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Background: Traditional water indices often misclassify shadows as water,

especially in polar regions. This study aims to improve water extraction

accuracy by analyzing the spectral characteristics of water and shadows.

Methods: A statistical analysis of the reflectance curves between red and green

bands was conducted using Landsat 8 and Sentinel-2 imagery. Based on the

steepness of decline in reflectance, a new water index, WI2023, was proposed.

The index was validated using 10 Landsat 8 and 10 Sentinel-2 images from the

Amery Ice Shelf.

Results: The WI2023 index showed significantly improved discrimination

between meltwater and shadows. Compared to NDWI and other indices,

WI2023 achieved the highest accuracy when benchmarked against high-

resolution Sentinel-2 data (extraction accuracy of 95.02%).

Conclusion: The WI2023 index provides a robust approach for meltwater

extraction in polar environments, particularly in low-latitude and low-altitude

areas. It offers potential improvements in polar hydrological studies and remote

sensing applications.
KEYWORDS

Amery Ice Shelf, surface meltwater, Landsat8, shadow, NDWI
1 Introduction

The Antarctic ice sheet and the Greenland ice sheet together account for approximately

96.6% of the total global ice sheet, but they are experiencing increasingly severe ice mass

losses (Yang et al., 2023; Rignot et al., 2019; Mouginot et al., 2019). Among them, the

Antarctic ice sheet is the largest land ice sheet, and its ice reserves account for about 90% of

the global glaciers and 70% of the global freshwater resources, and the small changes in its
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2025.1476785/full
https://www.frontiersin.org/articles/10.3389/fmars.2025.1476785/full
https://www.frontiersin.org/articles/10.3389/fmars.2025.1476785/full
https://www.frontiersin.org/articles/10.3389/fmars.2025.1476785/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2025.1476785&domain=pdf&date_stamp=2025-05-30
mailto:2022930956@stu.haut.edu.cn
https://doi.org/10.3389/fmars.2025.1476785
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2025.1476785
https://www.frontiersin.org/journals/marine-science


Zhou et al. 10.3389/fmars.2025.1476785
mass balance have a significant impact on the changes in global sea

level and climate change (Ding, 2013). The ablation of the Antarctic

ice sheet surface will affect the mass balance of the ice sheet (Abram

et al., 2020). Specifically, the meltwater formed by the melting of the

ice sheet surface mainly affects the mass balance of the ice sheet

through the following three pathways (Bell et al., 2018, 2017),

Meltwater gathers and flows directly out from the edge of the ice

sheet (Zhao et al., 2022). After the meltwater flows into the ice

crevasses, the expansion of the crevasses will be further intensified.

With the passage of time, the continuous expansion of the crevasses

and the continuous weakening of the ice shelf may lead to the large-

scale collapse of the ice shelf (Bett, 2021); After the meltwater

penetrates into the inside of the ice sheet, it will cause the ablation of

the inside of the ice sheet and promote the formation of internal

channels of the ice sheet. When the meltwater reaches the bottom of

the ice sheet, it will reduce the friction resistance between the

bottom of the ice sheet and the base, leading to the sliding of the

bottom of the ice sheet (Van Den Broeke et al., 2004). In addition,

some meltwater on the ice surface, under the influence of

topography and its own drainage system, forms hydrological

features such as supraglacial lakes and rivers (Yang et al., 2015).

This meltwater freezes when the temperature decreases and then

melts again when the temperature rises, creating a cycle of “melting-

freezing-melting” (Kashiwase et al., 2020; Munneke et al., 2018).

The formation and change of these hydrological characteristics are

the main manifestation of ice sheet surface ablation and an

important indicator of ice sheet response to climate change (Yin

et al., 2015; Li et al., 2020). Therefore, extracting ice sheet surface

meltwater extent and monitoring the dynamic changes of ice lakes

are of great significance in studying the polar environment and

material changes (Li et al., 2023).

Due to the unique geographical location and environment of

the polar regions, satellite remote sensing technology has become an

important means of extracting polar meltwater. At present,

researchers have done many studies on the extraction method of

meltwater information based on remote sensing images and have

achieved better results. Stokes et al. (2019) successfully generated a

high-resolution dataset by combining Landsat 8 and Sentinel-1 data

and extracted surface lakes and subglacial lakes on the Greenland

ice sheet. This method significantly improves the monitoring of

polar meltwater. Similarly, Kingslake et al. (2017) explored the

movement of meltwater on the ice surface by analyzing the

Greenland and Antarctic ice shelves, addressing the long-standing

issue of ice flow. Other studies, such as Lenaerts et al. (2017), have

found that wind plays an important role in accelerating the melting

of exposed blue ice and snow-covered areas, further revealing the

impact of changes in ice surface reflectance on meltwater.

Williamson et al. (2017) proposed a method for monitoring

changes in ice sheet lake surface area and volume with MODIS

imagery and validated it on the West Greenland ice sheet.

Meanwhile, Halberstadt et al. (2020) developed a trained

supervised classifier that combines K-means clustering results to

quantify ice lake areas, which helps to more accurately map and

analyze lake areas. Miles et al. (2017) proposed a semi-automatic

algorithm similar to Stokes et al. (2019), which combined Landsat 8
Frontiers in Marine Science 02
and Sentinel-1 data to further improve the accuracy of lake

extraction from the Greenland ice sheet. Niu et al. (2021)

improved the accuracy of meltwater extraction, particularly in the

case of the Amery Ice Shelf, by combining U-Net network with an

attention mechanism. Tuckett et al. (2021) solved the problem of

limited visibility in optical satellite images on the Antarctic ice

sheet, proposed a method for calculating the visibility index, and

further improved the meltwater extraction algorithm. Moreover,

Dirscherl et al. (2003) used machine learning algorithms trained on

Sentinel-2 and auxiliary TanDEM-X terrain data to extract surface

meltwater in polar regions, driving advances in polar monitoring

technology. In terms of utilizing spectral features, McFeeters (1996)

proposed the Normalized Difference Water Index (NDWI) based

on the Normalized Vegetation Index (NDVI), which provides a new

approach for extracting meltwater. Meanwhile, research based on

NDWI, Yang (2013) proposed the NDWIice, which improved the

ability to distinguish between meltwater and melting ice, while Qu

et al. (2020) effectively extracted seasonal melting information in

the Dalk Glacier through the modified normalized difference water

index ice (MNDWIice). Among the above methods, the water index

method is widely used for water body information extraction in

remote sensing images because of its simple form, easy calculation

and use, and it shows good water body extraction effect in different

environments, but they are unable to effectively suppress shadows,

and the shadows are often mis-extracted as water bodies. WI2023 is

normalized by the reflectance difference between the green and red

bands, combined with the wavelength difference, and enhances the

ability to distinguish between shadows and meltwater.

In order to improve the extraction accuracy of water bodies, this

paper proposed a novel water index that can effectively suppress

shadows based on Landsat8 optical remote sensing images. Firstly, we

analyse the application environment of the traditional water index

and the reason why it is easy to mistakenly extract shadows as water

bodies. Secondly, we analyse the high-resolution remote sensing

images under a glacier environment, explore the spectral

characteristics of ice surface water bodies and shadows under the

glacier environment by collecting typical feature samples, and

combine the concept of slope in mathematics, and then we propose

theWI2023 for the water bodies on the ice surface. Finally, the spatial

distribution results of surface meltwater of the ice shelf were obtained,

and comparative analysis and accuracy evaluation were conducted.
2 Study area and data

2.1 Study area

The Amery Ice Shelf is the third largest ice shelf in Antarctica,

located between the Prince Charles Mountains and the Larsemann

hills in North Antarctica (66°-76° E and 68°-74° S). The Amery Ice

Shelf has a relatively elevated terrain, with an average elevation of

about 2500 m (Passchier et al., 2003; Roberts et al., 2007; Wen et al.,

2014). The ice shelf is about 500 km long and 50–100 km wide, with

an area of about 71260 km2 and a thickness of about 300–2500 m,

and together with the Lambert Glacier, it forms Lambert Glacier—
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Amery Ice Shelf system (the largest glacier system in the Southeast

Antarctic ice sheet) with an area of approximately 1.4 × 106km2 (He

et al., 2016; Yang and Kang, 2016). This study aims to mitigate the

impact of shadows and extract meltwater on the polar surface.

According to the literature (Zhou et al., 2019; He, 2016; Zhang,

2020), it is known that there is a significant amount of meltwater at

the end of the Amery Ice Shelf during the summer, and due to the

topography, there are abundant mountain shadows surrounding the

end of the Amery Ice Shelf. Therefore, this paper chooses the study

area from the end of the Amery Ice Shelf, as indicated by the purple

box in Figure 1.
2.2 Data

The Landsat 8 satellite was successfully launched on 11

February 2013, carrying two sensors, the Operational Land

Imager (OLI) and the Thermal Infrared Sensor (TIRS), with a

revisit cycle of 16 days. All data from the Landsat series of satellites

are openly shared and can be downloaded from the USGS website

(http://earthexplorer.gov/). The band information of the Landsat8

satellite used in this study is shown in Table 1.

In this study, the results of meltwater extraction were validated

using 10m-resolution Sentinel-2 image data. The Sentinel-2 series

satellites are high-resolution multispectral imaging satellites

launched by the European Space Agency (ESA). The series

includes two satellites, Sentinel-2A and Sentinel-2B, which were

successfully launched on 23 June 2015 and 17 March 2017,

respectively. The single satellite has a revisit cycle of 10 days,

while the two satellites complement each other with a revisit cycle

of 5 days. ESA has only released L1C level multispectral data (MSI)

for Sentinel-2. Sentinel-2 L1C is an atmospheric apparent

reflectance product that has undergone orthorectified and
Frontiers in Marine Science 03
geometric precision correction and has not undergone

atmospheric correction. At the same time, ESA has defined S2

L2A level data, which mainly includes bottom of atmosphere

corrected reflectance data. However, this L2A data needs to be

produced by users according to their needs. Therefore, ESA has

released a plugin called Sen2cor, which specializes in producing

L2A level data. Data from the Sentinel-2 series of satellites are all

openly shared and can be downloaded from the European Space

Agency website (http://scihub.copernicus.eu/dhus/#home). The

band information of the Sentinel-2 satellite used in this study is

shown in Table 2.
3 Methods

The traditional water indices method selects the bands with the

strongest and weakest reflectance of the water body for

normalization ratio calculation, which requires selecting different

bands based on different terrain environments to construct a water

index and is prone to mistakenly extract terrain shadows and cloud

shadows as water bodies. For example, McFeeters found that water

exhibits lower reflectance in the near-infrared(NIR) band,

contrasting with the higher reflectance of land (McFeeters, 1996).

Conversely, in the green band(Green), water demonstrates higher

reflectance while land displays lower reflectance. Based on this,

McFeeters selected the NIR and the Green bands to construct the

NDWI for extracting open water body information. The Equation 1

is as follows:

NDWI = (Bgreen − Bnir)=(Bgreen + Bnir) (1)

where Bgreen and Bnir represent the reflectance of the Landsat-8

green band (Band 3) and near-infrared band (Band 5), respectively.
FIGURE 1

Study region.
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Polar land cover types are simple and the surface is open, so

NDWI extracts polar meltwater better than the modified normalized

difference water index (MNDWI) (Xu, 2005). However, there is a

large amount of melting ice and snow in the polar regions during the

ablation period, so these features have mixed characteristics of ice,

snow, and water. In the NIR band, due to the low reflectivity of both

meltwater and melting ice and snow, the NDWI does not distinguish

well between water and melting ice and snow (Yang and Smith,

2013). In order to solve this deficiency of NDWI applied to the

extraction of lake water bodies on the ice surface, Yang proposed an

improved normalised water index (NDWIice) for the extraction of

water bodies in the ice-covered environment by studying the spectral

characteristics of the objects all over the ice-covered surface (Yang,

2013). The Equation 2 is as follows:
Frontiers in Marine Science 04
NDWIice = (Bblue − Bred)=(Bblue + Bred) (2)

where Bblue and Bnir represent the reflectance of the Landsat-8

blue band (Band 2) and red band (Band 4), respectively.

Qu studied the spectral characteristics of six types of features

(meltwater, blue ice, wet snow, dry snow, clouds and shadows) and

proposed the MNDWIice (Qu et al., 2020). The Equation 3 is as

follows:

MNDWIice = (Bblue − Bnir)=(Bblue + Bnir) (3)

where Bblue and Bnir represent the reflectance of the Landsat-8

blue band (Band 3) and near-infrared band (Band 5), respectively.

Although these methods can extract water bodies better in

different surface environments, they can mistakenly extract

terrain shadows and cloud shadows as water bodies, which affects

the extraction accuracy.

To address this issue, the spectral characteristics of six features,

namely, meltwater, wet snow, dry snow, bare rock, mountain shadows

and cloud shadows, were selected for this study, as shown in Figure 2.

As can be seen from Figure 2, meltwater has highly absorptive

properties for incident energy (e.g., sunlight) and exhibit low

reflectance in most of the wavelength range used in remote sensing.

In addition, as the wavelength increases, the reflectivity of the

meltwater further decreases. Dry snow appears white or nearly white

in the visible wavelength range, and it has high reflectance for most

visible light. In the NIR wavelength range, the reflectance decreases

rapidly due to the crystalline structure in dry snow that scatters NIR

light, and it reaches a minimum in the short-wave infrared (SWIR)

wavelength range. Wet snow is slightly different from dry snow in that

it has a lower reflectance and a darker appearance in the visible range

due to the absorption of visible light by the water in the wet snow. Bare

rock has a reflectance that increases with wavelength. Shadows are a

common phenomenon in optical remote sensing images. They can

interfere with the amount of information reflected by the target

objects, leading to phenomena such as spectral confusion and

misclassification. In Figure 2, the reflectance of bare rocks should

increase with wavelength, but due to the influence of the shadows, the

reflectance decreases gradually instead. Cloud shadows and mountain

shadows, respectively, refer to the projection of clouds in the air and

the self-projection of ground objects caused by factors such as terrain,

altitude, and solar incidence angle. Due to occlusion, objects affected by

shadows receive less light, resulting in lower reflectivity. Under the

influence of cloud or mountain shadows, the reflectance characteristics

of certain ground features are similar to those of water bodies, and the

traditional water indices values of ground features and water bodies are

very close, which makes it difficult to accurately extract water body

information. Therefore, this paper does not use the selection of the

strongest and weakest reflection bands of water bodies to construct

water index but rather the characteristics of the reflectance curves of

each surface feature. As shown in Figure 2, it is found that although the

reflectance characteristics of both meltwater and shadows are in a

decreasing trend, there are differences in their decreasing rates. The

reflectivity curve of cloud shadows in Figure 2 steadily decreases

without significant change. On the other hand, the reflectance of the
TABLE 1 Band information used in this study.

Satellite Band
Name

Bandwidth
(mm)

Resolution
(m)

Landsat 8 OLI B2 blue 0.450–0.515 30

B3 green 0.525–0.600 30

B4 red 0.630–0.680 30

B5 NIR 0.845–0.885 30
TABLE 2 Band information used in this study.

Band
Central

Wavelength
(nm)

Spatial
Resolution

(m)
Main Applications

1 443 60
Aerosol, coastal
zone monitoring

2 490 10
Blue band, water
bodies, vegetation

3 560 10
Green band,

vegetation health

4 665 10 Red band, vegetation, soil

5 705 20 Vegetation red edge

6 740 20 Vegetation red edge

7 783 20 Vegetation red edge

8 842 10
Near-infrared, vegetation,

water bodies

8A 865 20
Narrow near-

infrared, vegetation

9 945 60 Water vapor absorption

10 1375 60 Cirrus detection

11 1610 20
Shortwave infrared, snow/

ice/cloud

12 2190 20
Shortwave infrared,

soil moisture
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meltwater starts to decrease abruptly in the blue light band, and then it

levels off the reflectance of the cloud shadow at a certain point in the

red light band and continues to decrease sharply, and then it tends to

flatten out in the near-infrared band, and there is the greatest

difference in the decreasing rate in the reflectance curves of

meltwater and cloud shadows of the blue and red light bands, but

the reflectivity curves of dry snow and mountain shadows have a very
Frontiers in Marine Science 05
similar decreasing rate in the blue and green light bands. If the blue

and red light bands are chosen to construct the water index, it will be

difficult to distinguish between dry snow and mountain shadows, as

show in Figure 3, so the blue light band is not considered, and the

green and red light bands are chosen to construct the water index,

which can maximize the difference among meltwater, shadows, and

other features.
FIGURE 3

Green-Red Slope and Blue-Red Slope.
FIGURE 2

Reflectivity curves of polar features.
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Select pure pixel samples of six types of ground features,

including meltwater, wet snow, dry snow, bare rock, mountain

shadow, and cloud shadow, and calculate the decreasing rate of

their reflectance curves between the green and red light bands.

Meanwhile, the NDWI, NDWIice, and MNDWice values of these

six types of features are compared, and the results are shown in

Figure 4. As can be seen from Figure 4, WI2023 has a good

discrimination ability for various ground features, especially for

shadows and meltwater. NDWI, NDWIice, and MNDWice, which

use normalized ratio operations, can distinguish between meltwater

and several other ground features except for shadows, but it is

difficult to distinguish between meltwater and shadows. So this

study proposes a novel water index WI2023 with the following

Equation 4:

WI2023 = (Bgreen − Bred)=(lred − lgreen) (4)

where Bgreen and Bred are the reflectivity in the green and red

light bands, respectively. lred, lgreen is the maximum value of the

Bandwidth of the red light band and the minimum value of the

Bandwidth of the green light band, respectively.

The specific implementation process of extracting meltwater

from the ice shelf surface is shown in Figure 5:
3.1 Screening

This study aims to address the issue of mistakenly extracting

cloud and terrain shadows as water bodies using water index

methods based on traditional optical remote sensing images in

polar environments. Therefore, the screening data in this paper

should meet the following conditions.
Frontiers in Marine Science 06
1. In terms of time, the image has a wide distribution of

melting water in summer.

2. In space, the image has mountain shadows at different

altitudes and terrains.

3. There are clouds that shade the ground, creating shadows.
3.2 Pre-processing

The L1C data from Sentinel-2 without radiometric calibration

and atmospheric correction are converted into L2A data with

atmospheric and geometric correction, and then selected high-

resolution band images are fused and converted into Geo TIFF

format. Landsat8 data also requires radiometric calibration and

atmospheric correction processing to eliminate errors and

atmospheric effects caused by the sensor itself. Radiometric

calibration is the conversion of the brightness grayscale value of

an image to absolute radiance, with the aim of eliminating errors in

the sensor itself and determining the exact radiometric value at the

sensor inlet. Atmospheric correction converts radiant brightness or

surface reflectance into actual surface reflectance to eliminate errors

caused by atmospheric scattering, absorption, and reflection. Both

can be done on different modules in the Toolbox on the ENVI

software platform. To facilitate subsequent calculations and

analyses, the atmospherically corrected data are normalised by

dividing by 10000, which reduces the range of the data to a more

appropriate range. Considering the difference in width between the

Sentinel-2 and Landsat 8 imaging, it is necessary to crop the two

types of images so that they have the same spatial size in order to

ensure accuracy in comparison and analysis.
FIGURE 4

Index value curve of various features.
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3.3 Calculation of water index

The image after data preprocessing is taken as input, and it is

brought into equation (5) for wave operation, and the output is

obtained as the enhanced image of the water body.
3.4 Determination of threshold value

In this study, the Otsu adaptive thresholding method is chosen

to determine the threshold value of WI2023 (Otsu, 2007). The Otsu

method is a commonly used image binarization technique, and the

implementation process is as follows.
Fron
1. Calculate the histogram of the image and count the number

of pixels for each grayscale level.

2. Iterate through all possible thresholds (from 0 to the

maximum grayscale level) to separate the image into

background and foreground regions.
tiers in Marine Science 07
3. For each threshold value, calculate the proportions of pixels

below and equal to or above the threshold (w1(t) and w2

(t)), as well as the average grayscale values below and equal

to or above the threshold (m1(t) and m2(t)).
4. Calculate the inter-class variance: s2(t) = w1(t) * w2(t) *

(m1(t) - m2(t))2.
5. Select the threshold value that maximizes the inter-class

variance s2(t) among all possible thresholds in the image

and use it as the final threshold (1.1).
3.5 Results and validation

After determining the optimal threshold value, threshold

segmentation is performed on the image after band operations to

obtain the spatial distribution of surface meltwater of ice shelf.

Afterwards, to validate WI2023 we compared its extraction results

with those of several other common water indices, and finally
FIGURE 5

Flow chart of extracting meltwater from the ice shelf surface.
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verified its extraction accuracy using Sentinel-2 satellite high-

resolution images on the same day.
4 Results and validation

This study selected Landsat8 images (Partial image of Path/Row

127/111) at the Amery Ice Shelf on January 2, 2017, for water body

information extraction, and the results are shown in Figure 6. From

Figure 6, it can be seen that a large number of melt water existed on
Frontiers in Marine Science 08
the surface of the ice shelf on January 2, 2017 (Antarctic summer),

and most of the meltwater was concentrated in the low-latitude

region, which may be caused by the fact that the Amery Ice Shelf has

a large north-south span and is located in the low-latitude region

where the temperatures are higher. These meltwater pools are

narrow and river-like in width and small in area, but large in

number. Large areas of meltwater are mainly distributed in low-

elevation regions, and the reason for this may be that the terrain in

low-altitude regions is generally relatively flat, direct sunlight

radiation, without mountain cover and meltwater from high-
FIGURE 7

Meltwater extraction results based on NDWI (a), NDWIice (b), MNDWIice (c), and WI2023 (d) (Selected region in purple box in Figure 6).
FIGURE 6

The Landsat 8 image meltwater extraction results on January 2, 2017 were based on WI2023.
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altitude regions will flow to low-altitude regions. In addition, some

meltwater pools are located in low-lying regions on the ice shelf and

at the intersection of water flows.

To verify the feasibility of WI2023, we extracted meltwater

using NDWI, NDWIice and MNDWice index methods using

images without shadow interference, as shown in Figure 7. The

results in Figure 7 indicate that under no shadow interference, the

spatial distribution of meltwater extraction results for WI2023 is

consistent with that of NDWI, NDWIice, and MNDWIice, and the

water extraction areas are similar, with areas of 208.2114km2,

207.3573 km2, 208.0494 km2, and 208.0494 km2, respectively. The

subtle differences in extraction results are mainly due to the

different sensitivity of different water indices to wet snow,
Frontiers in Marine Science 09
resulting in some wet snow being mistakenly extracted

as meltwater.

To verify the effectiveness of WI2023 for shadow suppression,

this study selected Landsat8 images with shadows. The shadows

were detected by the algorithm proposed by (Kang et al., 2017)) on

2 January 2017 and performed NDWI, NDWIice, MNDWIice and

WI2023 exponential operations, respectively. The results are shown

in Figures 8B–E, respectively. From Figures 8B–D, the shadows in

the red frame are mistakenly extracted as meltwater after NDWI,

NDWIice, and MNDWIice exponential operations, while the

shadows in the area selected in the red frame in Figure 8E are all

extracted as non-water bodies after WI2023 exponential operations,

in agreement with the actual features. In the presence of shadow
FIGURE 8

Landsat8 image 5, 4, and 3 bands combination on January 2, 2017 (a); Meltwater extraction results based on NDWI (b), NDWIice (c), MNDWIice (d),
and WI2023 (e). The selected analysis area is shown in light blue box in Figure 6.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1476785
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhou et al. 10.3389/fmars.2025.1476785
interference, WI2023 can effectively widen the difference between

shadow and meltwater compared to traditional water indices

NDWI, NDWIice, and MNDWIice and remove shadow

interference to extract meltwater information in images

more accurately.

To further verify the extraction accuracy of WI2023, this study

selected Landsat8 data and Sentinel-2 data from December 23,

2018, to extract meltwater and calculate their extraction area. Due

to the higher resolution (10m) of Sentinel-2 data, the meltwater

extraction results of Sentinel-2 data are used as a benchmark to

evaluate the meltwater extraction results through evaluation

indicators such as false extraction area and false extraction rate.

This paper uses the method proposed by (Zhang et al., 2017) to

extract meltwater information from Sentinel-2 data, while Landsat8
Frontiers in Marine Science 10
data uses NDWI, NDWIice, MNDWice, and WI2023 index

methods to extract meltwater information, as shown in Figure 9.

From Figure 9, it can be seen that the meltwater results extracted

with WI2023 are basically consistent with those of Sentinel-2, while

NDWI, NDWIice, and MNDWIice differ significantly from those of

Sentinel-2, where the NDWIice and MNDWIice extraction results

are essentially consistent, including mistakenly extracted shadows,

and so their extraction results are oversized. NDWIice and Sentinel-

2 have the largest difference in extraction results, which is caused by

the fact that the shadows and part of the wet snow are mistakenly

extracted as meltwater. The area of meltwater extracted from

Sentinel-2 imagey is 49.7984 km2, while the areas of meltwater

extracted from Landsat8 image are shown in Table 3. From Table 3,

it can be seen that the extraction accuracy of WI2023 is 95.02%, and
FIGURE 9

Extraction results of meltwater from Sentinel-2 imagery on December 23, 2018 (a), NDWI (b), NDWIice (c), MNDWIice (d), and WI2023 (e).
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the meltwater extraction accuracies of NDWI, NDWIice, and

MNDWice are 77.04%, 66.44%, 79.18%, respectively. We

conducted a pixel-wise comparison of the extracted results in a

local area (the region selected by the red box in Figure 9), and the

results are shown in Figure 10. From this, the WI2023 meltwater

extraction method proposed in this study can effectively reduce the

interference of shadows and is of great significance for large-scale

extraction and monitoring of dynamic changes in polar surface

meltwater. In addition, it should be noted that the large extraction

area errors of NDWI, NDWIice, and MNDWice are caused by a

large number of shadows in the selected data in this study rather

than the inherent problems of NDWI, NDWIice, and MNDWice.

According to Yu et al. (Yu et al., 2012), the blue ice region has high
Frontiers in Marine Science 11
reflectivity in the visible light band and can be confused with the

meltwater region. However, our method is able to distinguish

between blue ice and meltwater to some extent by combining the

reflectance differences in the green and red bands. We acknowledge

that misclassification of blue ice regions may exist in some regions.

However, this phenomenon exists in all test methods, and the

WI2023 method still outperforms traditional methods in terms of

overall accuracy.

Afterwards, this study selected 10 Landsat 8 and Sentinel 2

images from the same day between 2018 and 2024, and calculated

their extraction areas. The data information is shown in Table 4,

and the area extraction results are shown in Figure 11. From

Figure 11, it can be seen that the area curve trends of several

water indices show good consistency. Among them, the area curves

of NDWI and NDWIice are significantly higher than those of other

area curves because NDWI and NDWIice not only mistakenly

extract shadows as water bodies but also cannot effectively

distinguish melting ice and snow. MNDWIce is an improvement

compared to NDWIice, which can effectively distinguish between

melting ice and snow, so its area curve is significantly lower than

those of NDWI and NDWIice. However, MNDWIce also extracts

shadows as water, so its area curve is higher than the surface area

curve of WI2023 and Sentinel-2. WI2023 not only effectively
FIGURE 10

Landsat 8 image 5, 4, and 3 band combinations on January 2, 2017 (a), Meltwater extraction results based on 10m resolution (b), NDWI (c), NDWIice
(d), MNDWIice (e), and WI2023 (f).
TABLE 3 Accuracy evaluation.

Methodologies Extraction
area (km2)

Accuracy

NDWI 60.7356 77.04%

NDWIice 66.5099 66.44%

MNDWIice 60.1686 79.18%

WI2023 52.2792 95.02%
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distinguishes between shadows and water bodies but also has good

discrimination between melting ice and snow and meltwater pools,

so its area curve is closest to the area curve of Sentinel-2.

Additionally, it should be noted that the same area in the

Landsat8 and Sentinel-2 images on September 9, 2021, has no

shadows, so their areas are almost identical.
5 Discussion

The WI2023 meltwater extraction method proposed in this

study significantly enhances the ability to distinguish between

shadows and meltwater based on the rate of decrease in object
Frontiers in Marine Science 12
reflectance curves. Traditional water indices, such as NDWI and

MNDWI, typically rely on reflectance differences in specific bands

when extracting water bodies, which may lead to misjudgments in

complex terrains or environments. For example, the spectral

characteristics of shaded areas and meltwater are similar in

certain bands, leading traditional indices to easily mistake

shadows for water bodies, especially in areas with low light or

high reflectance. WI2023 can effectively avoid this misidentification

problem by analyzing the rate of decrease in reflectivity rather than

just static reflectivity values. Compared with traditional water

indices, WI2023 has stronger universality. The use of traditional

water indices usually requires selecting appropriate indices based on

different land cover types to ensure the best extraction results. Due
FIGURE 11

Water index area curve chart.
TABLE 4 Data information.

Landsat8 data Sentinel-2 data

LC08_L1GT_127111_20181114_20201016_02_T2 S2B_MSIL2A_20181114T034629_N0500_R075_T42CVE_20230617T205535.SAFE

LC08_L1GT_127111_20181130_20201016_02_T2 S2B_MSIL2A_20181130T040719_N0500_R018_T42CVE_20230619T081136.SAFE

LC08_L1GT_128111_20190313_20200829_02_T2 S2B_MSIL2A_20190313T041719_N0500_R061_T42CVE_20221118T163308.SAFE

LC08_L1GT_128111_20201212_20210313_02_T2 S2B_MSIL2A_20201212T041719_N0500_R061_T42CVE_20230225T210019.SAFE

LC08_L1GT_127111_20210919_20210924_02_T2 S2B_MSIL1C_20210919T034629_N0500_R075_T42DWF_20230116T061739.SAFE

LC08_L1GT_127111_20220226_20220308_02_T2 S2B_MSIL2A_20220226T034629_N0400_R075_T42CVE_20220226T064827.SAFE

LC09_L1GT_127111_20220117_20230501_02_T2 S2B_MSIL1C_20220117T034619_N0301_R075_T42CVE_20220117T054228.SAFE

LC08_L1GT_128111_20230220_20230224_02_T2 S2B_MSIL1C_20230220T041729_N0509_R061_T41CPV_20230220T070749.SAFE

LC09_L1GT_128111_20240215_20240215_02_T2 S2B_MSIL2A_20240215T041729_N0510_R061_T41CPV_20240215T072524.SAFE

LC08_L1GT_128111_20240310_20240316_02_T2 S2B_MSIL2A_20240310T035649_N0510_R118_T41CPV_20240310T070326.SAFE
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to the significant variations in reflectance of different types of land

cover in spectral bands, a single water index often struggles to adapt

to complex surface conditions and may result in decreased

extraction accuracy due to factors such as lighting, seasonal

variations, and soil moisture, such as melting ice and snow in

polar environments. WI2023 breaks through this limitation by

examining the rate of reflectance change, avoiding the limitations

of spectral differences and eliminating the need to select different

indices based on different land cover types. Therefore, WI2023

exhibits stronger adaptability under various environmental

conditions and can stably extract water bodies in more complex

geographical areas. The construction of WI2023 mainly relies on

the red and green bands, which have high resolution in optical

remote sensing satellites and can provide clearer ground

reflectance data.

However, this study still has some shortcomings: (1) The

Landsat 8 and Sentinel-2 optical remote sensing data used in this

study are susceptible to external environmental influences, which

may introduce some interference, thereby affecting the water index

and causing bias in the results. Future studies will consider

combining multi-source data to improve the accuracy of

meltwater extraction. For example, although SAR data has low

resolution, it is less affected by clouds and fog. Therefore, SAR data

can be combined with optical remote sensing data to improve the

accuracy of meltwater extraction. (2) Due to the lack of publicly

available higher-resolution images and on-site observation data,

this study only used Sentinel-2 satellite data with a resolution of

10m for accuracy verification, and the credibility of the verification

results needs to be improved. In future, higher-resolution images

and on-site observation data will be used to more accurately

evaluate the meltwater extraction accuracy based on WI2023. (3)

The launch time and period of Sentinel-2 satellite and Landsat8

satellite are different, and there are fewer images on the same day.

This study only used Sentinel-2 from a single scene to verify the

extraction results of Landsat8, which is not sufficient. In future, we

will conduct spatiotemporal changes analysis on the Amery Ice

Shelf to identify more Sentinel-2 and Landsat8 data from the same

day in order to more fully verify the meltwater extraction accuracy

based on WI2023.
6 Conclusions

This study is based on Landsat8 and Sentinel-2 high-resolution

remote sensing images and aims to address the issue of meltwater

indices mistakenly extracting shadows as meltwater. A novel

meltwater index method, WI2023, is constructed, and the

threshold (1.1) of WI2023 for extracting meltwater information

from the Amery Ice Shelf is obtained using the OSTU method.

Through experiments, the images without shadows, the meltwater

extraction results of WI2023 are consistent with those of NDWI,

NDWIice, and MNDWice. In the images with shadows and the

meltwater extraction results of WI2023 have the smallest false

extraction area (2.4808 km2) and the highest extraction accuracy
Frontiers in Marine Science 13
(95.02%) compared to the water extraction results of NDWI,

NDWIice, and MNDWice. The experimental results show that

the WI2023 constructed based on the decreased rate of surface

reflectance curve can minimize the impact of shadows and achieve

higher accuracy in water extraction compared to the water index

constructed through normalized ratio operation.
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