-linear model assuming t0 as a free parameter. Top right
panel: Standardized residuals (gray points), trend (black line) and expected residual value (dashed line) for the model in the left panel. Bottom right
panel: Standardized residuals (gray points), trend (black line) and expected residual value (dashed line) for the model in the left panel.
TABLE 4 Model performance comparison.

Data used Growth parameters’
calculation “inside”

L∞  
(mm)

K t0 recl
(mm)

Computational
time

Likelihood
score

The same was used for the assessment 2023
(see (19 in 17)

Yes 291.7 0.08 -5.16 98.6 Non-comparable Non-
comparable

The same data used in the assessment plus
ECOCADIZ-RECLUTAS and age 0 data
for ECOCADIZ

Yes 263.2 0.05 -9.002 95.4 5 h, 26 min, and 47 s 13,820.96

The same data used in the assessment plus
ECOCADIZ-RECLUTAS and age 0 data
for ECOCADIZ

No Fixed
199.5

Fixed
0.46

-1.29 89.4 4 h, 24 min, and 23 s 11,661.45
F
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Results of the three Gadget implementations proposed in terms of estimated growth parameters, computational time, and likelihood score. The first one is the same used to provide scientific
advice in 2023; the second and third include ECOCADIZ-RECLUTAS and age 0 ECOCADIZ datasets.
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could be one of the reasons explaining the model miss estimates for

L∞   and k when they are estimated by the model (Table 4).

The observed variability motivated a dedicated methodology

analysis, aiming to identify alternative approaches to address the

issue. Another possible reason for the misestimates could be related

to the fact that growth parameter calculation inside the model does

not account for the variability and overlapping in the different age–

length datasets, a problem documented by (Sainsbury, 2011). To

address this, non-linear mixed-effects regression techniques were

considered, as they have been used for observational studies that are

replicated across sites or times. In this case, it was assumed that

repeated measures taken over time represent lengths at various ages

for the same individuals [this is analogous to the methodology

proposed by (Helser and Lai, 2004)]. This allows for the

incorporation of individual variability in a robust way by

explicitly assuming that the growth parameters for each

individual represent samples from a normal multivariate

population of growth parameters. This approach has been

successfully applied in various fields, including human growth

(Rogol et al., 2000). As (Pilling et al., 2002) explains, the key

advantage of this methodology is that it estimates the mean

vector and the covariance matrix of the population of growth

parameters, which are precisely the parameters needed to assess

individual growth variability. Several authors (Cope and Punt, 2007;

Pilling et al., 2002; Castillo-Jordán et al., 2010; Weisberg et al., 2010;

Stewart et al., 2022) have documented the benefits of non-linear

mixed-effects models, which facilitate the incorporation of different

sources of growth variability by including fixed effects and random

effects. These models are recommended when a great variation

around the mean growth pattern is observed in most length-at-age

plots (Figure 3), and they have proven to overcome many of the

shortcomings of the fixed-effects models approach (Wang and Ellis,

1998; Weisberg et al., 2010).

Nevertheless, the choice of methodology for fitting these models

presents several challenges. A key issue is the need to calculate an

integral that typically cannot be solved analytically. The accuracy of

the methodology is highly dependent on how this integral is

approximated or solved. For the purposes of this work, we

implemented the approach proposed by (Lindstrom and Bates,

1990), which linearizes the non-linear model around the expected

value of the random effects. This linearization simplifies the integral

to a form that can be solved analytically, thus eliminating the need

for numerical integration. However, a notable limitation of this

method is that it may result in less accurate estimates, particularly

when the random effects deviate from normality. Although the

results of normality tests were inconclusive, model selection

diagnostics—such as AIC, BIC, and standardized residuals

(Figure 4)—indicate that mixed-effects models outperform non-

linear approaches in this case. These diagnostics, which assess

overfitting and underfitting, provide strong evidence supporting

the superiority of mixed-effects models for this particular analysis.

Despite this, some misspecifications were observed for sizes

exceeding 163 mm (Figure 4). These inaccuracies could potentially

be addressed by adopting more advanced methods, such as the

Laplace approximation and Bayesian approaches, which would
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allow for the specification of non-normal distributions for the

random effects. However, implementing these techniques would

require further customization of the model to estimate random

effects based on the sampling month, demanding additional

expertise and incurring higher computational costs. A more

comprehensive discussion of computational approaches for

estimating random effects is available in (Thorson and Minto, 2015).

Additionally, it is important to note that these misspecifications

could also stem from the limited sample size for larger age classes

and the absence of measurement error in the aging process. As

emphasized by (Cope and Punt, 2007), aging error should be taken

into account when fitting growth curves. This error primarily arises

from the inconsistency between otolith formation, which is subject

to environmental influences (Izzo et al., 2018), and the

interpretation of age (Campana and Thorrold, 2011; Morales-Nin,

2000; Campana, 2001). Another potential source of error is the

decision regarding which parameters should include random

effects, as this choice may be influenced by the normality

assumption. Alternative approaches could yield different results.

In this case, the AIC and BIC values underscore the importance of

incorporating random effects for the t0 parameter. Notably, the two

best models—those that fix two of the three parameters—as well as

the best model that fixes only one parameter, all include random

effects for t0 (see Table 3). This finding is likely linked to the high

variability observed in the mean size of younger age groups

(Table 2). Accurate estimation of the t0 parameter is crucial, as

misestimating it can introduce a significant bias into the estimates

of k and L∞. Specifically, a negative covariance was observed

between k and L∞, indicating that an overestimation of k (which

suggests a faster growth rate) generally leads to an underestimation

of L∞, implying a smaller potential maximum size. Conversely,

underestimating k results in an overestimation of L∞ (Archontoulis

and Miguez, 2015; ICES, 2019; Lentin and Elvarsson, 2021; Stewart

et al., 2022). These relationships have important implications for

the use of these parameters as proxies in life-history estimation and

stock assessment models, highlighting the need for careful

consideration of model structure and underlying assumptions.

In light of these findings, it is interesting to examine the

parameter values estimated. The k value shows the most

significant difference compared to previous attempts to estimate

growth “outside” the stock assessment model. Most of the non-

linear and mixed-effects models tested (Table 3) provide values

below 0.5. However, when t0 is fixed in the non-linear regression,

the highest estimated value is obtained (k = 1.34). This value is

closer to the k estimated by (Bellido et al., 2000), which was around

1 for most of the years studied (ranging from 0.70 to 1.07). This is

particularly interesting because they also assumed t0 as fixed.

Nevertheless, there are significant differences in the L∞   value

between both approaches. In this case, an unrealistically low L∞  

of 14.9 cm was obtained, compared to the L∞   values between 18.3

and 19.69 cm obtained previously. Furthermore, in the non-linear

framework, allowing t0 to be estimated results in a small k value of

0.1 but an unrealistically large L∞     of 42.7 cm. These improbable

estimates are obtained regardless of the choice of t0, and as

mentioned before this is likely associated with the high variability
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in lengths for younger ages. This provides additional evidence that

the non-linear approach without random effects is inadequate for

this dataset, which predominantly consists of individuals aged 0 and

1 (Table 2).

With the most suitable dataset and methodology for estimating

growth parameters identified, a comparative analysis was conducted

to test their incorporation into the Gadget integrated model.

Specifically, the parameters obtained by the mixed-effects

approach were first fixed into the model, and then the model was

allowed to autonomously calculate the parameters. The efficiency of

both Gadget implementations was evaluated in terms of

computational time and goodness of fit. For both indicators, it

was determined that the first implementation was the more efficient,

reducing computational time in 1 h and improving likelihood score

values (Table 4). A notable time reduction was observed, as the

number of parameters to estimate had been reduced, but 1 h is a

considerable reduction for this stockassessmentmodel, giving some idea

of the importance of these parameters in the rest of the calculations and

having inmind that thismodel is able tohandle both age and length data

at the same time. This implementation is also more accurate for the t0
parameter, as the estimated value (-1.29) is the closest to themean of the

values obtained using the mixed-effects approach (-1.14) compared to

the other Gadget implementations. Since t0 depends on the estimated

recruitment length, this length should be correspondingly more

accurate. Furthermore, the Gadget-estimated parameter values are

close to the unrealistic ones obtained by the model used for the 2023

assessment, indicating that high variability was already present in the

earlier dataset.

Moreover, the dataset used in this study (including

ECOCADIZ-RECLUTAS and ECOCADIZ age 0) has important

implications for the management of the anchovy fishery and

currently is not the same dataset used to provide TAC advice. For

a short-lived, small pelagic fish like anchovy, its sustainability relies

on annual recruitment to ensure a healthy adult biomass for the

following year. The assessment and management of these species

are particularly challenging due to their short life expectancy,

characteristic aggregative behavior, rapid response to climate and

environmental signals, and large, variable natural mortality (Barange

et al., 2009).Therefore,management is challengedby large recruitment

variability (Thorson et al., 2014), which accounts for the largest source

ofpopulation interannual variability (Siple et al., 2021).Hence, anearly

indication of recruitment greatly benefits their management (Uriarte

et al., 2023). Advantages of incorporating recruitment indicators, like

juvenile surveys, in stock assessment and management have been

demonstrated for the Bay of Biscay anchovy stock (Boyra et al., 2013;

Uriarte et al., 2023), where the advice for TAC recommendation is

provided once the results of the recruitment survey are available. In

particular, the Gulf of Cádiz anchovy fishery targets a highly variable

resource with a short lifespan and strong dependence on yearly

recruitment (Ruiz et al., 2006; Ruiz et al., 2009; ICES, 2023).

Consequently, including the ECOCADIZ-RECLUTAS autumn

acoustic survey dataset as an indicator of early recruitment in the

assessment model will reduce the uncertainty in estimating the

strength of the next cohort. This early recruitment information,
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combined with an accurate growth function, can serve as a tool to

reduce uncertainty by enabling precise projections of the spawning

stock biomass (SSB) for the following year. The SSB, in turn, directly

informs recommendations for total allowable catch (TAC), facilitating

more proactive and adaptive management measures. For example,

fishery managers can implement precautionary adjustments to TACs

orfishingeffort levelsbefore recruitment failures are fullymanifested in

the fishery. Such proactive measures help minimize both ecological

and economic risks, ensuring more sustainable and resilient

fisheries management.

In summary, since a choice needs to be made regarding

whether growth should be estimated outside or inside the stock

assessment model (Maunder et al., 2016), sufficient evidence was

presented here for the GoC anchovy stock to decide to estimate it

outside the model or what is called an “empirical approach”

according to (Lee et al., 2024), who recommend to use it when

there is a high biological variability. This approach has been

shown to be effective for this stock, and its adoption holds the

potential to be broadened to encompass other short-lived small

pelagic species that exhibit similar data variability, offering a

valuable solution for improving the accuracy and robustness of

stock assessments to better understand population dynamics.

Moreover, our approach addresses a significant gap in existing

integrated models used to provide TAC scientific advice, which

often do not have the “random effects on parameters” feature; by

reducing uncertainty in growth parameters, this approach

contributes to more stable and scientifically justified TAC

recommendat ions , min imiz ing the r i sk o f over - or

underestimating the sustainable harvest levels, thereby providing

a more reliable and robust framework for informing short-lived

small pelagic fisheries management decisions.
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