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Assisting human annotation 
of marine images with 
foundation models 
Eric C. Orenstein1,2*, Benjamin Woodward3, Lonny Lundsten1, 
Kevin Barnard1, Brian Schlining1 and Kakani Katjia1 

1Research and Development, Information and Technology Dissemination, Monterey Bay Aquarium 
Research Institute, Moss Landing, CA, United States, 2Research and Development, National 
Oceanography Centre, Southampton, United Kingdom, 3Research and Development, CVision AI, 
Medford, MA, United States 
Marine scientists have been leveraging supervised machine learning algorithms 
to analyze image and video data for nearly two decades. There have been many 
advances, but the cost of generating expert human annotations to train new 
models remains extremely high. There is broad recognition both in computer 
and domain sciences that generating training data remains the major bottleneck 
when developing ML models for targeted tasks. Increasingly, computer scientists 
are not attempting to produce highly-optimized models from general annotation 
frameworks, instead focusing on adaptation strategies to tackle new data 
challenges. Taking inspiration from large language models, computer vision 
researchers are now thinking in terms of “foundation models” that can yield 
reasonable zero- and few-shot detection and segmentation performance with 
human prompting. Here we consider the utility of this approach for ocean 
imagery, leveraging Meta’s Segment Anything Model to enrich ocean image 
annotations based on existing labels. This workflow yields promising results, 
especially for modernizing existing data repositories. Moreover, it suggests that 
future human annotation efforts could use foundation models to speed progress 
toward a sufficient training set to address domain specific problems. 
KEYWORDS 

foundation model, marine imagery, segmentation, object detection, human-in­
the-loop 
1 Introduction 

Ocean scientists have been capturing images and video to observe marine organisms for 
decades (Jaffe, 2014; Robison et al., 2017). The instruments that collect this visual data have 
become progressively more efficient with improved battery technology and the advent of 
digital sensors and storage. Researchers now regularly collect terabytes of images, perhaps 
representing 100s of thousands of observations, over a single field campaign (Bell et al., 
2022). The sheer amount of raw data precludes fully manual annotation and has inspired 
marine scientists to invest time and effort into automating the process. 
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Marine scientists have leveraged recent advances in supervised 
machine learning (ML) models, training and deploying a neural 
network or vision transformer architecture. These tools learn a 
feature space directly from a set of annotated image or video data, 
obviating the need for hand-engineered features tailored to a 
particular data set. Scientists iteratively tune a model until it 
achieves acceptable performance on an independent validation set 
and then deploy it to process new data collected in the field. 
Crucially, this entire process relies on expertly annotated data to 
ensure that the model learns a robust mapping between the input 
images and the desired output concepts. 

Creating a high-quality, taxonomically-correct set of labeled 
data for training ML models remains an extremely time-consuming 
task (Van Horn et al., 2015). Highly-trained annotators must spend 
100s of hours examining images and footage to identify a sufficient 
number of animals to appropriately tune modern models (Hughes 
et al., 2018). The degree of difficulty, and hence number of necessary 
human hours, for these annotation tasks increases significantly 
when experts must also localize objects with bounding boxes, 
polygons, or segmentation masks (Katija et al., 2022). 
Unfortunately, this is typically an open-ended process: most 
supervised models fail when applied to data collected in new 
regions with different equipment, thus requiring continuing 
manual annotation efforts as scientists seek to work in new 
regions or with different  tools (Beery et al., 2018; Orenstein 
et al., 2020). 

These challenges are not unique to oceanographic or marine 
biological applications of ML. Computer scientists are increasingly 
looking to develop methods to adapt models to new data 
distributions, often with the explicit inclusion of humans in the 
workflow. This type of approach is common in Natural Language 
Processing where researchers have embraced the development of 
“foundation models,” any large model trained on a large corpus of 
annotated data that generalizes well to new tasks (Bommasani et al., 
2021). The strong performance in few- and zero-shot scenarios— 
situations where limited or no training data is available—is often 
achieved via prompt engineering, where humans interact with the 
model to generate a valid response to the task at hand. Computer 
vision researchers are now developing foundation models for image 
annotation tasks like object detection and segmentation. The goal is 
to produce trained models that are general enough to yield useful 
output based on a simpler, human-generated prompt (e.g. a point, 
bounding box, or text description) that specifies what to localize in 
an image. The resulting localized data can then be used to fine-tune 
a model for a downstream, domain-specific task. 

The utility of foundation models for ocean imaging is manifest; 
they could be leveraged to speed a human annotator’s first pass 
through a dataset or to enrich existing annotations. In this paper, we 
present and analyze the output of Meta AI’s Segment Anything 
Model (SAM; Kirillov et al., 2023) on four ocean-specific dataset 
enrichment tasks: (1) selecting regions from point annotations on 
images collected from a tow sled running transects around 
Antarctica (Jansen et al., 2023); (2) converting point annotations 
to bounding boxes on images from the Station M abyssal 
monitoring station (Smith and Druffel, 1998); (3) returning 
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segmentation masks from a set of bounding boxes of fish in 
images collected at a cabled observatory 4-km off the coast of 
Spain (Francescangeli et al., 2023); and (4) creating segmentation 
masks from bounding boxes around the inner filters of larvaceans in 
images drawn from FathomNet (Katija et al., 2022). These datasets 
represent diverse habitats, sampling methodologies, and target 
organisms. In all cases, SAM is not attempting to output a 
taxonomic label. Instead, the model attempts to create a 
localization—drawing either a box or outline—around an object 
based on a point selected by a human. While we are 
programmatically feeding SAM pre-existing annotations, the 
prompts could equivalently be interactively supplied by a 
human annotator. 

We underscore that these results are an early exploration of an 
extremely powerful new tool. Our work should be viewed as an 
engineering test, an attempt to understand how to apply foundation 
models to assist human annotators in a principled and clear-eyed 
manner. These results should be taken as illustrative rather than 
conclusive; there are many remaining avenues to explore and 
challenges to address. With that caveat, we believe our results are 
compelling enough to suggest that foundation models should 
quickly become a standard part of expert human annotation 
workflows for marine visual data. 
1.1 Related work 

Foundation models can be thought of as a human-AI system 
that attempts to alleviate some of the annotation burden for human 
experts. The body of work is akin to human-in-the-loop systems 
used to speed manual classification of imagery by leveraging model 
output to presort data or ask annotators guiding questions. In the 
question setting, the computer selects maximally informative 
questions to ask users based on the image itself and the 
annotators’ previous responses (Branson et al., 2010). This 
technique has been used effectively for fine grained classification, 
especially of birds (Wah et al., 2011). More recently, representation 
models have been trained to presort image data ecological studies. 
The MegaDetector is a general purpose terrestrial object detector 
that finds animals in camera trap data but does not ascribe a label, 
effectively removing empty frames from a raw dataset 
(Norouzzadeh et al., 2021). The MAIA method was developed 
specifically for marine imagery and uses a series of unsupervised 
and semi-supervised steps to bootstrap annotations in a new dataset 
(Zurowietz et al., 2018). The goal of these systems is to pre-filter 
data automatically for human verification and, eventually, training 
of a dataset-specific model (Russakovsky et al., 2015). 

Foundation models can be used in an identical manner, 
generating region proposals automatically for expert review, but 
have the additional capability of operating directly with a human-

in-the-loop. Instead of asking users questions or prefiltering data, 
foundation models ingest direct human input to parse a generic 
feature representation of a given image. While technologically 
different, the approaches are conceptually similar: get a human to 
help the machine interpret an image with minimal effort. SAM in 
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particular has shown promise for domain science applications like 
drone-based  remote  sensing  for  detecting  aquaculture  
infrastructure (Ren et al., 2023). Janowski and Wróblewski (2024) 
applied SAM to analyze a diversity of seabed data collected by 
several sampling systems. The pipeline they articulate uses SAM 
without human prompting and is targeting bathymetric features 
along the seabed. We believe our work is the first to measure SAM’s 
performance  on  marine  bio log ica l  images  based  on  
human prompts. 

The methods described in this paper belong to the broad field of 
computer vision. We rely on technical terms throughout the paper 
and have attempted to describe them as concisely as possible in the 
main paper. We have provided a glossary in Supplementary Table S1 
as a quick reference for terms that show up throughout the text. We 
also point readers to excellent primers on computer vision for animal 
ecology by Weinstein (2018) and a more specific treatment for 
marine biology in Belcher et al. (2023). 
1 sam_vit_l_0b3195.pth available at: https://dl.fbaipublicfiles.com/ 

segment_anything/sam_vit_l_0b3195.pth 

2 https://github.com/bioinspirlab/deepsea-sam-experiments.git 
2 Methods 

2.1 Segment Anything Model 

The Segment Anything Model (SAM) is an image segmentation 
foundation model, a system that is trained on a broad corpus of 
annotated images so it can easily generalize to new scenarios 
(Kirillov et al., 2023). Importantly, SAM was designed to be 
applied to a range of downstream tasks using prompt 
engineering, explicitly meant to function in zero- and few-shot 
environments with human input. SAM was trained on SA-1B, an 
enormous dataset of 1 billion segmentation masks drawn from 11 
million images. The scale of SA-1B dwarfs previous libraries of 
segmentation masks, with approximately 400x more masks than 
previously released datasets (Kirillov et al., 2023). The dataset is 
composed of high resolution images of everyday objects, collected 
around the world, taken with a variety of cameras, and licensed 
from a third party photo provider. There are some images of marine 
organisms in this data, but none collected underwater nor drawn 
from scientific datasets. 

The SAM framework consists of a Vision Transformer model 
used as an image encoder, a prompt encoder that maps inputs to an 
embedding space, and a decoder that combines image and prompt 
embeddings to generate output masks. The developers tested SAM’s 
zero-shot performance with point prompts on 23 datasets covering 
a range of domains, including two underwater image datasets: 
Northumberland Dolphin Dataset (NDD20), a set of DSLR and 
GoPro images, and TrashCan, a subset of the JAMSTEC Deep-sea 
Debris Database of ROV video data (Trotter et al., 2020; Hong et al., 
2020). NDD20 segmentation masks are annotated both at the 
coarse level of ‘dolphin’ and identified as individuals. TrashCan 
images are labeled with 7 morphotaxonomic classes and 8 types of 
human detritus found on the sea floor. SAM produced reasonable 
masks on both of these datasets as measured by both Intersection 
over Union and a qualitative survey distributed to annotators 
(Kirillov et al., 2023). 
Frontiers in Marine Science 03 
2.2 Deployment 

We deployed SAM with the ViT-L backbone trained on the 
SB-1 dataset1 the first release of the model (Kirillov et al., 2023). We 
used the model as-is, with no hyperparameter tweaking or fine 
tuning. We wrote a wrapper function to feed SAM prompts in a 
standard format and retrieve region proposals to simulate a human 
annotator interacting with SAM. This workflow was devised to 
make use of existing human annotations and assess what SAMs 
output might be should those annotations have been done with a 
foundation model. 

We deployed SAM on a server based NVIDIA RTX A6000. All 
wrapper code written for this project to feed images and prompts 
into the model and analyze results are available on GitHub2. We

note we are not able to make the endpoint publicly available to run 
new images through the model. Users will need access to their own 
GPU to run SAM. 
2.3 Datasets 

We drew data from four datasets containing a diversity of 
images from around the world, collected in different habitats with 
different approaches to target different organisms (Table 1). In all 
cases, we took a small subset from each repository, selected by a 
random number generator. Our team did not create any new 
human annotations for prompting; we adhere to the taxonomies 
and labeling schemes used by the original data annotators. 

2.3.1 The Antarctic Seafloor Annotated Imagery 
Database 

The Antarctic Seafloor Annotated Image Database (AS-AID) is 
a set of images collected from downward facing camera on a tow 
sled in the waters around Antarctica between 1985 and 2019 
(Jansen et al., 2023). The dataset represents 80 classes of animals 
and substrate collected in diverse high latitude habitats. Domain 
experts used a point-grid annotation scheme to estimate percent 
coverage of substrates and organisms. Grid sampling is an approach 
for making relatively unbiased population estimates in a spatial 
region within some uncertainty bound. For image-based sampling, 
the dimensions of the sample grid are determined by the image size 
and the desired sampling statistics (Perkins et al., 2016). The ASAID 
annotators overlaid a 9 x 12 grid of points and identified the 
substrate or organism found at that single pixel for a total of 108 
point annotations of animals and objects in each frame. The team 
used the CoralNet web-based GUI and its label suggestion function 
to do their manual labeling (Chen et al., 2021). All organism labels 
were based on the Collaborative and Annotation Tools for Analysis 
of Marine Imagery (CATAMI) hierarchical classification scheme 
(Althaus et al., 2015). In the current work, we ignore substrate labels 
and focus only on organism point annotations for prompting SAM. 
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2.3.2 Station M benthic camera trap 
Station M is an abyssal monitoring station established in 1989 

off the coast of Central California to study seafloor processes over 
time and better quantify energetic relationships between the surface 
and the benthos (Smith and Druffel, 1998; Sherman and Smith, 
2009). Images are taken every hour, and a subsample has been point 
annotated in MBARI’s Video Annotation and Reference System 
(VARS) for 15 classes by a team of experts in the regional benthic 
fauna (Schlining and Stout, 2006). The taxonomic names adhere to 
the World Register of Marine Species (WoRMS) knowledge 
database (Horton et al., 2021). We focused on the jellyfish 
Benthocodon spp., one of the most common organisms at Station 
M, for the purposes of the current work. The point annotations for 
Benthocodon spp. in each subsampled image were used to prompt 
SAM. For the purpose of evaluation for the current work, a human 
expert from the MBARI Video Lab made bounding box annotations 
around the previously identified points. 

2.3.3 OBSEA Image Dataset 
The Seafloor Observatory (OBSEA) Image Dataset is an 

annotated subsample of image data collected by a cabled video-
platform deployed in a marine protected area 4 km off the coast of 
Barcelona, Spain (Francescangeli et al., 2023). Images were collected 
every 30 minutes over a two year period from 2013 to 2015 with a 
camera observing an artificial reef structure at about 20 m depth. Two 
different cameras were used over the course of the deployment and 
images were JPEG compressed for storage. The OBSEA research team 
built a custom python-based annotation tool to draw bounding boxes 
oriented along the major axis of target fish (Marini, 2022). The 
classification adhered to the FishBase hierarchy and included an 
“unknown” category for out of focus targets (Froese and Pauly, 2000). 
Since the OBSEA data was originally annotated with bounding boxes, 
we use those localizations rather than points to prompt SAM to 
generate segmentation masks. The boxes were rotated to align with 
the image axes for the purpose of these experiments. 

2.3.4 FathomNet imagery 
FathomNet is a global image database that hosts human-verified 

annotated marine images, collected in all marine habitats, from the 
surface to the benthos and the coast to the open ocean (Katija et al., 
2022). We selected annotated images of Bathochordaeus mcnutti, a  
species of filter feeding larvacean found in the midwater, from the 
broader FathomNet repository (Sherlock et al., 2017; Katija et al., 
2017). These images often had multiple bounding box localizations 
Frontiers in Marine Science 04
per individual highlighting the animal itself, the inner filter, and 
outer filter where present. The midwater habitat and the shapes of 
the filters are very unlike anything originally used to train SAM. The 
annotations were made with the VARS-Localize interface according 
to WoRMS accepted taxonomic designations (Barnard, 2020; 
Horton et al., 2021). For the purposes of our tests, we selected 
images collected from 2018 to 2024 and prompted SAM with just 
localizations of the inner filter. 
2.4 Evaluation 

Bounding boxes and masks suggested by SAM were evaluated 
with three metrics. Intersection over Union (IoU) and Euclidean 
distance measurements are fairly standard in image processing and 
computer vision. A qualitative survey, akin to the one distributed by 
the SAM authors, was given to our expert human annotators. 

2.4.1 Intersection over Union 
Intersection over Union (IoU) is the ratio between the area 

correctly identified by the computer and the total number of pixels 
between the proposal and the ground truth: 

A ∩ B 
IoU = (1)

A ∪ B 

where A is the region proposed by SAM and B is the ground 
truth localization. A ∩ B is the number of pixels shared between the 
regions and A∪B is the total number of pixels in both. IoU is 
bounded between 0 and 1, with IoU = 0 indicating the regions are 
entirely disjoint and IoU = 1 indicating they are perfectly aligned 
(Rezatofighi et al., 2019). IoU was computed between each proposal 
and ground truth annotation. These values are subsequently 
averaged to yield a score for a collection of images. 

IoU was used to evaluate the output on the Station M, OBSEA, 
and FatomNet datasets (Equation 1). The images from AS-AID 
only have point annotations and thus IoU cannot be computed for 
those proposals. 

2.4.2 Distance 
The Euclidean distance was computed between the ground 

truth point annotation or center of the human localized bounding 
box and the center of the bounding box output by SAM: 

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
dist = (x1 − x2) + (y1 − y2) (2) 
TABLE 1 Summary of datasets considered. 

Dataset Region Habitat Method Classes Prompts Type Evaluation metrics 

AS-AID Antarctic benthic towed array 26 165 points dist. 

Station M CA Current benthic camera trap 1 355 points dist., IoU 

OBSEA Medit. benthic camera trap 11 117 boxes dist., IoU 

FathomNet CA Current midwater ROV 1 60 boxes dist., IoU 
 

Twenty five randomly selected images were drawn from each one and existing human annotations were used to prompt the Segment Anything Model. Since different types of annotations were 
available for each dataset, the output was measured with a suite of evaluation metrics. A qualitative survey of output quality was distributed to a domain expert for each set of images. 
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where the point (x1,y1) represents the ground truth point 
annotation or center of the bounding box. (x2,y2) is the center of 
the bounding box proposed by SAM. The SAM output for each 
dataset was evaluated with dist (Equation 2). 
3 Results 

3.1 AS-AID 

After removing substrate labels, SAM was prompted with 414 
annotated points from 25 randomly selected images in the AS-AID 
dataset and returned bounding boxes and segmentation masks 
(Figures 1a, 2a). The foundation model output was filtered by an 
area threshold of one million pixels to remove localizations that 
were larger than a third of the full frame image, removing 121 
proposals for a return rate of ∼70%. After filtering by region area, 
the average distance between the SAM bounding box proposals 
and the original annotation point was 66.0 pixels (Figure 1b). The 
mean distance is larger than the other datasets considered in 
this work. 
3.2 Station M 

SAM was prompted with 335 ground truth point annotations and 
returned bounding boxes and segmentation masks (Figures 2b, 3). 
The output was thresholded by area to retain region proposals with 
an area of less than one million pixels squared. The threshold was 
chosen based on the size of the original images (2256 x 1504) and set 
to exclude any bounding boxes larger than a third of the entire image 
area. This threshold was chosen empirically by observing the outputs 
and filtering out localizations over a given size. 

After applying the area threshold, SAM returned 284 region 
proposals from 335 original prompts, a return rate of approximately 
85%. SAM typically missed low contrast examples of Benthodocon 
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sp. in the far-field (approximately the upper third of images) and 
sometimes returned localizations that included shadows cast by the 
camera’s strobes (Figure 3a). The average Euclidean distance 
between the original point annotations and the center of the SAM 
bounding boxes proposals was approximately 15 pixels (Figure 3b). 
The average IoU between the human generated bounding boxes and 
the SAM proposals was 0.42 (Figure 3c). 
3.3 OBSEA 

The 25 image subset of the OBSEA dataset contained 117 
bounding box labels. SAM was prompted with the manually 
drawn  boxes  and  returned  both  bounding  boxes  and  
segmentation masks (Figures 2c, 4a). No area threshold was 
applied since SAM did not return any obviously incorrect region 
proposals with an area close to the frame size. The average distance 
between the center of the manually drawn bounding boxes was 6.3 
pixels (Figure 4b). The average IoU between the groundtruth and 
SAM proposals was 0.39 (Figure 4c). The relatively low IoU was a 
function of the rectified groundtruth localizations; aligning the 
boxes to the x-axis rather than the major axis of an individual 
fish clipped off extremities. 
3.4 FathomNet 

The 60 image subset of FathomNet data contained 60 bounding 
box ground truth labels of the inner filter of Bathochordaeus mcnutti. 
SAM returned both bounding boxes and segmentation masks based 
on the manually drawn input localizations (Figures 2d, 5a). Again, 
SAM did not return any obviously incorrect region proposals and did 
not require filtering. The average distance between the centers of the 
region proposals and ground truth bounding boxes was 5.9 pixels 
(Figure 5b). The mean IoU between the proposals and human 
generated boxes was 0.88 (Figure 5c). 
FIGURE 1 

SAM performance on AS-AID image data. The model was prompted with points annotated by grid sampling. For all plots, clearly incorrect region 
proposals have been removed based on the empirical area threshold. (a) SAM region proposals are plotted in orange with the output bounding 
boxes and their respective center points. Green circles are the original point annotations. (b) The distribution of Euclidean distance in pixels between 
the center point of the SAM region proposals and the original point annotations after removing obvious incorrect, large proposals. 
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4 Discussion 

In this paper, we experimented with Meta AI’s Segment  Anything  
Model on four ocean-specific dataset enrichment tasks, testing its 
ability to return localizations from minimal human prompts. While 
the model was not perfect, it often produced reasonable bounding 
box and segmentation proposals from a given point or bounding box 
prompt as compared to localizations created by human experts. SAM 
had several important, dataset-dependent failure modes. When it 
Frontiers in Marine Science 06
struggled, the errors frequently manifested as boxes or masks with 
areas close to that of the full frame image. Such obviously incorrect 
localizations are easy to filter with an empirical area threshold. There 
are, however, patterns to these errors that give clues as to how 
foundation models might be most effectively used for enrichment of 
historic datasets and future annotation assistance. 

The AS-AID imagery was the most challenging for SAM to 
work with. These point annotations were collected from an 
overhead perspective that is not well represented in the SAM 
FIGURE 3 

SAM performance on image data collected at Station M. The SAM model was prompted with point annotations created by human expert annotators. 
For all plots, clearly incorrect region proposals have already been removed based on the empirical area threshold. (a) SAM region proposals are 
plotted in orange with both the output bounding boxes and center points. Green circles are the original point annotations. Blue boxes are the 
ground truth regions made by a human expert for this project. Note that there are instances where the human expert drew boxes where the original 
human annotator did not indicate a jellyfish Benthocodon spp. (b) The distribution of Euclidean distance in pixels between the center point of the 
SAM region proposals and the original point annotations. (c) The distribution of Intersection over Union scores between the human expert’s 
bounding boxes and the SAM proposals. Note that no comparison was made between the new regions identified by the human if there is not a 
corresponding point label. 
FIGURE 2 

SAM segmentation masks on all four datasets. The model was prompted with points or bounding boxes as described in Section 2.2. The output was 
filtered as described in Section 3. In all figures, the green boxes and points represent ground truth annotations while orange outlines are SAM 
segmentation mask proposals. (a) AS-AID. (b) Station-M. (c) OBSEA. (d) FathomNet. 
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training data. Moreover, the habitat represented in AS-AID is 
biological ly  diverse,  including  animals  with  complex  
morphologies imaged over variable substrate. 30% of the prompts 
caused SAM to return erroneous segmentations over the empirical 
size threshold. Organisms that are closely grouped in space were 
often segmented as a single animal. Likewise, since the prompts 
were from a gridded human annotation workflow, the points were 
not always on or near the centroid of the target. The model would 
then sometimes return the negative space formed by a coral branch 
or between the limbs of an echinoderm. The most egregious errors 
are easy to filter out with an area threshold, but many failures are 
difficult to spot with high level metrics and must be corrected by a 
human operator. Given SAM’s performance on the AS-AID data, 
the model might be most effective for annotation enrichment when 
used to target particular organisms like worms, sponges, 
echinoderms, and certain kinds of bryozoans that occur on their 
own rather than in colonies. Further experiments are needed to 
assess SAM’s reliability when prompted manually with points closer 
to the center of each object. 

SAM was able to reliably produce quality proposals from point 
annotations in the fore- and middle-ground of Station M camera trap 
images. The model struggled with small objects far from the camera 
trap and animals with heavy shadows from the strobes. In the first case, 
Frontiers in Marine Science 07 
SAM would missegment and return a localization above the empirical 
area threshold. This seems to be a consistent issue with small, relatively 
low contrast objects – they blend into the background, obscuring edges 
and making segmentation difficult. In these experiments, about 15% of 
all annotations returned incorrect localizations on the scale of the 
entire image. Benthocodon sp. nearer the camera often appeared with 
bold shadows on both sides, an effect of the strobes. Because Station M 
is on sandy substrate, these shadows manifest as dark regions on a light 
background, leading SAM to return horizontally elongated region 
proposals that include the animal and both shadows. The wide region 
proposals drove the lower IoU scores relative to the output from the 
other datasets.  This  type  of  error is not  easy  to  filter by simple 
thresholding and suggests that size estimates from SAM-derived 
proposals might be suspect without further inspection. 

SAM yielded qualitatively excellent results on the OBSEA 
dataset, returning bounding boxes that included the entire animal 
and segmentation masks that adhered tightly to the outline of the 
target fish. The high quality results from SAM are perhaps a 
function of fish-like objects being present in the original training 
set. Indeed, the SAM developers reported high zero-shot results on 
the NDD20 dolphin dataset. SAM occasionally missed heavily 
shadowed portions of targets in the OBSEA data, losing tails and 
fins. These are again subtle errors that are difficult to filter with 
FIGURE 5 

SAM performance on FathomNet imagery of Bathochordaeus mcnutti. The SAM model was prompted with bounding boxes drawn around the inner 
filter by human expert annotators. (a) The SAM region proposal is plotted in orange and the original human annotation is shown in green. The dots 
represent the centers of the bounding boxes. (b) The distribution of Euclidean distance in pixels between the center points of the SAM proposals and 
the ground truth bounding boxes. (c) The distribution of Intersection over Union scores between the human ground truth and SAM region proposals. 
RE 4 FIGU

SAM performance on OBSEA imagery. The SAM model was prompted with bounding boxes created by human expert annotators. (a) SAM region 
proposals are plotted in orange with both the output bounding boxes and center points. Green boxes are the original human annotations and the 
green circles are the box centers. (b) The distribution of Euclidean distance in pixels between the center point of the SAM bounding box proposals 
and the center of the human made bounding boxes. (c) The distribution of Intersection over Union scores computed from the overlap between the 
human ground truth and SAM region proposals. 
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simple thresholds. Fortunately, the errors are rare for the OBSEA 
data and would mostly affect size estimates from the SAM output. 

The model did well with the Bathochordaeus mcnutti data 
drawn from FathomNet. The bounding boxes were typically tight 
with the inner filter and aligned well with the ground truth. 
Segmentation masks likewise were tight to object outline, though 
tended to include the larvacean itself and occasionally cut off small 
edges of the filter. While the morphology of the larvacean is quite 
distinct from the objects used to train SAM, the animal and filter 
present as light pixels on a dark background; SAM functioned as a 
very effective edge detector. These results indicate that a foundation 
model might help annotators quickly create masks and boxes with 
several clicks. The output would be sufficient for training certain 
types of AI models, but perhaps not immediately usable for filter 
volume estimates. 

Across the four datasets, SAM was most successful on images in 
the midwater. The relatively simple, uniform background was easy 
for the model to parse even when the target morphology (like the 
larvacean) was different from most of SAM’s training data. The 
model likewise did well with fish, a concept and morphology it is 
familiar with from its training data. Both of the tested benthic 
environments caused distinct issues for SAM. The complexities of 
the organisms, the variability of the substrate, and distinctive 
overhead angle in AS-AID caused missegmentations in many 
cases. The angle and illumination of the Station-M camera system 
caused shadows and resulted in many far field, small targets that 
resulted in erroneous localizations from SAM. 

While there are many important caveats, SAM’s output in these 
tests is promising. One should not assume it will work out-of-the­
box in all cases, but can anticipate using it to help human 
annotators do their job more efficiently Awais et al. (2025). With 
the right user interface, a user could feed SAM unannotated marine 
image data and prompts to generate region proposals Crosby et al. 
(2023); Zurowietz et al. (2019). The annotator can then accept or 
adjust the proposals to get an accurate bounding box or 
segmentation mask. This workflow will initially be most effective 
in sparse environments, like midwater image data where object 
edges are easier to detect, or when asked to find targets like fish that 
the model is likely already familiar with. Eventually SAM, and other 
foundation models, will be better able to handle data from complex 
marine environments with additional human feedback and marine-

specific annotations Zhao et al. (2025). 
5 Conclusion 

The results on these four very different marine image datasets 
suggests that SAM, and other foundation models, have potential for 
assisting human experts when creating localized annotations. While 
SAM’s zero-shot results are very impressive in this domain case 
study, they are not good enough to be trusted in a fully operational 
manner; human experts should be prepared to check any data 
enrichment outputs and manipulate region proposals generated 
with direct user input. Researchers should exercise caution when 
attempting to apply the system as-is and spend time determining 
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which organisms, deployment strategies, or regions might 
effectively leverage the model’s strengths. 

There is lots of potential  for further studies and calibration of 
foundation model performance for marine applications. We reiterate 
our study is best viewed as preliminary. Larger, more comprehensive 
studies are needed to properly establish efficacy and efficiency, both for 
annotator assistance and full automated deployment. Future work 
might include, for example: evaluating the potential of other available 
foundation models for segmentation; comparing foundation model 
output directly against a bespoke segmentation model trained directly 
on the target data distribution; determining foundation model efficacy in 
noise environments and establishing abilities on old, lower resolution 
marine image data; execute a humancomputer interactions study to 
measure the efficiency gains realized when an expert human works with 
a foundation model to generate new annotations Siriborvornratanakul 
(2024). We note that executing such projects requires access to 
enormous annotated datasets, larger than the ones we used for this 
study. Indeed, the most effective solution may eventually be training of a 
foundation model specifically for marine images Zhao et al. (2025). 

If properly applied, SAM and other foundation models could be 
very effective for enriching previously annotated image datasets like 
we did in this study. Such models could also be helpful in a fully 
interactive manner for new annotations. The output of foundation 
models will certainly improve with fine-tuning after an 
appropriately large number of expert-annotated ocean imagery 
has been collected. Likewise, fully automated models, foundation 
or otherwise, will continue to require expert-annotated, domain-

specific imagery. But existing generic foundation models can 
already help speed marine scientists toward such bespoke models. 
Data availability statement 

The original contributions presented in the study are included 
in the article/Supplementary Material. Further inquiries can be 
directed to the corresponding author. 
Author contributions 

EO: Conceptualization, Data curation, Formal analysis, 
Investigation, Methodology, Software, Visualization, Writing – 
original draft, Writing – review & editing. BW: Methodology, 
Software, Writing – original draft, Writing – review & editing. LL: 
Data curation, Writing – original draft, Writing – review & editing. KB: 
Data curation, Software, Writing – original draft, Writing – review & 
editing. BS: Data curation, Software, Writing – original draft, Writing – 
review & editing. KK: Conceptualization, Funding acquisition, 
Supervision, Writing – original draft, Writing – review & editing. 
Funding 

The author(s) declare that financial support was received for the 
research and/or publication of this article. This work was supported 
by the National Science Foundation Convergence Accelerator Track 
 frontiersin.org 

https://doi.org/10.3389/fmars.2025.1469396
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Orenstein et al. 10.3389/fmars.2025.1469396 
E Phase I and II (ITE-2137977 and ITE-2230776). Additional support 
comes from the Monterey Bay Aquarium Research Institute through 
generous support from the David and Lucile Packard Foundation. 
Acknowledgments 

The authors gratefully acknowledge the Station M team at 
MBARI for providing the annotated benthic camera trap images 
used in this study. 
Conflict of interest 

Author BW was employed by CVision AI. 
The remaining authors declare that the research was conducted 

in the absence of any commercial or financial relationships that 
could be construed as a potential conflict of interest. 
Frontiers in Marine Science 09 
Publisher’s note 

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher. 
Supplementary material 

The Supplementary Material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fmars.2025. 
1469396/full#supplementary-material 
References 
 

 

Althaus, F., Hill, N., Ferrari, R., Edwards, L., Przeslawski, R., Schönberg, C. H., et al. 
(2015). A standardised vocabulary for identifying benthic biota and substrata from 
underwater imagery: the catami classification scheme. PloS One 10, e0141039. 
doi: 10.1371/journal.pone.0141039 

Awais, M., Naseer, M., Khan, S., Anwer, R. M., Cholakkal, H., Shah, M., et al. (2025). 
Foundation models defining a new era in vision: a survey and outlook. IEEE Trans. 
Pattern Anal. Mach. Intell 47, 2245–2264. doi: 10.1109/TPAMI.2024.3506283 

Barnard, K. (2020). VARS-Localize. Available online at: https://github.com/mbari­
org/vars-localize (Accessed July 02, 2023). 

Beery, S., Van Horn, G., and Perona, P. (2018). Recognition in Terra Incognita. In V. 
Ferrari, M. Hebert, C. Sminchisescu and Y. Weiss (Eds.), Computer vision – ECCV 2018 
(Lecture Notes in Computer Science), Vol. 11220, 456–473. Cham: Springer. 
doi: 10.1007/978-3-030-01270-0_28 

Belcher, B. T., Bower, E. H., Burford, B., Celis, M. R., Fahimipour, A. K., Guevara, I. 
L., et al. (2023). Demystifying image-based machine learning: a practical guide to 
automated analysis of field imagery using modern machine learning tools. Front. Mar. 
Sci. 10, 1157370. doi: 10.3389/fmars.2023.1157370 

Bell, K. L. C., Quinzin, M. C., Poulton, S., Hope, A., and Amon, D. (Eds.) (2022). The 
2022 Global Deep-Sea Capacity Assessment. Ocean Discovery League. Saunderstown, 
USA. doi: 10.21428/cbd17b20.48af7fcb 

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., et al 
(2021). On the opportunities and risks of foundation models. Stanford University 
Human-Centered Artificial Intelligence 2108, 07258. doi: 10.48550/arXiv.2108.07258. 
Retrieved from https://crfm.stanford.edu/report.html 

Branson, S., Wah, C., Schroff, F., Babenko, B., Welinder, P., Perona, P., et al. (2010). 
“Visual recognition with humans in the loop,” In K. Daniilidis, P. Maragos and N. 
Paragios (eds) Computer Vision – ECCV 2010. Lecture Notes in Computer Science 
Springer, Berlin, Heidelberg, 6314, 438–451. doi: 10.1007/978-3-642-15561-1_32 

Chen, Q., Beijbom, O., Chan, S., Bouwmeester, J., and Kriegman, D. (2021). “A new 
deep learning engine for coralnet,” in 2021 IEEE/CVF International Conference on 
Computer Vision Workshops (ICCVW). Montreal, BC, Canada, 3686–95. 
doi: 10.1109/ICCVW54120.2021.00412. 

Crosby, A., Orenstein, E. C., Poulton, S. E., Bell, K. L., Woodward, B., Ruhl, H., et al. 
(2023). “Designing ocean vision AI: An investigation of community needs for imaging-
based ocean conservation,” in Proceedings of the 2023 CHI Conference on Human 
Factors in Computing Systems (CHI ’23). New York, NY, USA: Association for 
Computing Machinery, Article 535, 1–16. doi: 10.1145/3544548.3580886. 

Francescangeli, M., Marini, S., Martı ́ ́nez, E., Del Rıo, J., Toma, D. M., Nogueras, M., 
et al. (2023). Image dataset for benchmarking automated fish detection and 
classification algorithms. Sci. Data 10, 5. doi: 10.1038/s41597-022-01906-1 

Froese, R., and Pauly, D. (2000). FishBase 2000: concepts designs and data sources 
Vol. 1594 (WorldFish). ICLARM, Los Banos, Laguna, Philippines. 344 p. 

Hong, J., Fulton, M., and Sattar, J. (2020). Trashcan: A semantically-segmented 
dataset towards visual detection of marine debris. arXiv preprint arXiv:2007.08097. 
doi: 10.48550/arXiv.2007.08097 
Horton, T., Kroh, A., Ahyong, S., Bailly, N., Boyko, C., Brandão, S., et al. (2021). 
(World Register of Marine Species (WoRMS). Available online at: http://www. 
marinespecies.org (Accessed 2021-01-30). 

Hughes, A. J., Mornin, J. D., Biswas, S. K., Beck, L. E., Bauer, D. P., Raj, A., et al. 
(2018). Quanti. us: a tool for rapid, flexible, crowd-based annotation of images. Nat. 
Methods 15, 587–590. doi: 10.1038/s41592-018-0069-0 

Jaffe, J. S. (2014). Underwater optical imaging: the past, the present, and the 
prospects. IEEE J. Oceanic Eng. 40, 683–700. doi: 10.1109/JOE.48 
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