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Trajectories of >1,600 virtual Argo profiling floats and their sampled variability

in key ocean physical and biogeochemical variables are simulated using a

0.125° global ocean physical-biogeochemical model (NOAA GFDL’s MOM6-

SIS2-COBALTv2) and an offline Lagrangian particle tracking algorithm. Virtual

floats are deployed at 92 locations within 26-50°N, 114-132°W in the

California Current System (CCS) during the summers and winters of 2008-

2012 with varying sampling strategies adopted (e.g., floats are set to park and

drift at different depths, and to profile at different intervals). The overall

direction and spatial spreads of simulated float trajectories depend on the

latitudes of deployment locations with the largest area and variability sampled

by floats deployed in the central CCS. Floats drifting at shallower depths (200

m and 500 m) tend to sample larger variability associated with larger sampled

area, while those drifting at 1000 m show the strongest association with

eddy-like ocean features. Sensitivity experiments with varying sampling

intervals suggest that spatiotemporal variability in float observables are

adequately sampled with a typical 5-day or 10-day interval. Furthermore,

simulated float trajectories and sampled variability are compared against 3

real float trajectories and along-track observations. Results suggest that the

fidelity of both our model simulations and the prevalent Argo float sampling

design are generally sat isfactory in characterizing interior ocean

biogeochemical variability. This study provides new insights to inform

opt ima l floa t dep loyment p l ann ing , s amp l i ng s t r a teg i e s , and

data interpretation.
KEYWORDS
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1 Introduction

The California Current System (CCS) is a climatically and

biogeochemically dynamic region (Kudela et al., 2008),

characterized by seasonal upwelling driven by predominant

northerly alongshore winds in the spring and summer (Huyer,

1983; Hickey et al., 2006). Sustaining high biological productivity

fed by the upwelling of nutrient-rich waters (Chavez and Messie,

2009), the CCS is home to numerous commercially valuable

fisheries (Checkley and Barth, 2009; Smith et al., 2023). The CCS

also plays an important role in contributing to changes in ocean

biogeochemical cycling and carbon storage, which is tightly linked

to recent enhanced rates of ocean acidification in the region

partially attributed to increasing trends in upwelling-favorable

wind stress (Chan et al., 2008; Gruber et al., 2012; Brady et al.,

2020). Stressors such as hypoxia in the subsurface and bottom

waters (Bograd et al., 2008; McClatchie et al., 2010; Dussin et al.,

2019), ocean warming and heatwaves (Santora et al., 2020; Weber

et al., 2021), together with ocean acidification (e.g., Feely et al.,

2018), pose serious risks to the CCS marine ecosystem and the

fisheries it sustains. Increased monitoring and data collection of key

physical and biogeochemical conditions in the CCS is thus vital to

understanding the trends, drivers, and impacts of these multi-

stressors on the CCS marine ecosystem, informing fisheries

management, and supporting coastal health and resilience efforts.

Over the past two decades, the global-scale implementation of

autonomous profiling floats has revolutionized ocean monitoring

programs (Roemmich et al., 2019; Johnson et al., 2022). The Argo

Program operates thousands of floats concurrently to measure key

physical (pressure, temperature, and salinity) ocean properties, and

more recently, chemical (oxygen, nitrate, pH), and biological

(chlorophyll fluorescence, optical backscatter, downwelling

irradiance) properties as well. The more recent biogeochemical

(BGC) Argo mission provides long-term (up to several years)

datasets associated with the spatiotemporal variability of

aforementioned multi-stressors and other phenomena. Data

gathered by these floats have already been employed to

investigate surface net productivity (Johnson and Bif, 2021),

interior deoxygenation (Zhang et al., 2023), cycling of carbon and

nutrients (Bushinsky et al., 2019; Xing et al., 2020; Galán et al., 2021;

Addey, 2022; Gray, 2023), and ocean acidification (Mazloff et al.,

2023), leading to significant advances in understanding past trends

and predictability of future changes in the CCS and other regions.

There are several related challenges, however, associated with the

interpretation of float-sampled observations. First, the ocean

presents a considerable amount of spatiotemporal variability at

varying scales such that, despite the rapidly increasing size of Argo

fleets, a finite number of floats sampling the ocean every few days

may not capture the full ranges of ocean variability (Wang et al.,

2018). Second, the lifespan of a float is limited by the capacity of its

battery and thus typically inversely related to sensor sampling

frequencies, presenting a tradeoff between sampling small-scale,

high-frequency variability versus longer-term sampling of sub

seasonal to seasonal variability which requires an optimized

deployment and sampling design. Third, floats drift horizontally
Frontiers in Marine Science 02
with currents and profile vertically in a quasi-Lagrangian fashion

such that their trajectories and sampled variability are largely

affected not only by the mean flows, but also by individual eddies,

meanders, and fronts (hereafter referred to as eddy-like ocean

features) with which they make contact (Wang et al., 2020). The

probability of a float getting entrained into eddy-like features

depends on the amount of time it drifts at eddy-relevant depths.

Interpreting float-sampled variability requires a knowledge and

consideration of the probability of floats continuously quasi-

Lagrangian sampling the same eddy-like features versus randomly

sampling larger-scale spatiotemporal variability of the area.

This study explores the representativeness and predictability of

simulated float drifts and observations, and aims to provide insights

into optimal float deployment planning, sampling strategies, and

data interpretation. A Lagrangian particle tracking algorithm and

daily ocean current fields from a 1/8° global ocean physical-

biogeochemical model are used to simulate float trajectories and

the along-track physical and biogeochemical variability in the CCS.

A suite of sensitivity experiments are conducted by altering the

parking depth of the floats, as well as their profiling/

sampling intervals.
2 Methods

2.1 NOAA GFDL’s high-resolution (0.125°)
global ocean physical-biogeochemical
model

The ocean circulation model used in this study is configured

from the 6th generation of the Modular Ocean Model (MOM6) and

its accompanying 2nd generation Sea Ice Simulator (SIS2) both

developed at NOAA’s Geophysical Fluid Dynamics Laboratory

(Adcroft et al., 2019). The model grid used in this study has a

nominal horizontal resolution of 0.125° or approximately 12.5 km,

which is among the highest in the current generation of global

ocean models. MOM6 is integrated with GFDL’s Carbon, Ocean

Biogeochemis t ry and Lower Troph ic s (COBALTv2)

biogeochemical model (Stock et al., 2020). COBALT simulates

global-scale dynamics of carbon, nitrogen, phosphorus, iron, and

oxygen, along with three explicit phytoplankton groups and three

explicit zooplankton groups by size. The coupled MOM6-SIS2-

COBALTv2 ocean model is initialized at rest using long-term

climatologies of observed temperature, salinity, oxygen, nitrate,

phosphate, and silicate from the World Ocean Atlas 2013v2

(Locarnini et al., 2013; Zweng et al., 2013; Garcia et al., 2014a;

Garcia et al., 2014b), and preindustrial dissolved inorganic carbon

and total alkalinity from the GLobal Ocean Data Analysis Project

(GLODAPv2; Olsen et al., 2016). The simulation is spun up for a

total of 78 years forced by 3 repeating cycles of 26 forcing years

between 1959 and 1984 from the Japanese 55-year Reanalysis

product (JRA55-do; Tsujino et al., 2018), then run for 60

historical years from 1959 to 2018, consistent with protocols used

in the Ocean Model Intercomparison Project experimental design

(Griffies et al., 2016). Detailed configuration of this MOM6-SIS2-
frontiersin.org
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COBALTv2 simulation can be found in Liu et al. (2021), which

describes an intermediate-resolution (0.25°) version of the same

model configuration, and in Schultz et al. (2024), which uses the

same 0.125° simulation to investigate subsurface oxygen variability

in the California Current System (CCS). Model-simulated daily

ocean current fields and key physical and biogeochemical variables

from the last decade (2008-2017) of the historical run are used to

simulate Argo float trajectories and assess float sampled variability

along their trajectories.
2.2 Simulation of Lagrangian trajectories of
virtual Argo profiling floats

The Largrangian tracking algorithm used to compute horizontal

trajectories of the virtual Argo profiling floats is adapted from

“HycomTracker” (h t tps : / /g i thub .com/Br ianOBlanton/

HycomTracker), a publicly available MATLAB toolbox originally

developed to work with the HYCOM ocean circulation model. The

tracker reads in a list of initial deployment locations and a time-

series 2D array of co-located ocean current velocity (u,v) fields, and

uses a simple second-order Runge-Kutta algorithm to compute the

Lagrangian trajectories of the deployed floats over their assumed 5-

year lifespan. By default, a simulated virtual float samples the ocean

surface and interior with a 5-day profiling/sampling interval while

drifting at 1000 m: At the beginning of each profiling cycle, the float

descends from its parking depth of 1000 m to the maximum

profiling depth at 2000 m over a 3-hour period, then ascends to

the surface while sampling essential ocean variables over a 6-hour

period, before descending again to the parking depth over another

3-hour period. A float is set to descend to the shallower of either the

desired depth or 5 m above the ocean bottom. For the 4.5 days

drifting period of each cycle, model simulated daily mean fields of

(u,v) at 1000 m are used to construct the time-series 2D array for

the Lagrangian tracker, while for the 12-hour profiling period, (u,v)

at the corresponding depth to which the float descends or ascends at

each hour are provided to the tracker to account for changes in

ocean currents which the float encounters while in profiling mode

(i.e., As the float cycles from 0-2000 m, velocities appropriate to

each depth are used). This default sampling design is altered in a

suite of sensitivity experiments, where a range of parking depths

and profiling intervals are tested (see Section 2.3), to provide

insights into optimal float deployment planning and data

interpretation. Note that, while many floats profile at 10-day

intervals, our experiments choose the 5-day setting as the default

to compare against the 3 real floats deployed in the CCS, which were

set to profile at 5-day intervals (see sections 2.4 and 3.1).
2.3 Virtual float deployments in the CCS

Trajectories of >1600 virtual Argo profiling floats are simulated

using the aforementioned Lagrangian tracker and daily (u,v) from

the globally 0.125° MOM6-SIS2-COBALTv2 simulation. For the

control deployments, a total of 920 floats are released at 92 locations
Frontiers in Marine Science 03
(i.e., one float at each location for the 5 summertime and 5

wintertime deployments) within an elongated band between 26-

50°N, 114-132°W in the CCS (Figure 1). To minimize shallow

bottom (<2000 m) encounters, floats are released at least 60 but

within 120 nautical miles from the nearest shoreline and in waters

at least 2000 m deep and at sites of 1° spacing, giving a total of 92

eligible deployment sites in the CCS. Deployments further north

and south of these locations result in floats frequently drifting out of

the domain for which high-frequency daily model outputs are

saved, thus are not considered in our analysis. More specifically,

floats are deployed on the 1st day of January for wintertime

deployments, and 1st day of July for summertime deployments, in

5 consecutive years between 2008 and 2012, and their trajectories

are simulated over 5-year periods following the releases (e.g., the

trajectory of a float deployed on July 1st, 2011 is tracked through

June 30th, 2016) using the method described in Section 2.2.

Sensitivity of simulated float trajectories and along-track

variability to varying sampling strategies (i.e., the choice of

profiling interval and parking depth) is also investigated. To do

so, additional fleets of floats are deployed on July 1st, 2012 at the

same 92 locations in the CCS and simulated for 5 years in the same

manner except that the parking depth is set at 200 m, 500 m, and

2000 m, respectively (n = 276), instead of the default 1000 m, and

that the profiling interval is set at 1-day, 3-day, 10-day, 15-day, and

30-day, respectively (n = 460), instead of the default 5-day interval.

Note that 200 m is the shallowest parking depth explored here due

to the practical concern for biofouling at shallower depths. Together

with the control deployments, 1,656 virtual float trajectories are

analyzed in this study.
2.4 Sampled ocean physical and
biogeochemical variability by real and
virtual floats

We compare our model simulations against 3 real Argo floats’

physical and biogeochemical measurements along their trajectories

to assess the fidelity of our model in representing real float sampling

and observations. Their WMO (serial) numbers are 1902394

(7647), 4903353 (7618), and 4903374 (7615), respectively

(Figure 1). These 3 floats sampled the CCS across 29-46°N and

122-136°W from 2012 to 2017 at 5-day profiling intervals, and have

been previously analyzed to characterize subsurface oxygen

variability in the CCS (Schultz et al., 2024). While new datasets

have become available from recently deployed floats in the CCS, we

focus our analysis on these 3 floats because they provide 4-5 years of

physical and biogeochemical observations (i.e., temperature,

chlorophyll, nitrate, and dissolved oxygen) to be compared with

our long-term model simulations. Data from these floats were

obtained from MBARI’s Chem Sensor Data Server (https://

www.mbari.org/data/ocean-float-data/), last updated on 08/17/

2023. When compared against observations, model simulated

fields are first saved as daily means on pressure levels and on the

model’s native grid (0.125° x 0.125°), then sampled on the day

when, and at the grid point nearest to where, an observation is made
frontiersin.org
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along the real floats’ trajectories. This comparison is to assess the

representativeness of our model in simulating the seasonal and

spatial variability observed by the real floats.

Additionally, we analyze the drifts of virtual floats and the

simulated physical and biogeochemical variability along the virtual

floats’ trajectories. This allows us to sample model simulations in a

quasi-Lagrangian sense, consistent with the model’s own flow fields.

Similarly, the simulated daily means are sampled every 5 days (or at

varying intervals in the sensitivity experiments) at the grid cell

nearest to a virtual float’s location along its trajectory. Here, the

sampling of daily mean values every 5 days, as opposed to the use of

5-day averages, is chosen to better mimic the sampling behavior of

real floats.
2.5 Estimation of “eddy association” using
ocean current speed anomaly

A float’s trajectory and sampled variability can be largely

affected by eddy-like features that the float encounters, while the

probability of a float getting entrained into an eddy and repeatedly

sampling it depends on the frequency of eddy-genesis in the area,
Frontiers in Marine Science 04
eddy translation and as well as the amount of time the float drifts at

eddy-relevant depths (from surface to as deep as 1500 meters in our

model; Supplementary Figure S1). Wang et al. (2020) use model

simulations to find that eddies tend to accelerate floats and converge

them toward regions with stronger ocean currents. Here we use the

along-track ocean current speed anomaly at 500 m relative to the 9-

year climatological mean to identify ocean features associated with

stronger currents, such as eddies. We choose to use the 500 m

velocities to identify eddies because eddy structures are more

distinct at 500 m and 1000 m than at shallower and deeper

depths (Supplementary Figure S1). We also note that analysis

using the 500 m and 1000 m velocities show consistent results

(See Section 3.3). The along-track current speed is calculated from

the co-located daily velocities as the square root of (u2 + v2) at 500

m and at the grid cell nearest to each location of the float, while

daily climatological mean is calculated in the same manner but

averaged over the 9-year period between July 2008 and June 2017.

Daily standard deviation across these 9 years is calculated

accordingly as well. A 3-day moving average filter is applied to

the daily climatological mean and standard deviation to remove

noise associated with short-term and small-scale variability. We

recognize that stronger currents may be associated with not only
FIGURE 1

Map of the California Current System (CCS) showing the 92 locations where >1,600 virtual Argo floats are released, as well as the trajectories of the
3 real floats which sampled the area between 2012 and 2017. Note that, to minimize shallow (<2000 m) bottom encounters, virtual floats are
released at least 60 but within 120 nautical miles from the nearest shoreline and only in waters at least 2000 m deep. Greyscale indicates ocean
bottom depth, i.e., lighter color means shallower.
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persistent eddy-like features but also episodic features such as

submesoscale fronts. We therefore consider an event having an

“eddy association” only when the along-track ocean current speed

anomaly is consistently greater than one standard deviation at a

given location and day of the year for at least 30 days. We then

estimate the total number of days for which a float is considered

associated with an eddy over the 5-year period, and assess how this

probability (i.e., total numbers of “eddy association” days/1826 x

100%) may be affected by the choice of float parking depth.
3 Results

3.1 Comparison of real floats’ along-track
observations and model simulations

Observations from the 3 real floats are analyzed and compared

with model simulations along the real floats’ trajectories, where and

when measurements were made. Float #7647 was deployed in

November 2012 at 35°N,123°W, approximately 70 nautical miles

from the shoreline, and later ceased operations further offshore in

August 2016. Float #7618 was deployed in the following summer in

July 2013 at 32°N,124°W, about 180 nautical miles south of where

Float #7647 was deployed. It drifted offshore to the southwest and

ceased operations in September, 2017. Float #7615 was deployed a

month later in August 2013 but further north in the CCS at 46°

N,130°W, which also drifted to the southwest before it ceased

operations in November 2017 (Figure 1). These floats were

equipped with sensors for temperature, salinity, nitrate, dissolved

oxygen (DO), and chlorophyll fluorescence. They profiled at 5-day

intervals, providing long-term (46-51 months) datasets monitoring

large-scale and seasonal variability as well as impacts of individual

eddies the floats encountered as they moved from their inshore

deployment locations to the southwest.

Physical and biogeochemical variability measured by these floats

every 5 days along their trajectories are compared against model-

simulated fields sampled at the same time and locations. Our model

shows varying levels of fidelity in representing real float observations

for different ocean variables and depths: While the model successfully

represents float-sampled magnitude and variability of temperature at

the surface for all three cases, it underrepresents the observed

temperature range at the depth of 300 m by about 40% or 1°C in

two of the three cases (i.e., Float #7647 and #7618, which sampled the

southern and central CCS around 30-36°N; Figures 2a, b, 3a;

Supplementary Figures S2a, b, S3a). Schultz et al. (2024) analyzed

ocean interior temperature simulated in this model and found it less

variable in the CCS when compared to two fully coupled Earth

System models, both of which employed the same ocean-ice model.

We thus attribute this lack offidelity to limitations of the atmospheric

reanalysis-forced, ice/ocean experimental design - while the external

(e.g., wind) forcing generates circulation variability, the assumption

of an infinite heat capacity atmosphere and application of salinity

restoring dampens ocean internal variability through the surface

(Griffies et al., 2016). The case is somewhat opposite for nitrate

concentrations (Figures 2c, 3b; Supplementary Figures S2b, S3b),
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however, as the model retains the large-scale observed nitrate

structure by capturing about 90% of the observed range in the

interior but substantially underestimates both the observed range

and highest values of surface nitrate concentrations by more than

50%. This discrepancy is largely due to weaker coastal upwelling and

consequently a deeper nutricline in the model when compared to

observations. For example, several strong coastal upwelling events

occurred in the central CCS in the early seasons of 2013, which acted

to bring high concentrations of nitrate up to the surface. This

upwelling was successfully captured by Float #7647 sampling in the

area but is not seen in the model (Figure 3b). Nonetheless, the model

successfully represents the CCS nutricline depth and its variability

over most parts of the float trajectories (Figure 3b). For chlorophyll,

in addition to underrepresenting the dynamic range and highest

surface values (Figure 2d), the model also underestimates the depth

extent of chlorophyll and the potential for significant measurable

chlorophyll far below the euphotic zone. The former we interpret as a

model deficiency in representing high chlorophyll content in living

phytoplankton cells under low light conditions, while the latter

suggests the presence of fluorescence in slowly sinking particles,

which is not represented in the model. Additionally, van Oostende

et al. (2018) suggests that implementing a fast growing (e.g., coastal

diatom) phytoplankton type in COBALT allows the model to better

capture the productive endpoints of chlorophyll observed in the CCS,

which is lacking in the version of COBALT used in this study.

Modeled DO variability is driven by a combination of its temperature

and nutrient controls with good correspondence in the surface as a

function of temperature, but damped variability at depth likely due to

underrepresentation of temperature variability (Figures 2b, e, 3a, d;

Supplementary Figures 2b, c, 3, 4b, d, 5a, c). Overall, the model

captures only about 60% of the observed temperature variability but

>85% of DO variability in the ocean interior.
3.2 Sensitivity of simulated float
trajectories and sampled variability to
deployment location

Beyond the chaotic influence of eddies and fronts, the overall

direction and offshore extent of simulated float trajectories show a

noticeable dependency on the latitude of the deployment sites

(Figures 4a–c). To quantify and visualize the spatial spans and the

likelihood of an average float drifting to, and sampling a given

location, we use density plots (Figures 4d–f) to show the total

number of profiles collected by the float ensemble in a given gridded

location during the entire period scaled by the size of the float

ensemble (n = 920). A denser distribution thus indicates a higher

probability for this location to be sampled by the floats. For

example, a high density of 7 on the map means that an average

float deployed nearshore within this domain is expected to drift to,

and stay at that location for about 35 days, and collect 7 profiles

there across its 5-year lifespan. Floats deployed in the northern

domain (i.e., north of 42°N) tend to drift to the northwest and stay

relatively inshore (Figures 4c, f). This pattern is likely driven by

seasonally consistent northwestward coastal currents at the floats’
frontiersin.org
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drifting depth of 1000 m, and strong summertime surface currents

of the same direction (Supplementary Figure S6). Floats deployed in

the central areas (34-42°N) tend to drift offshore overall but may

spread extensively to the north and southwest as well, covering an

approximately 40% larger area than those from the more northerly
Frontiers in Marine Science 06
deployments (Figures 4b, e, h). These offshore drifts and areal

coverage patterns are consistent between summertime and

wintertime deployments even though the ocean current system

undergoes a seasonal reversal in the central CCS (Supplementary

Figures S7, S8). While it is unclear whether the 1000-m current
FIGURE 2

(a) Trajectory of a real float (Series# 7647, WMO# 1902394) deployed in the CCS, which provided a 46-month dataset of sampled ocean physical
and biogeochemical variability along its trajectory, and comparisons of Float #7647 measured profiles and model-simulated profiles of (b)
temperature, (c) nitrate concentration, (d) chlorophyll concentration, and (e) dissolved oxygen concentration in the upper 500 m sampled at the
same time and locations of the real float’s observations.
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fields dominate the drift, the strong wintertime southwestward

surface currents may also play an important role (Supplementary

Figure S6). Floats deployed further south (south of 34°N) tend to

drift offshore to the southwest though to a lesser extent compared to

the central CCS deployments (Figure 4a). This finding is consistent

with the direction of wintertime surface currents and, further in the

south, summertime surface currents as well (Supplementary Figure

S6). The areal coverage of these floats is similar to those from the

northerly deployments (Figures 4g, h).

Controls of float sampled variability of temperature, nitrate,

chlorophyll, and DO at the ocean surface and interior include local

spatiotemporal gradients in model simulated fields and float

sampled area associated with the direction and offshore extent of

the drift. Overall, floats from more northerly deployments sampled

a larger surface range in temperature (~6°C) and chlorophyll (~0.7
Frontiers in Marine Science 07
mg m-3) compared to those from more southerly deployments

(Figures 5a, c). In the ocean interior, float sampled variability

appears less sensitive to the latitudes of the deployment sites.

However, larger ranges of nitrate and DO at depths of 200-300 m

are captured by floats deployed in the central and southern regions,

consistent with the overall larger area sampled by these floats

(Figures 4h, 5b, d).
3.3 Sensitivity of simulated float
trajectories and sampled variability to
parking depth

Simulated float trajectories and sampled variability in

temperature, nitrate, chlorophyll, and DO depend largely on the
FIGURE 3

Comparison of Float #7647 measured and model simulated (a) temperature, (b) nitrate, (c) chlorophyll concentration, and (d) dissolved oxygen
concentration at the same time and locations along the real float’s trajectory over the 46-month period between 2012 and 2016.
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depth at which floats spend a majority of their lifetime drifting. When

operating on a 5-day profiling cycle, for example, a float spends 4.5

days or 90% time drifting at its parked depth. Three additional float

fleets are deployed at the same 92 locations (n = 276) as a sensitivity

experiment in which these floats’ parking depth is altered from the
Frontiers in Marine Science 08
default 1000 m to 200 m, 500 m, and 2000 m, respectively, to assess

the sensitivity of simulated trajectories and sampled variability to this

change (Figures 6–8). Simulated trajectories show that floats drifting

at 2000 m move a much shorter distance on average over the 5-year

period, essentially providing a nearly Eulerian dataset (Figure 6d),
FIGURE 4

(a-c) Overall drift direction and extent and (d-f) spatial probability density distribution of simulated float trajectories, (g) maximum latitudinal and
longitudinal spans of float drift, and (h) areal coverage by the floats over the 5-year period, showing the sensitivity to the latitude of deployment
locations in the CCS. Floats are grouped into the southern (floats deployed between 25.9-34°N), central (34-42°N), and northern (42-50°N)
deployment domains (control deployments, n = 920).
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while floats drifting at 200 m, 500 m and 1000 m provide datasets

associated with stronger mean currents and more eddy-like features

which they encounter at shallower depths (Figures 6a–c, 7c).

Maximum latitudinal and longitudinal drift spans and areal

coverage over the 5-year period all decrease as the parking depth
Frontiers in Marine Science 09
increases (Figures 6e, f), largely due to stronger mean currents at

shallower depths (Supplementary Figure S1). However, analyzing the

along-track ocean current speed anomaly at a given location and day

of the year (see Section 2.5) suggests that floats drifting at shallower

depths do not necessarily experience stronger-than-usual currents
FIGURE 5

Virtual float sampled profiles of (a) temperature, (b) nitrate concentration, (c) chlorophyll concentration, and (d) dissolved oxygen concentration in
the upper 500 m and their sensitivity to the latitude of deployment locations. Each solid line represents the mean values averaged over about
109,500 profiles (i.e., for the control deployments, there are a total of about 300 floats deployed in each domain and each float sampled about 365
profiles), and the dashed lines represent one standard deviation from the mean values.
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(Figure 7c). The probability of a float getting entrained into and

repeatedly sampling an eddy-like feature is 50% higher for the 1000-

m drifting case when compared to the 200-m drifting case despite a

larger sampled area and a stronger mean flow experienced by the

latter, followed by the 500-m and 2000-m drifting cases (Figure 7c).

An analysis using the 1000 m velocities to identify eddy-like

structures, as opposed to the 500 m velocities, are provided in

Supplementary Figure S9 and shows consistent results.

Due to the aforementioned, these datasets sample the area and

its variability quite differently as they not only sample the Eulerian

and Lagrangian variability at different depths but also have an up to

10% probability of continuously quasi-Lagrangian sampling the

same eddy-like features for prolonged periods. Overall, sampled

dynamic ranges in surface ocean temperature, nitrate, chlorophyll,

and DO all increase in the 200 m-drifting dataset as the floats move

further to the southwest and sample a broader area along their

trajectories, in particular for chlorophyll ranges. Higher chlorophyll

mean values (>0.5 mg m-3) are also sampled in the upper 50 m with

200-m drifting but not in the deeper-drifting cases (Figure 8c).

Temperature, nitrate, and DO, in contrast, do not exhibit a
Frontiers in Marine Science 10
difference in mean sampled values across all cases either at the

surface or in the interior (Figures 8a, b, d).
3.4 Sensitivity of simulated float
trajectories and sampled variability to
profiling and sampling intervals

In contrast to the high sensitivity to parking depth, sensitivity

to profiling intervals across 1 to 30 days appears low with regard to

both simulated float drift spans and coverage area (Supplementary

Figures S10-S12). We also assess the degree to which more

frequent sampling (i.e., how often the sensors are turned on)

can better capture the full range of variability in float observables.

To test this sensitivity of sampled variability to sampling intervals,

we analyze the fleet of floats set to a daily profiling interval and

compute the sampled ranges of daily temperature, nitrate,

chlorophyll, and DO for the 5-year period (n = 92). This dataset

is considered to contain the full range of observed variability. We

then reduce the sampling interval from daily to the typical float
FIGURE 6

(a-d) Overall drift direction and extent of simulated float trajectories, (e) maximum latitudinal and longitudinal spans of float drift, and (f) areal
coverage by the floats over the 5-year period, showing the sensitivity to different parking depths (200 m, 500 m, 1000 m, and 2000 m; n = 368). In
a-d, colored lines are used to simply differentiate the numerous floats.
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sampling intervals (every 5-10 days), sub-seasonal (every 30 days),

seasonal (every 90 days), and interannual (every 365 days), and

compute the percentage of retained sampled range compared to

the full range dataset. Sampling at typical intervals (every 5-10

days) still captures over 75% of the daily surface variability in all

ocean variables, while interannual variability from sampling every

365 days accounts for about 20% of daily surface variability

(Figure 9). For the ocean interior, the typical 5-10 days

sampling design captures over 80% of daily variability for
Frontiers in Marine Science 11
temperature, 87% for chlorophyll, and over 95% for nitrate

and DO in good correspondence to their solubility and

biogeochemical controls.
4 Discussion and conclusions

Our initial finding is that most virtual floats deployed in the

CCS tend to drift offshore to the southwest even though the current
FIGURE 7

(a) An example showing daily ocean current speed along the trajectory of a 1000-m drifting float over the 5-year period. (b) Identification of the
total number of days, shown in thickened red segments, when the float is considered associated with and repeatedly sampling the same eddy-like
features using the ocean current speed anomaly criteria (see Section 2.5). (c) % time an average float experiences stronger-than-usual ocean
currents, shown in blue boxes, and % time an average float is considered associated with and repeatedly sampling the same eddy-like features,
shown in orange boxes, over the 5-year period, as well as their sensitivity to different parking depths (200 m, 500 m, 1000 m, and 2000 m; n = 368).
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system undergoes a seasonal reversal, which is consistent with the

trajectories of all 3 real floats analyzed. Taking a closer look,

however, we find a strong latitudinal dependency of the overall

directions and offshore extent of the float trajectories. Floats
Frontiers in Marine Science 12
deployed in the north tend to drift to the northwest and stay

relatively inshore; floats deployed in the central domain drift

offshore overall but spread extensively to the north and the

southwest while sampling the largest area and variability; floats
FIGURE 8

Virtual float sampled profiles of (a) temperature, (b) nitrate concentration, (c) chlorophyll concentration, and (d) dissolved oxygen concentration in
the upper 500 m and their sensitivity to parking depth. Each solid line represents the mean value averaged over 33,580 profiles, i.e., there are 92
floats deployed in all three (northern, central, southern) regions in each experiment, and each float collected about 365 profiles, and dashed lines
represent one standard deviation from the mean values.
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deployed further south tend to drift offshore to the southwest.

Another key finding of our analysis is that float sampled area and

ocean variability are tightly linked to the parking depth and the

possibility of eddy association. Because of the use of the 1000-m

parking depth, floats tend to spend considerable time sampling the

same eddy-like features up to a few months at a time (Figures 7b, c),

making the data from these profiles highly correlated during these

times and potentially limiting the total amount of variability that

the floats experience over their lifetime. We recommend that this

“non-random” repeated sampling of the same eddies be quantified

with a spectral analysis to separate the seasonal/spatial and eddy

components. While this potential for eddy-association may

diminish the float’s capability of sampling the full range of

variability in the local region, it also provides a quasi-Lagrangian

opportunity for mechanistic analysis of biogeochemical processes

within these environments over time with increased ability to
Frontiers in Marine Science 13
interpret time-evolving concentrations into fluxes (Bushinsky

et al., 2019; Gray, 2023). Encouragingly, we find little sensitivity

of the floats’ trajectories and areal coverage to the frequency of

profiling which supports the Argo float’s 5-day or 10-day cycle

design. While we find 10-day sampling to only capture about 80% of

daily variability in modeled temperature in the interior ocean at 300

m, we find higher percentages of daily variability captured for the

biogeochemical variables (chlorophyll, nitrate, DO), providing

support that Argo float’s standard of 5-day or 10-day sampling is

also sufficient to characterize biogeochemical variability as well as

physical variability. Finally, we recognize that the evaluation and

analysis of these float simulations apply only to the CCS; however,

our methods and recommendations may be considered more widely

in similar eastern boundary current regions, in particular when

considering the likelihood of float-eddy association and role of

parking depth.
FIGURE 9

Sensitivity of float sampled range of (a) temperature, (b) nitrate concentration, (c) chlorophyll concentration, and (d) dissolved oxygen concentration
at the ocean surface and interior to float sampling intervals, shown as the percentage of sampled range retained compared to the daily sampling
dataset. For each float, a sampled dataset comprises {VARsday, VARsday+n, VARsday+2n, …}, where VAR is the sampled ocean variable, sday is the first
day of sampling which can be {1, 2, …, n-1}, and n is the sampling interval in days. The range (i.e., maximum value - minimum value) of the sampled
dataset is computed for each sday and then the mean and standard deviation of all the sampled ranges are computed. The mean sampled range for
each VAR and each sampling interval, shown as a filled circle for the surface and a filled square for the ocean interior, and the mean standard
deviation, shown as the length of an error bar, are averaged values across all floats (n = 92).
frontiersin.org

https://doi.org/10.3389/fmars.2025.1481761
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Liu et al. 10.3389/fmars.2025.1481761
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Author contributions

XL: Data curation, Formal analysis, Methodology,

Visualization, Writing – original draft. JD: Conceptualization,

Funding acquisition, Methodology, Project administration,

Resources, Supervision, Writing – review & editing. ED:

Methodology, Writing – review & editing. GJ: Funding

acquisition, Methodology, Project administration, Writing –

review & editing.
Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This report was prepared

by Xiao Liu under award NA21OAR4310251 from the National

Oceanic and Atmospheric Administration, U.S. Department of

Commerce. The statements, findings, conclusions, and

recommendations are those of the authors and do not necessarily

reflect the views of the National Oceanic and Atmospheric

Administration, or the U.S. Department of Commerce. PMEL

contribution number 6454.
Frontiers in Marine Science 14
Acknowledgments

We thank NOAA GFDL’s M. Harrison and K. Noh who

performed an internal review for an earlier draft of this

manuscript, and the two journal reviewers who provided

constructive insights and suggestions.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online at:

https://www.frontiersin.org/articles/10.3389/fmars.2025.1481761/

full#supplementary-material
References
Adcroft, A., Anderson, W., Balaji, V., Blanton, C., Bushuk, M., Dufour, C. O., et al.
(2019). The GFDL global ocean and sea ice model OM4.0: Model description and
simulation features. J. Adv. Modeling Earth Syst. 11, 3167–3211. doi: 10.1029/
2019MS001726

Addey, C. I. (2022). Using Biogeochemical Argo floats to understand ocean carbon and
oxygen dynamics. Nat. Rev. Earth Environ. 3, 739. doi: 10.1038/s43017-022-00341-5

Bograd, S. J., Castro, C. G., Di Lorenzo, E., Palacios, D. M., Bailey, H., Gilly, W., et al.
(2008). Oxygen declines and the shoaling of the hypoxic boundary in the California
Current, Geophys. Res. Lett. 35, L12607. doi: 10.1029/2008GL034185

Brady, R. X., Lovenduski, N. S., Yeager, S. G., Long, M. C., and Lindsay, K. (2020).
Skillful multiyear predictions of ocean acidification in the California Current System.
Nat. Commun. 11, 2166. doi: 10.1038/s41467-020-15722-x

Bushinsky, S. M., Landschützer, P., Rödenbeck, C., Gray, A. R., Baker, D., Mazloff, M.
R., et al. (2019). Reassessing Southern Ocean air-sea CO2 flux estimates with the
addition of biogeochemical float observations. Global Biogeochemical Cycles 33.11,
1370–1388. doi: 10.1029/2019GB006176

Chan, F., Barth, J. A., Lubchenco, J., Kirincich, A., Weeks, H., Peterson, W. T., et al.
(2008). Emergence of anoxia in the California Current large marine ecosystem. Science
319, 920. doi: 10.1126/science.1149016

Chavez, F., and Messie, M. (2009). A comparison of eastern boundary upwelling
ecosystems. Prog. Oceanogr 83, 80–96. doi: 10.1016/j.pocean.2009.07.032

Checkley, D., and Barth, J. A. (2009). Patterns and processes in the california current
system. Prog. Oceanogr. 83, 49–64. doi: 10.1016/j.pocean.2009.07.028

Dussin, R., Curchitser, E. N., Stock, C. A., and Van Oostende, N. (2019).
Biogeochemical drivers of changing hypoxia in the California Current Ecosystem.
Deep-Sea Res. II 169–170, 104590. doi: 10.1016/j.dsr2.2019.05.013

Feely, R. A., Okazaki, R. R., Cai, W.-J., Bednarsěk, N., Alin, S. R., Byrne, R. H., et al.
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