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Automatic detection,
identification and counting
of deep-water snappers on
underwater baited video
using deep learning
Florian Baletaud1,2,3*, Sébastien Villon1, Antoine Gilbert2,
Jean-Marie Côme3, Sylvie Fiat1, Corina Iovan1 and Laurent Vigliola1

1ENTROPIE, Institut de Recherche pour le Développement (IRD), UR, UNC, IFREMER, CNRS, Centre
IRD de Nouméa, Noumea, New Caledonia, 2Soproner, Groupe GINGER, Noumea, New Caledonia,
3Burgeap, Groupe GINGER, Lyon, France
Deep-sea demersal fisheries in the Pacific have strong commercial, cultural, and

recreational value, especially snappers (Lutjanidae) which make the bulk of

catches. Yet, managing these fisheries is challenging due to the scarcity of data.

Stereo-Baited Remote Underwater Video Stations (BRUVS) can provide valuable

quantitative information on fish stocks, but manually processing large amounts of

videos is time-consuming and sometimes unrealistic. To address this issue, we

used a Region-based Convolutional Neural Network (Faster R-CNN), a deep

learning architecture to automatically detect, identify and count deep-water

snappers in BRUVS. Videos were collected in New Caledonia (South Pacific) at

depths ranging from 47 to 552 m. Using a dataset of 12,100 annotations from 11

deep-water snapper species observed in 6,364 images, we obtained good model

performance for the 6 species with sufficient annotations (F-measures >0.7, up to

0.87). The correlation between automatic and manual estimates of fish MaxN

abundance in videos was high (0.72 – 0.9), but the Faster R-CNN showed an

underestimation bias at higher abundances. A semi-automatic protocol where our

model supported manual observers in processing BRUVS footage improved

performance with a correlation of 0.96 with manual counts and a perfect match

(R=1) for some key species. This model can already assist manual observers to

semi-automatically process BRUVS footage and will certainly improve when more

training data will be available to decrease the rate of false negatives. This study

further shows that the use of artificial intelligence in marine science is progressive

but warranted for the future.
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1 Introduction

In order to assess fisheries stock for a target species, it is necessary

to estimate its abundance and biomass spatially and across time, but

also along the species length structure (Gulland, 1983). Such

information may be insufficient or biased when acquired from

landings of data-poor fisheries, thus calling for independent

methods to complement traditional fisheries stock assessments

(Moore et al., 2013). The emergence of video-assisted methods like

BRUVS (Baited Remote Underwater Video Stations) (Whitmarsh

et al., 2017) using low-cost small action cameras may provide such

valuable complementary information (Moore et al., 2013; Letessier

et al., 2015). However, video-based assessments require a

considerable processing time to manually count fish on images,

limiting their broad-scale applications (Sheaves et al., 2020).

Modern automated video analyses using deep learning algorithms

are becoming more accurate (Villon et al., 2018; Marrable et al., 2022;

Bhalla et al., 2024) and may reduce these costly video-processing

constraints (Tseng and Kuo, 2020; Connolly et al., 2021; Lopez-

Marcano et al., 2021). Yet the lack of labelled, species-rich, datasets

for fish classification and identification keeps its automation binding.

Furthermore, the performance of deep learning algorithms on deep

video surveys, including darkness, artificial lightning or generally

variable image conditions and backgrounds, is still poorly known

(Saleh et al., 2024; Jian et al., 2024).

In the Pacific, deep-water demersal fisheries are of high

significance not only for local consumption but also for their

commercial, cultural, and recreational value (Dalzell and Preston,

1992). Their commercial development began in the 1970s to

alleviate fishing pressure on coral reefs but has generally collapsed

in the 1990s (Williams et al., 2012). Over time, these fisheries have

transitioned primarily to subsistence but continued to hold

commercial significance in more developed and isolated regions

like New Caledonia and Hawaii (Newman et al., 2016). While deep

demersal fisheries include around 200 species in the western Pacific

Ocean, the landed species are mainly composed of snappers, a

group in the Lutjanidae family associated to the genera Etelis,

Pristipomoides, Aphareus, and Aprion. Deep-water snappers are

characterized by relatively slow metabolic rates and long lifespans,

making them highly vulnerable to overfishing (Newman et al., 2016;

Wakefield et al., 2020). Usually found at depths starting at 100 m to

500 m and more, these fish aggregate in structured topographies like

steep slopes, seamounts, or any topographic anomaly such as sand

banks or pinnacles (Gomez et al., 2015). Yet, deep-water snapper

fisheries lack core management measures based on stock

assessments which remain challenging to perform in such hardly

accessible marine habitats (Newman et al., 2016).

Baited Remote Underwater Video Stations are among the most

used, standardized video technics to study underwater fish ecology

(Whitmarsh et al., 2017; Langlois et al., 2020). BRUVS can assess

spatial and temporal variation in fish assemblages through visual

identification and quantifying species abundance (Letessier et al.,

2015; Wellington et al., 2018). They are a low-cost method able to

generate large amounts of data (Cappo et al., 2007; Osgood et al.,

2019; MacNeil et al., 2020). BRUVS can be deployed in a variety of

habitats, including coral reefs, but also soft sediments, freshwater,
Frontiers in Marine Science 02
the deep sea, or the pelagic environment (Ellender et al., 2012;

Gladstone et al., 2012; Zintzen et al., 2012; Henderson et al., 2017;

Schmid et al., 2017; Letessier et al., 2019; Reis-Filho et al., 2019).

Their use in environmental monitoring is increasing with more

studies focusing on industrial settings like underwater pipelines

(Bond et al., 2018; Schramm et al., 2020, 2021) or windfarms

(Griffin et al., 2016). BRUVS are also emerging as independent

and complementary methods for fisheries stock assessments

(Cappo et al., 2004; Ault et al., 2018; Boldt et al., 2018). Clearly,

BRUVS show great potential for monitoring deep-sea fisheries.

When manually processing BRUVS footage by identifying,

counting, and measuring fish, the fastest and commonly used

metric is the MaxN (Whitmarsh et al., 2017; Langlois et al.,

2020). MaxN corresponds to the maximum number of

individuals per species that can be counted in a single image per

video. While conservative, this measure prevents from counting the

same individuals twice. It has been shown that getting accurate fish

abundance measures on each image from a video station, or within

short video periods, and averaging these measures along the whole

video may be more representative, but would multiply processing

costs (Schobernd et al., 2014). This cost could effectively be reduced

using deep learning algorithms.

Deep learning and specifically Convolutional Neural Networks

(CNNs) are artificial intelligence algorithms that generate

classification by autonomously identifying features in images

(LeCun et al., 2015). The rapid progress in the automatic

processing of underwater images has already long permeated in

ecology with the accurate detection of several marine species

(Christin et al., 2019; Mannocci et al., 2021; Saleh et al., 2022; Xu

et al., 2023). The ability to detect and identify fish on images in their

natural environment has also been explored, but have mainly

targeted coral reef fish, which can be highly differentiated due to

their diversity of shapes and colors (Mandal et al., 2018; Villon et al.,

2018, 2022; Saleh et al., 2024). The available public images follow

the same trend but are diversifying on shallow habitats, with images

from fish at deeper strata still lacking (Saleh et al., 2024; Bhalla et al.,

2024).To our knowledge, few studies have used deep-water images

with their own singular constraints like variable light levels (Saleh

et al., 2022; Jian et al., 2024 but see Liu et al., 2023), and none for the

deep-water snappers. Given the diversity of habitats and conditions

in which fish can be detected, incorporating more diverse species

and backgrounds is crucial for improving general fish detection and

identification techniques (Saleh et al., 2022; Bhalla et al., 2024; Jian

et al., 2024).

The state-of-the-art of object detection and classification features

three primary algorithms: Single Shot Detection (SSD), Faster

Region-based Convolutional Neural Network (Faster R-CNN), and

You Only Look Once (YOLO) (Bhalla et al., 2024). While YOLO and

SSD have demonstrated notable speed advantages over Faster R-

CNN, the latter has shown superior accuracy in object detection and

classification (Kim et al., 2018; Bose and Kumar, 2020; Kaarmukilan

et al., 2020; Lee and Kim, 2020; Lee et al., 2021; Mahendrakar et al.,

2022; Sarma et al., 2024). This difference is due to the NAS (Neural

Architecture Search) automatically searching and building the most

efficient architecture (Elsken et al., 2018). Furthermore, while some

recent versions of YOLO do outperform older Faster R-CNN
frontiersin.org

https://doi.org/10.3389/fmars.2025.1476616
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Baletaud et al. 10.3389/fmars.2025.1476616
implementations, one of YOLO’s weaknesses is its inability to address

important variation of object sizes like Faster R-CNN can do (Ammar

et al., 2019). Such variation is commonplace in underwater videos,

where individuals can appear either close or very far from the camera.

One of the main advantages of YOLO is its speed in real-time

detection operations where faster R-CNN will take more processing

time. BRUVS are usually deployed and retrieved over a short period

of time, leading to an inevitable separated processing time from

deployment. For this reason, Faster R-CNN seems to represent the

best option for this context as being the most precise although a little

bit slower (Sarma et al., 2024).

Here, we chose the Faster R-CNN architecture and assessed its

ability to automatically detect deep-water snapper species in

BRUVS images from deep slopes and seamounts of a South

Pacific island: New Caledonia. We then discuss constraints and

solutions about how this algorithm may help accelerate video

processing for fisheries stock assessments considering a fully

automatic and semi-automatic approach. To our knowledge, this

study is the first to train an artificial intelligence algorithm for the

detection, identification and counting of deep-water snapper in the

wild on baited videos.

The main contributions of this article are as follows:
Fron
1. To address the problem of high processing costs associated

with manual data extraction on images by experts on

BRUVS footage of commercial species, we propose the

use of artificial intelligence, specifically the Faster R-CNN

deep learning algorithm, to automate the detection,

identification and counting of deep-water snappers

(Lutjanidae family) observed in New Caledonia.

2. To address the choice of deep learning algorithm for non-

specialists, we propose the use of the Faster R-CNN

architecture. It has proven to be effective in processing

varying objects (species) with higher accuracy compared to

other model architectures.

3. To address the problem of too small training dataset, we

propose a semi-automatic method which combines manual

and automatic processes to improve the accuracy of fish

abundance estimates. This semi-automatic process

achieved results much closer to manual count while

reducing the number of images checked by the expert to

the amount of detections by the algorithm.
2 Materials and methods

2.1 Video dataset origin

New Caledonia is a sanctuary and hotspot for marine biodiversity

(Payri et al., 2019). Anthropic pressure is low, with around 271 400

inhabitants over 16,372 km² (isee.nc) disproportionally localized

around its capital, Noumea. The 400 km long main island is

surrounded by a 1,600 km long coral reef barrier and wilderness

atolls, reefs, and small islands scattered across the 1,450,000 km² of

the New-Caledonian Exclusive Economic Zone (EEZ). Mainly
tiers in Marine Science 03
composed of deep sea, 40% of the EEZ surface is a potential

habitat for deep-sea snappers (Gomez et al., 2015). A total of 15

sites were sampled with BRUVS, including 11 seamount summits and

4 deep island slopes, during four oceanographic campaigns

conducted aboard the RV ALIS in 2019 and 2020. Sample depths

varied between 47 and 552 m (Baletaud et al., 2023).

On each seamount or deep slope, five to ten video samples were

collected for a total of 121 deep water BRUVS deployments using

GoPro Hero 4. Cameras were set with a medium field of view in

1920x1080 at 30 frames per second and at 1200 lumens, 120-degree

angle led light (Groupbinc). BRUVS were baited with 1kg of

crushed sardines in a perforated PVC canister and provided 2

hours of usable seafloor footage. Then, videos were manually

processed, and MaxN (maximum abundance per species in a

single frame, Langlois et al., 2020) was estimated for each species

using the EventMeasure (Seagis) software (version 5.42). Eleven

species of deep-water snappers were observed throughout this 121

BRUVS dataset. Snappers were observed at variable abundances on

98 BRUVS and were absent in the remaining 23 video stations. We

then extracted a total of 410 video clips of 15 seconds centered

around each MaxN observation. Overlapping sequences between

different species’ MaxN on each video clip were filtered to avoid

duplicated annotations of identical images. These video clips were

then sliced to two or five frames per second for manual annotation.

The annotation procedure was identical to a previous study (Villon

et al., 2018). Briefly, for each image, the coordinates of the box

enclosing each observed snapper were registered using Computer

Vision Annotation Tool (CVAT) (Sekachev et al., 2020). This

procedure yielded 12,100 individual deep-water snapper

annotations identified at the species level on 6,364 images

extracted from the video sequences. The image dataset was then

split into a training and a testing dataset. Splitting considered

individual BRUVS to avoid images of the same species and

BRUVS in the training and testing dataset, and thus minimize

false negatives (Villon et al., 2020). The training dataset included

80% of annotations (5,031 images, 9,782 annotations), and the

remaining 20% were used in the testing dataset (1,333 images, 2,318

annotations). Species-wise annotations were highly unbalanced as

some species occurred more often than others (Table 1).

Randallichthys filamentosus was represented by only three

annotations, resulting in no image in the testing dataset.

Therefore, the species was only kept in the model training to add

diversity to its training data.
2.2 Deep learning model and
evaluation metrics

CNNs are specific algorithms designed for object detection and

image classification. By initially extracting pixel sets that represent

potential features, CNNs apply filters and weights to generate a

localized sum of pixels throughout the image. Training these

algorithms involves supplying raw images along with manually

annotated features, enabling the recognition of specified objects.

The output generated by the CNN is the list of identified objects and

their respective probability scores.
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We used the Faster Region-Based Convolutional Neural Network

(Faster R-CNN) dedicated to object detection (Ren et al., 2017).

Faster R-CNN has proven to be the best type of architecture to

process objects within a large range of sizes, and to provide higher

accuracies than other models (Ammar et al., 2019; Bose and Kumar,

2020; Kaarmukilan et al., 2020; Lee et al., 2021). For these reasons, the

architecture is particularly suited to applications in the field of marine

biodiversity and is indeed commonly used for fish detection and

classification (Blowers et al., 2020; Chen et al., 2023). The model was

used with a hybrid inception module coupled to a Nas ResNet

configuration (Inception-ResNet V2) with images processed in

1024x1024 format. The architecture was pre-trained on the COCO

(common objects in context) dataset (Lin et al., 2014), and is built as

following: 1) a feature extractor relying on inception (Szegedy et al.,

2015) and residual connections (He et al., 2016) to embed the

image, 2) a region proposal network composed of convolutional

layers predicting the likelihood of object presence (Zhong et al.,

2020), 3) a region of interest pooling layer deleting redundant

bounding boxes, 4) fully connected layers refining the features of

each object and 5) a classification layer with a softmax function which

outputs classification scores for each region proposal. Such two-stage

architecture is particularly efficient to process images with objects of

different sizes, fitting the context of fish detection and classification.

All further details and model architecture can be found on the

TensorFlow 2’s GitHub model directory. The training and testing

data of our BRUVS images annotated with the deep-water snapper

species were converted into the tensorflow file format and supplied to

the architecture. Model training and testing were carried out through

the open-source Tensorflow API in Python 3. The used hardware

contained four parallelized NVIDIA Quadro RTX 8000 cards with

196 GB of CPU memory and 42 GB of GPU memory and operated

on an Ubuntu operating system. The model was run on 200 000

iterations with a batch size of 8.
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The test dataset provided the number of true positives

(a detection of the correct species where it has been manually

annotated), false negatives (no detection in images with manually

annotated species), and false positives (detection in an image where

no individual was present, or the incorrect species detected). From

these parameters, the common assessment metrics used in deep

learning were computed: recall (1), precision (2), and F-measure (3)

(Zhang and Zhang, 2009). Each metric’s value ranges from 0 to 1,

with values closer to 1 indicating better performance.

The recall reveals the algorithm’s essential ability to accurately

detect and identify the desired features. It represents instances

where detections should have taken place in the test dataset but

were missed. It is calculated by dividing the number of true positives

by the sum of true positives and false negatives:

Recall =  
True positives

True positives + False negatives
(1)

Precision indicates the algorithm’s detection error rate,

calculated by dividing the number of true positives by the

combined sum of true positives and false positives:

Precision =  
True positives

True positives + False positives
(2)

The F-measure is a general indicator of the model’s quality and

is equal to the harmonic mean of recall and precision:

F −measure =  2 � Recall � Precision
Recall + Precision

(3)

These evaluation metrics were calculated for each of the eleven

species seen across all frames of the test dataset.
2.3 Automatic and semi-automatic fish
counting on video

In order to evaluate the ability of the algorithm to estimate

MaxN, the number of automatic detections per frame (MaxNAuto)

in the test dataset was compared to the number of manual

annotations (MaxNMan). First, the Pearson correlation coefficient

was used for its simplicity in quantifying the strength and direction

of the linear relationship between MaxNAuto and MaxNMan. A high

correlation (close to 1) will indicate a strong positive linear

relationship between both indices. Then, using a standard linear

regression, the intercept of the linear relationship between

MaxNAuto and MaxNMan was tested against zero. The slope was

also tested against 1 to evaluate whether the algorithm

underestimated or overestimated the number of detections, and

hence fish abundance.

Next, we proposed a semi-automatic approach that combines the

trained algorithm with manual intervention on images containing

detections. This method aimed at evaluating the potential of deep

learning-assisted video processing. All images where the faster R-

CNN detected deep water snappers were reviewed and manually

corrected by an expert biologist. This process eliminated false

positives, leaving only errors due to false negatives. Using this

protocol, we recalculated the model metrics based on the corrected
TABLE 1 Annotation summary for the training and testing datasets per
species used with the R-CNN algorithm.

Species Annotations

Train Test

Pristipomoides filamentosus 5,729 1,303

Pristipomoides flavipinnis 1,724 395

Aphareus rutilans 847 239

Etelis coruscans 508 117

Pristipomoides argyrogrammicus 489 114

Aprion virescens 186 74

Etelis carbunculus 89 13

Pristipomoides multidens 73 13

Parapristipomoides squamimaxillaris 68 38

Pristipomoides zonatus 66 12

Randallichthys filamentosus 3 0

All species 9,782 2,318
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misclassifications. With no more false positives, the precision metrics

consistently reached 1. The semi-automatic MaxN (MaxNSemi) was

then compared to the MaxNAuto using the Pearson correlation and

linear regression against MaxNMan.
3 Results

Faster R-CNN training lasted for four days in order to execute

200,000 iterations on the multi-GPU calculator. Out of the 1,333

testing images comprising 2,318 annotated fish, the trained Faster

R-CNN automatically detected 2,351 fish, out of which 1786 were

true positives (76%) so 565 were false positives.

The F-measure of automatic detections ranged between 0.15 to

0.87, indicating considerable variation in the evaluation measures

per species. Largest values were obtained for Etelis coruscans

(F-measure: 0.87, recall: 0.91, precision: 0.84), closely followed by

Pristipomoides filamentosus (F-measure: 0.79, recall: 0.86, precision:

0.73, Table 2). Pristipomoides multidens, was not detected on any of

the 13 testing observations, hence values of 0 for the recall and

precision. Pristipomoides zonatus was hardly detected in the equally

low testing observations (recall of 0.08 on 12 annotations).

However, the model never classified another deep-water snapper

as this species (precision of 1.0). These two latter species along with

Etelis carbunculus and Parapristipomoides squamimaxillaris, were

those with less than 89 annotations to train the model. Species with

comparatively higher annotation numbers (> 186, Aprion virescens,

up to 5729, P.filamentosus) showed F-measures of at least 0.71

(Pristipomoides flavipinnis). A sample of the testing dataset is

illustrated in Figure 1.

The semi-automatic approach, in which the expert corrected

classification errors, showed an F-measure ranging from 0.15 to 1
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(Table 2). A drastic increase in performance metrics was observed

for species with higher number of annotations (>186), with semi-

automatic F-measures ranging from 0.86 for A. virescens to 1 for E.

coruscans, which showed no more false negatives in the testing

dataset. P. filamentosus, with the highest number of images tested

(1,303), returned an F-value of 0.97 compared to 0.86 without

correction. The largest increase in F value was for A. rutilans and P.

flavipinnis, from 0.66 and 0.65 to 0.86 and 0.89, respectively.

For the analysis of fish abundance on whole BRUVS (MaxN),

we focused on species with F-measures superior or equal to 0.71

(aka with more than 100 annotations, Table 2) as models with lower

F-measures provided poor abundance estimates. High correlation

coefficients were observed between manually and automatically

estimated fish abundance (Figure 2; Table 3). Pearson Correlation

coefficient ranged between 0.72 and 0.90 among species, with the

highest values observed for Etelis coruscans and an overall value of

0.85 when combining data from all species.

The slope coefficient for each and all individual species were

significantly different from zero (p< 0.001). However, while

automatic fish abundances appeared comparable to manual

abundances for up to three to four individuals in the same frame,

the Faster R-CNN model tended to underestimate higher

abundance with slope coefficients significantly smaller than 1 for

all and each species. Slope coefficient ranged nonetheless between

0.65 and 0.88 with highest value found when considering all species

together (Figure 2). Except for P. argyrogrammicus, all intercepts

were significantly different from zero, but with marginal deviation

(range: 0.01 to 0.05 except for P. filamentosus: 0.31).

The semi-automatic protocol yielded fish abundance estimates

much closer to manual counts, with a Pearson correlation

coefficient of 0.96 for all species combined (Figure 2; Table 3).

Correlations ranged from 0.86 to 1 depending on the species.
TABLE 2 Evaluation metrics (recall, precision and F-measure) generated from the testing dataset for 10 deep-water snapper species on the trained
Faster R-CNN (automatic) and the corrected detections from the Faster R-CNN (semi-automatic).

Annotations Automatic Semi-automatic

Species Train Test Recall Precision F-measure Recall Precision F-measure

Etelis coruscans 508 117 0.91 0.84 0.87 1 1 1

Pristipomoides filamentosus 5,729 1,303 0.86 0.73 0.79 0.95 1 0.97

Aprion virescens 186 74 0.76 0.76 0.76 0.76 1 0.86

Pristipomoides
argyrogrammicus

489 114 0.70 0.95 0.81
0.75 1 0.86

Aphareus rutilans 847 239 0.66 0.82 0.73 0.80 1 0.89

Pristipomoides flavipinnis 1,724 395 0.65 0.78 0.71 0.75 1 0.86

Etelis carbunculus 89 13 0.15 0.22 0.18 0.15 1 0.27

Parapristipomoides
squamimaxillaris

66 12 0.11 1.00 0.19
0.11 1 0.19

Pristipomoides zonatus 68 38 0.08 1.00 0.15 0.08 1 0.15

Pristipomoides multidens 73 13 0 0 NA 0 0 NA
Species are ordered by the Automatic Recall.
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E. coruscans showed a perfect fit (slope = 1, intercept = 0) with semi-

automatic MaxN identical to manual MaxN. The slope between

MaxNMan and MaxNSemi was not significantly different from one

for P. filamentosus, revealing extremely good semi-automatic

model performance.
Frontiers in Marine Science 06
4 Discussion

The use of the Faster R-CNN algorithm to automatically detect,

identify and count deep-water snappers proved successful and

highly promising considering the challenge this group of fish
FIGURE 1

Examples of correct (A–D) and incorrect (E–H) detections on the test dataset. (A) Six correct detections of Pristipomoides filamentosus, (B) correct
detection of Aphareus rutilans and P.filamentosus while correctly leaving two emperors Lethrinus miniatus and a grouper Epinephelus maculatus. (C)
Correct detection of Etelis coruscans. (D) Correct detection of three A. rutilans and a single Pristipomoides flavipinnis. (E) Correct detection of the
single P.filamentosus with incorrect detection of an emperor (Gymnocranius euanus) as P. filamentosus and a surgeonfish (Naso hexacanthus) as
Aprion virescens. (F) Incorrect classification of a. rutilans and an emperor (L. miniatus) as P.filamentosus. (G) Incorrect classification of A. rutilans and
a grouper (Epinephelus chlorostigma) as P. filamentosus, (H) incorrect classification of two P. flavipinnis as P.filamentosus and a grouper (Variola
louti) as Etelis carbunculus.
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presents and the variable background habitat. The algorithm

effectively differentiated between species that were very similar

and hard to distinguish, even for an experienced taxonomist.

While the detection and identification will probably need post-

verification until enough annotations are gathered to achieve

automatic F-measures above 0.9 for all species, the abundance

estimations were still consistent with manual counts. This

procedure can already be employed for automatic deep-sea

snapper monitoring, or semi-automatic monitoring, where

observers would save substantial processing time by simply

verifying and adjusting detections rather than processing entire

BRUVS videos.

It is crucial for fisheries stock management to be able to work on

the species level. This deep-water snappers’ dataset represents a fine

addition to the collection with varying habitat constraints such as

presence or absence of natural light and hard and soft substrates.

Especially, this species group is challenging due to the similar

appearance of its members. Deep-water snappers are mostly

“greyish”, “fish-looking” species, posing a challenge in

identification, particularly for P. filamentosus and P. flavipinnis
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which share almost identical characteristics (Figure 3). E. coruscans

stands out with its reddish color and long elongated tail tips,

allowing the algorithm to distinguish it from other species, and

lead to the highest recall, precision, and F-measure metrics.

Furthermore, the semi-automatic treatment of E. coruscans

yielded individual detections and abundance values that matched

the manual estimates perfectly. This is highly encouraging,

considering E. coruscans is a highly targeted species of this fishery

(Newman et al., 2016). P. filamentosus had the highest number of

annotations and images, which likely explains its high identification

success rate. The bigger the training database per feature, the better

the identification for the Faster R-CNN algorithm, which typically

requires at least 1,300 training images per feature to achieve over

95% certainty in fish identification (Villon et al., 2018). In our study,

only two out of the 11 species studied (P. filamentosus and

P. flavipinnis) met this training size requirement.

While the human observer may browse through the video

sequence to observe color, behavior, movements, and other clues

to identify species and count individuals, the algorithm is restricted

to each single image to decide. That the algorithm was able to
FIGURE 2

Comparison of manual (MaxNMan), automatic (MaxNAuto) and semi-automatic (MaxNSemi) fish abundance on baited remote underwater video stations
(BRUVS) using the R-CNN trained on the deep-water snapper species. Only species with more than 100 annotations were considered relevant for
this analysis. Point size is proportional to the number of detections against annotated fish. Automatic and semi-automatic linear fits are also shown
with a dotted reference line of slope 1 and intercept 0.
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effectively differentiate between snapper species with so little

information at hand is therefore very encouraging. However,

errors have still been observed with many false positives caused

by rarer species (e.g., A. rutilans) being confused with the most

common ones (P. filamentosus, Figure 1). This type of confusion

was easily corrected by the intervention of an expert during the
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semi-automatic counting protocol as the fish still got detected. The

expert fully corrected each false positive, and the precision became

equal to one. Additionally, semi-automatic recall also increased

compared to its value with the automatic protocol. This is because

some fish were not detected in frames where other individuals were

detected. Since the expert corrected the entire frames, undetected
TABLE 3 R squared (R²), Pearson correlation coefficient (correlation), test of intercept against zero (intercept), test of slope against zero (slope) and
test of slope against one (slope = 1 p-value) for automatic (MaxNAuto) and semi-automatic (MaxNsemi) counts.

Species Method R² Correlation Intercept Slope
Slope = 1
p-value

All species
Automatic 0.73 0.85*** 0.05*** 0.88*** ***

Semi-auto 0.93 0.96*** -0.02*** 0.94*** ***

Etelis coruscans
Automatic 0.81 0.90*** 0.02*** 0.87*** ***

Semi-auto 1 1 0NS 1.00*** NS

Pristipomoides filamentosus
Automatic 0.70 0.84*** 0.31*** 0.86*** ***

Semi-auto 0.96 0.98*** -0.05*** 0.99*** NS

Aprion virescens
Automatic 0.56 0.75*** 0.01* 0.80*** ***

Semi-auto 0.75 0.86*** 0NS 0.76*** ***

Pristipomoides argyrogrammicus
Automatic 0.71 0.84*** 0.0005NS 0.73*** ***

Semi-auto 0.79 0.89*** -0.004NS 0.80*** ***

Aphareus rutilans
Automatic 0.64 0.80*** 0.03*** 0.66*** ***

Semi-auto 0.84 0.91*** -0.01NS 0.85*** ***

Pristipomoides flavipinnis
Automatic 0.52 0.72*** 0.05*** 0.65*** ***

Semi-auto 0.76 0.87*** -0.02* 0.81*** ***
Significant p-values are represented as follow: “***”:<0.001, “*”:<0.05, “N.S”: Non-significant. P-values for E.coruscans’ semi-automatic coefficients are not showed as it was the identical fit as
manual counts.
FIGURE 3

Correct automatic detection of closely related and similar-looking deep-water species Pristipomoides filamentosus (yellow) and P. flavipinnis
(purple). The expert would be interested by the accentuated yellow eye color and recognize the slight vertical band pattern presented only by
P.flavipinnis. Other frames before and after this image would have been required by the expert to confirm the identification.
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individuals were also annotated, thereby reducing the number of

false negatives and increasing recall. For example, the recall of A.

rutilans increased from 0.66 to 0.80, indicating that this species was

present in many frames with other detected species. However, the

recall of A. virescens remained the same, indicating that no further

detections of this species occurred on frames where other snappers

were detected by the algorithm. The confusion problem between

species could be partly due to the disparity in available images

between similar species, with those with fewer images being

misclassified more often than those with more images. While a

semi-automatic protocol can partly address the issue, an alternative

solution might involve adding temporal information through

motion analysis or a tracking algorithm that would isolate the

background or follow the same individuals, thereby adding

detection and identification information from previous frames to

subsequent ones (Shin, 2016; Jalal et al., 2020). The other major

constraint highlighted in this study is the underestimation bias at

higher abundances. We observed that frames involving many fish

can become easily saturated (notably P. filamentosus, cf. Figure 1A)

with few individuals blocking the camera’s field of view. This bias in

the algorithm seems rather inevitable due to its dependance to the

technical video sampling system with a single sensor and angle of

view. The MaxN abundance index based on the maximum number

of fish present in the same frame is known to be sensitive to the

phenomenon of image saturation (MacNeil et al., 2020). It is also

reported in another study working on a different species of snapper

in a different configuration (daylight reef) (Connolly et al., 2021).

Our semi-automatic protocol could correct this bias for the two

species that presented the highest MaxN, E. coruscans and P.

filamentosus, yielding F-measure > 0.96 after correction by an

expert taxonomist. The tracking of individuals across successive

frames might also permit a better differentiation of individuals

saturating images, hence reducing or removing the bias in MaxN at

high abundance, as the expert usually also does.

We are confident that our trained Faster R-CNN algorithm is

already operational for fisheries assessment using our semi-

automatic detection procedure. The whole process using BRUVS

to assess fish abundance is nondestructive, independent from

fisheries data and may today become cost-effective with the

support of artificial intelligence. Our model, as it is, can provide a

matrix of detections per species for each frame of the video stations.

The frames with the greatest number of detections per species can

then be identified and used as references to define video intervals of

a few seconds including the MaxN of the different species. These

short video sequences could then be processed by biologists using

programs like EventMeasure, reducing hours of video processing to

minutes. Furthermore, the manual processing of the short video

sequences would be limited to simply correcting algorithmic

detections, which would further speed up the process.

Additionally, new annotations should be used to retrain the

algorithm and further improve its performance. If stereo cameras

are used, then fish size could be measured in addition to abundance.

Although size-measurements are performed manually so far using

programs like EventMeasure (Letessier et al., 2015), algorithms exist

to automatically measure object dimensions on videos like with
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instance segmentation (Othman et al., 2018; Garcia-d’Urso et al.,

2022). Their ongoing development represents the next stage and

their application on BRUVS and fisheries management

is warranted.

Some caveats can still be discussed for further improvement.

The uneven distribution of training images among species calls for

an increased sampling to complete the dataset and improve

identification accuracy (Villon et al., 2018). Our current

algorithm may still drastically reduce annotation times for rarer

species as they are detected but mostly confused with more

occurring species. However, rarity is a key characteristic of

biodiversity, and a large number of annotations can remain

difficult to gather for the rarest species (Villon et al., 2022). In

this case, methods like the few shots deep learning algorithm could

be coupled with the Faster R-CNN to compensate for the lack of

annotations (Villon et al., 2021). A coupling with other BRUVS

datasets from other regions may also improve the algorithm

performances but may then face issues related to changes in

environmental conditions across regions (Kalogeiton et al., 2016).

However, while our study relied on a dataset restricted to New

Caledonia, the sampling occurred across the spatially immense EEZ

and across depth ranging from shallow photic seamounts (50-60

meters deep) to deep aphotic seamounts and continental deep

slopes (150-500 meters deep), exploring diverse environmental

backgrounds and light intensities (Baletaud et al., 2023).

While this case study involved a particularly constraining group

of species (looking-alike deep-water snappers), in variable

background conditions of light and habitats, it further shows that

the Faster R-CNN is a worthy algorithm architecture that may be

used in many use-case scenarios involving fish species detection.

The methodology is applicable to any visually identifiable fish

species provided sufficient training images for the model, as is the

main constraint for any deep learning development (Ahmad et al.,

2023). New CNN architectures are released more and more

frequently, improving classification speed and accuracy, and their

review using this new dataset will prove interesting although not in

the scope of this study. The potential for deep learning to improve

the day-to-day work of marine scientists in monitoring fisheries

seems certified for the future (Zhang et al., 2021). The transition is

progressive, and a semi-automatic approach may be yet closer to

being adopted by operational monitoring organizations or

consultancy firms using this work.
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Guillo, A., Azorin-Lopez, J., et al. (2022). The DeepFish computer vision dataset for fish
frontiersin.org

https://doi.org/10.32604/csse.2023.031008
https://doi.org/10.3390/electronics10070820
https://doi.org/10.3390/electronics10070820
https://doi.org/10.1016/j.fishres.2018.08.012
https://doi.org/10.3390/biology12111446
https://doi.org/10.1007/s11042-024-19782-9
https://doi.org/10.1007/s11042-024-19782-9
https://doi.org/10.7489/12333-1
https://doi.org/10.7489/12333-1
https://doi.org/10.1016/j.fishres.2017.10.013
https://doi.org/10.1371/journal.pone.0207703
https://doi.org/10.1049/iet-ipr.2019.0985
https://doi.org/10.3354/meps07189
https://doi.org/10.1016/j.jembe.2003.10.006
https://doi.org/10.21203/rs.3.rs-2825927/v1
https://doi.org/10.1111/2041-210X.13256
https://doi.org/10.3389/fmars.2021.658135
https://doi.org/10.3389/fmars.2021.658135
https://doi.org/10.1002/aqc.1236
https://doi.org/10.48550/arXiv.1808.05377
https://doi.org/10.3389/fmars.2025.1476616
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Baletaud et al. 10.3389/fmars.2025.1476616
instance segmentation, classification, and size estimation. Sci. Data 9, 287. doi: 10.1038/
s41597-022-01416-0

Gladstone, W., Lindfield, S., Coleman, M., and Kelaher, B. (2012). Optimization of
baited remote underwater video sampling designs for estuarine fish assemblages. J. Exp.
Mar. Biol. Ecol. 429, 28–35. doi: 10.1016/j.jembe.2012.06.013

Gomez, C., Williams, A. J., Nicol, S. J., Mellin, C., Loeun, K. L., and Bradshaw, C. J. A.
(2015). Species distribution models of tropical deep-sea snappers. PloS One 10, 1–17.
doi: 10.1371/journal.pone.0127395

Griffin, R. A., Robinson, G. J., West, A., Gloyne-Phillips, I. T., and Unsworth, R. K. F.
(2016). Assessing fish and motile fauna around offshore windfarms using stereo baited
video. PloS One 11, 1–15. doi: 10.1371/journal.pone.0149701

Gulland, J. A. (1983). Fish stock assessment: a manual of basic methods (Chichester:
Wiley).

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, (Las Vegas: CVPR), 770–778. Available at: http://image-net.org/challenges/
LSVRC/2015/.

Henderson, C., Olds, A., Lee, S., Gilby, B., Maxwell, P., Connolly, R., et al. (2017).
Marine reserves and seascape context shape fish assemblages in seagrass ecosystems.
Mar. Ecol. Prog. Ser. 566, 135–144. doi: 10.3354/meps12048

Jalal, A., Salman, A., Mian, A., Shortis, M., and Shafait, F. (2020). Fish detection and
species classification in underwater environments using deep learning with temporal
information. Ecol. Inform 57, 101088. doi: 10.1016/j.ecoinf.2020.101088

Jian, M., Yang, N., Tao, C., Zhi, H., and Luo, H. (2024). Underwater object detection and
datasets: a survey. Intelligent Mar. Technol. Syst. 2, 9. doi: 10.1007/s44295-024-00023-6

Kaarmukilan, S. P., Poddar, S., and Thomas, A. K. (2020). “FPGA based Deep
Learning Models for Object Detection and Recognition Comparison of Object
Detection: Comparison of object detection models using FPGA,” in 2020 Fourth
International Conference on Computing Methodologies and Communication
(ICCMC) (Erode, India: IEEE), 471–474. doi: 10.1109/ICCMC48092.2020.ICCMC-
00088

Kalogeiton, V., Ferrari, V., and Schmid, C. (2016). Analyzing domain shift factors
between videos and images for object detection. IEEE Trans. Pattern Anal. Mach. Intell.
38, 2327–2334. doi: 10.1109/TPAMI.2016.2551239

Kim, C. E., Dar Oghaz, M. M., Fajtl, J., Argyriou, V., and Remagnino, P. (2018). “A
comparison of embedded deep learning methods for person detection,” in VISIGRAPP
2019 - Proceedings of the 14th International Joint Conference on Computer Vision,
Imaging and Computer Graphics Theory and Applications, vol. 5. , 459–465.
doi: 10.5220/0007386304590465

Langlois, T., Goetze, J., Bond, T., Monk, J., Abesamis, R. A., Asher, J., et al. (2020). A field
and video annotation guide for baited remote underwater stereo-video surveys of demersal
fish assemblages. Methods Ecol. Evol. 11, 1401–1409. doi: 10.1111/2041-210X.13470

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521, 436–444.
doi: 10.1038/nature14539

Lee, Y.-H., and Kim, Y. (2020). Comparison of CNN and YOLO for object detection.
J. Semiconductor Display Technol. 19, 85–92.

Lee, J., Wang, P., Xu, R., Dasari, V., Weston, N., Li, Y., et al. (2021). “Benchmarking
video object detection systems on embedded devices under resource contention,” in
Proceedings of the 5th International Workshop on Embedded and Mobile Deep Learning
(ACM, New York, NY, USA), 19–24. doi: 10.1145/3469116.3470010

Letessier, T. B., Juhel, J. B., Vigliola, L., and Meeuwig, J. J. (2015). Low-cost small
action cameras in stereo generates accurate underwater measurements of fish. J. Exp.
Mar. Biol. Ecol. 466, 120–126. doi: 10.1016/j.jembe.2015.02.013

Letessier, T. B., Mouillot, D., Bouchet, P. J., Vigliola, L., Fernandes, M. C., Thompson,
C., et al. (2019). Remote reefs and seamounts are the last refuges for marine predators
across the Indo-Pacific. PloS Biol. 17, e3000366. doi: 10.1371/journal.pbio.3000366

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., et al. (2014).
“Microsoft COCO: Common Objects in Context,” (Cham: Springer) 740–755.
doi: 10.1007/978-3-319-10602-1_48

Liu, M., Jiang, W., Hou, M., Qi, Z., Li, R., and Zhang, C. (2023). A deep learning
approach for object detection of rockfish in challenging underwater environments.
Front. Mar. Sci. 10. doi: 10.3389/fmars.2023.1242041

Lopez-Marcano, S., Brown, C. J., Sievers, M., and Connolly, R. M. (2021). The slow
rise of technology: Computer vision techniques in fish population connectivity. Aquat
Conserv. 31, 210–217. doi: 10.1002/aqc.3432

MacNeil, M. A., Chapman, D. D., Heupel, M., Simpfendorfer, C. A., Heithaus, M.,
Meekan, M., et al. (2020). Global status and conservation potential of reef sharks.
Nature 583, 801–806. doi: 10.1038/s41586-020-2519-y

Mahendrakar, T., Ekblad, A., Fischer, N., White, R., Wilde, M., Kish, B., et al. (2022).
“Performance study of YOLOv5 and faster R-CNN for autonomous navigation around
non-cooperative targets,” in 2022 IEEE Aerospace Conference (AERO) (Big Sky, MT,
USA: IEEE), 1–12. doi: 10.1109/AERO53065.2022.9843537

Mandal, R., Connolly, R. M., Schlacher, T. A., and Stantic, B. (2018). “Assessing fish
abundance from underwater video using deep neural networks,” in 2018 International
Joint Conference on Neural Networks (IJCNN) (Rio de Janeiro, Brazil: IEEE), 1–6.
doi: 10.1109/IJCNN.2018.8489482
Frontiers in Marine Science 11
Mannocci, L., Villon, S., Chaumont, M., Guellati, N., Mouquet, N., Iovan, C., et al.
(2021). Leveraging social media and deep learning to detect rare megafauna in video
surveys. Conserv. Biol. 36, 1–11. doi: 10.1111/cobi.13798

Marrable, D., Barker, K., Tippaya, S., Wyatt, M., Bainbridge, S., Stowar, M., et al.
(2022). Accelerating species recognition and labelling of fish from underwater video
with machine-assisted deep learning. Front. Mar. Sci. 9. doi: 10.3389/
fmars.2022.944582

Moore, C. H., Drazen, J. C., Kelley, C. D., and Misa, W. F. X. E. (2013). Deepwater
marine protected areas of the main Hawaiian Islands: Establishing baselines for
commercially valuable bottom fish populations. Mar. Ecol. Prog. Ser. 476, 167–183.
doi: 10.3354/meps10132

Newman, S. J., Williams, A. J., Wakefield, C. B., Nicol, S. J., Taylor, B. M., and
O’Malley, J. M. (2016). Review of the life history characteristics, ecology and fisheries
for deep-water tropical demersal fish in the Indo-Pacific region. Rev. Fish Biol. Fish 26,
537–562. doi: 10.1007/s11160-016-9442-1

Osgood, G. J., McCord, M. E., and Baum, J. K. (2019). Using baited remote
underwater videos (BRUVs) to characterize chondrichthyan communities in a global
biodiversity hotspot. PloS One 14, e0225859. doi: 10.1371/journal.pone.0225859

Othman, N. A., Salur, M. U., Karakose, M., and Aydin, I. (2018). “An embedded real-
time object detection and measurement of its size,” in 2018 International Conference on
Artificial Intelligence and Data Processing (IDAP) (Malatya, Turkey: IEEE), 1–4.
doi: 10.1109/IDAP.2018.8620812

Payri, C. E., Allain, V., Aucan, J., David, C., David, V., Dutheil, C., et al. (2019). “New
Caledonia,” in World Seas: An Environmental Evaluation (Elsevier), 593–618.

Reis-Filho, J. A., Schmid, K., Harvey, E. S., and Giarrizzo, T. (2019). Coastal fish
assemblages reflect marine habitat connectivity and ontogenetic shifts in an estuary-
bay-continental shelf gradient. Mar. Environ. Res. 148, 57–66. doi: 10.1016/
j.marenvres.2019.05.004

Ren, S., He, K., Girshick, R., and Sun, J. (2017). “Faster R-CNN: Towards real-time
object detection with region proposal networks,” in IEEE Trans Pattern Anal Mach
Intell. 39, 1137–1149. doi: 10.1109/TPAMI.2016.2577031

Saleh, A., Sheaves, M., Jerry, D., and Azghadi, M. R. (2024). Applications of Deep
Learning in Fish Habitat Monitoring: A Tutorial and Survey. Available online at: http://
arxiv.org/abs/2206.05394.

Saleh, A., Sheaves, M., and Rahimi Azghadi, M. (2022). Computer vision and deep
learning for fish classification in underwater habitats: A survey. Fish Fisheries 23, 977–
999. doi: 10.1111/faf.12666

Sarma, K. S. R. K., Sasikala, C., Surendra, K., Erukala, S., and Aruna, S. L. (2024). A
comparative study on faster R-CNN, YOLO and SSD object detection algorithms on
HIDS system, in AIP Conference Proceedings, 060044. doi: 10.1063/5.0195857.

Schmid, K., Reis-Filho, J. A., Harvey, E., and Giarrizzo, T. (2017). Baited remote
underwater video as a promising nondestructive tool to assess fish assemblages in
clearwater Amazonian rivers: testing the effect of bait and habitat type. Hydrobiologia
784, 93–109. doi: 10.1007/s10750-016-2860-1

Schobernd, Z. H., Bacheler, N. M., and Conn, P. B. (2014). Examining the utility of
alternative video monitoring metrics for indexing reef fish abundance. Can. J. Fisheries
Aquat. Sci. 71, 464–471. doi: 10.1139/cjfas-2013-0086

Schramm, K. D., Marnane, M. J., Elsdon, T. S., Jones, C., Saunders, B. J., Goetze, J. S.,
et al. (2020). A comparison of stereo-BRUVs and stereo-ROV techniques for sampling
shallow water fish communities on and off pipelines. Mar. Environ. Res. 162, 105198.
doi: 10.1016/j.marenvres.2020.105198

Schramm, K. D., Marnane, M. J., Elsdon, T. S., Jones, C. M., Saunders, B. J., Newman,
S. J., et al. (2021). Fish associations with shallow water subsea pipelines compared to
surrounding reef and soft sediment habitats. Sci. Rep. 11, 1–15. doi: 10.1038/s41598-
021-85396-y

Sekachev, B., Manovich, N., Zhiltsov, M., Zhavoronkov, A., Kalinin, D., Hoff, B., et al.
(2020). doi: 10.5281/zenodo.4009388

Sheaves, M., Bradley, M., Herrera, C., Mattone, C., Lennard, C., Sheaves, J., et al.
(2020). Optimizing video sampling for juvenile fish surveys: Using deep learning and
evaluation of assumptions to produce critical fisheries parameters. Fish Fisheries 21,
1259–1276. doi: 10.1111/faf.12501

Shin, K. J. (2016). Robot fish tracking control using an optical flow object-detecting
algorithm. IEIE Trans. Smart Process. Computing 5, 375–382. doi: 10.5573/
IEIESPC.2016.5.6.375

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al. (2015). “Going
deeper with convolutions,” in Proceedings of the IEEE conference on computer vision
and pattern recognition. (Boston: CVPR), 1–9.

Tseng, C.-H., and Kuo, Y.-F. (2020). Detecting and counting harvested fish and
identifying fish types in electronic monitoring system videos using deep convolutional
neural networks. ICES J. Mar. Sci. 77, 1367–1378. doi: 10.1093/icesjms/fsaa076

Villon, S., Iovan, C., Mangeas, M., Claverie, T., Mouillot, D., Villéger, S., et al. (2021).
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