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Marine biofilms are globally ubiquitous surface-associated microbial

communities that have gained increasing attention due to their distinctive

structure and functions. The aim of this study is to provide a comprehensive

overview of the current scientific understanding, with a specific focus on

naturally occurring biofilms that develop on diverse marine abiotic surfaces,

includingmicroplastics, seafloor sediments, subsurface particles, and submerged

artificial structures susceptible to biocorrosion and biofouling induced by marine

biofilms. This article presents recent advancements and discoveries concerning

the diversity, structure, function, and dynamics of these surface-associated

microbial communities in the marine environment, highlighting their ecological

and biogeochemical dimensions, while also serving as an inspiration for further

investigations into marine biofilms.
KEYWORDS
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1 Introduction

1.1 What are biofilms?

Microorganisms can live either as free cells or in a consortium, as a biofilm, consisting of

the same or different species. Biofilms are surface-associated microbial communities encased

in the self-secreted extracellular matrix (Costerton et al., 1995) (Figure 1). This matrix, known

as the extracellular polymeric substances (EPSs), mainly consisting of exopolysaccharides,

secreted proteins, and extracellular DNA (eDNA), is believed to maintain the structural

integrity of the biofilm by holding cells together as “molecular glue.” In aquatic environments,

EPSs provide protection for biofilm cells against harsh environmental conditions and shear

forces (Stoodley et al., 2002; Yu et al., 2015). It is widely acknowledged that biofilms represent

one of the most successful and prevalent forms of life in natural habitats and industrial and

hospital settings. It has been estimated that approximately 40%–80% of prokaryotes have the

ability to form biofilms (Flemming and Wuertz, 2019).
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1.2 Stages of biofilm development

The transition from free-swimming planktonic cells to biofilm-

making sessile aggregates is a multi-step process called biofilm

formation. Biofilm formation follows a five-stage multicellular cycle

(Ma et al., 2009) (Figures 1, 2A). In the initial step, free-floating

microbial cells loosely and reversibly attached to a surface mediated

by cell surface structures such as flagella and pili. The intracellular

signaling molecule bis-(3′-5′)-cyclic dimeric guanosine

monophosphate (c-di-GMP) is essential for the initial stage of

biofilm formation, as it inhibits flagella-mediated swimming

motility and promotes the production of biofilm matrix (Römling

et al., 2013). The Pil-Chp surface-sensing system located in

microbial surfaces increases the concentration of c-di-GMP with

each attachment/detachment event. Therefore, the formation of

biofilms begins with the conversion of surface-naive planktonic cells

(bacteria that have not yet encountered surfaces and have a low

concentration of c-di-GMP) to surface-sentient planktonic cells

(bacteria that have encountered surfaces and have a high

concentration of c-di-GMP), resulting in the irreversible

attachment of cells to surfaces (Armbruster and Parsek, 2018).

Following this, attached microorganisms begin to multiply and

aggregate within the self-produced EPS matrix in the presence of a

high concentration of c-di-GMP. Flagella and type IV pili-mediated
Frontiers in Marine Science 02
motilities play essential roles in microbe-surface interactions and

cell–cell aggregations, respectively, leading to the formation of

microcolonies (Rabin et al., 2015). The subsequent biofilm

maturation can result in the development of “mushroom”-shaped

structure with multilayered cells (Figure 2B), depending on the

species involved. EPS is essential for the maturation of biofilms, as it

facilitates microbial attachment to surfaces; stabilizes the 3-D

structure of the biofilm; groups cells together; protects from a

variety of stressors, such as the host immune system response,

antimicrobials, oxidative damage, and metallic cations; and

encapsulates signaling molecules that are necessary for quorum

sensing (QS), metabolic products, and enzymes (Toyofuku et al.,

2016). During the final dispersion stage, biofilm ruptures either

actively (motility and EPS degradation-dependent dispersion) or

passively (physical causes such as liquid flow-dependent

dispersion), and microbes are released as planktonic cells to

colonize new sites (Chandki et al., 2011). External factors such as

pH, temperature, gravitational forces, Brownian movements,

hydrodynamic forces, signal molecules, and the nature of the

inhabited surfaces all influence this complex formation process

(Zhao et al., 2017). For instance, bacteria generally possess a net

negative charge due to the carboxyl, amino, and phosphate groups

on their cell wall surfaces, leading to more adhesion on positively

charged surfaces (Kovačević et al., 2016; Guo et al., 2018).
FIGURE 1

Typical stages of biofilm formation and the regulatory role of quorum sensing that takes part in biofilm development.
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Moreover, according to a study by Hou et al. (2018), shear flow

promotes biofilm formation by stimulating S. aureus’ EPS

production and EPS-matrix strength. Their research supported

earlier hypotheses regarding pressure-induced EPS production

(Hou et al., 2018).
1.3 Microbial quorum sensing in
biofilm development

Despite their self-sufficiency, microorganisms communicate

and coordinate with each other to accomplish the biofilm

formation; the mechanism of this cell-to-cell communication

process is referred to as “quorum sensing” (Fuqua et al., 1996). A

typical QS system consists of microbial groups, signal molecules,

and behavioral genes. It enables microbial cells to sense population

density by monitoring the accumulation of a specific signal

molecules (termed as the autoinducers, AIs) secreted and released

by community members. The accumulation of these signal

molecules in the surrounding environment is only adequate to

activate the response with a sufficient quorum size. Once a minimal

signal concentration is reached, signal molecules, known as the

autoinducers, interacts with receptor proteins, leading to

coordinated behavior through changes in gene expression. In this

communication system, signal molecules serve as “a language” to

help microorganisms to “make decisions” whether to conduct

coordinative group behaviors such as biofilm formation, virulence

production, enzymes secretion, and antibiotic release (Ruparell

et al., 2016). Key processes involved in biofilm formation

including initial bacteria–surface interactions, surface attachment,

biofilm initiation, biofilm maturation, and biofilm differentiation
Frontiers in Marine Science 03
are all believed to be regulated through this cell-density-dependent

manner (Ng and Bassler, 2009). Chemical signals can be categorized

into several groups. A majority of them were discovered through

research on infection-causing bacteria. N-Acylated homoserine

lactones (AHLs), commonly found in a number of Gram-negative

bacteria, represent the first described class of QS signals. In this

context, AHLs synthesized by synthase LuxI can freely diffuse across

the membrane into the surrounding environment. Once their

concentration reaches a certain threshold level, they bind to the

receptor protein LuxR. Subsequently, LuxR dimerizes and gains the

ability to act as a transcription factor by binding to the Lux box in

DNA. Consequently, genes involved in biofilm formation, exotoxins

production, etc. are activated while also promoting expression of

both LuxI and LuxR (auto-induction) (Camilli and Bassler, 2006)

(Figure 1). Two N-acyl-homoserine lactone (AHL)-based QS

systems, las and rhl, and one alkylquinolone (AQ)-mediated QS

have been discovered in P. aeruginosa (Jimenez et al., 2012).

Different QS systems function hierarchically, regulating the

virulence factors and biofilm formation of P. aeruginosa (Sharma

et al., 2024). Complexes formed by the two QS systems induce

expression of various virulence factors such as protease, elastase,

alkaline protease, and HCN production (Brint and Ohman, 1995;

Pessi and Haas, 2000; Miller and Bassler, 2001). QS promotes the

production of biofilms by releasing extracellular DNA (eDNA),

which is necessary for adhesion, cell-to-cell attachment, biofilm

formation, stability, and defense against detergents and antibiotics

(Das and Manefield, 2013). Moreover, Gram-positive systems

utilize secreted oligopeptides and two-component systems, which

are composed of cytoplasmic transcription factors and membrane-

bound sensor kinase receptors that regulate gene expression

(Novick and Geisinger, 2008). Genetic competence in B. subtilis
FIGURE 2

Photos of biofilms and marine corrosion formed on different surfaces. (A) Scanning electron micrographs of aggregates of Pseudomonas aeruginosa
cells encased by the self-secreted EPS (Alain, 2021). (B) Confocal laser scanning microscopic images of Pseudomonas aeruginosa biofilm that takes
the form of mushroom-like structures (Haagensen et al., 2015). (C) Biocorrosion on the surfaces of the ship hull (Lewis, 2018). (D) Current
measurement instrument biofouling with zebra mussels. (E) Scanning electron micrographs showing prokaryotic attachment on a microplastic
surface sampled either immediately (left) or after 14 days of inoculation (right) (Harrison et al., 2014). (F) White bacterial mat on sediment located in
an area where hydrothermal fluids are seeping through cracks in the seafloor (Fahy et al., 2017). (G) Aggregates of ANME and SRB cells in the
subsurface sediments of the Sonora Margin cold seeps, Guaymas Basin (Vigneron et al., 2014).
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and S. pneumoniae, virulence response and the production of

antimicrobial peptides in S. aureus, and numerous other

processes are reported to be regulated by QS in Gram-positive

bacteria with similar fundamental objectives (Haque et al., 2019).
1.4 The potential ecological and industrial
applications of biofilm polymers

The synthesis of extracellular polymeric substances is crucial for

biofilm development. The production of biofilms characterizes

many chronic illnesses, prompting extensive research into how

bacterial biopolymers influence both pathogenesis and biofilm

formation. Bacterial biopolymers, along with their production and

biological roles, present targets for the development of innovative

antibacterial agents (Qvortrup et al., 2019). In addition, the

enhanced tolerance to harmful contaminants and increased

breakdown capacities of bacterial biofilms are often ascribed to

the EPS matrix (Mishra et al., 2022). Through ion exchange,

precipitation, binding, emulsification, solubilization, and

complexation, EPS layers interact with harmful environmental

contaminants (Shukla et al., 2017). Various functional groups of

EPS, including carboxyl, amide, phosphoryl, and hydroxyl,

participate in the elimination of toxic substances from

contaminated environments. Biofilm EPS is involved in several

remedial processes, including the sorption and degradation of dyes

and pesticides, the emulsification of petroleum hydrocarbons, the

binding and solubilization of polycyclic aromatic hydrocarbons

(PAHs), and the sequestration of heavy metals (Mahto et al.,

2022). Therefore, bacterial biofilm and EPS offer an appealing

approach for decontaminating highly contaminated areas.

On the other hand, substantial research has concentrated on

utilizing the unique material features of bacterial polymers for

industrial applications in medical and technical fields. On

polysaccharides, the presence of hydrophilic groups—such as

hydroxy and carboxyl groups—confer great water-binding

capacity and enable intermolecular contacts and crosslinks (for

example, polymer–polymer, polymer–drug, and polymer–host

tissue and cell interactions). Porous hydrogels formed by

polysaccharides can be employed for the controlled release of

anticancer drugs (Li and Mooney, 2016), drug delivery, tissue

engineering (Miao et al., 2018), immobilization of enzymes

(Mohan et al., 2015), therapeutic cell entrapment, and protection

of transplanted cells from the host immune system (Mitrousis et al.,

2018). Polyamides or poly(amino acid) chains produced by bacteria

can serve as capsules or biofilm matrix or as storage material (Yu

et al., 2016) (Zhang and Yang, 2019). The biodegradability, non-

toxicity, and modifiability of bacterial polyamides have made them

viable alternatives to chemically produced polymers for use in

pharmaceutical, cosmetic, biomedical, and industrial formulations

(Lee et al., 2019). Polyhydroxyalkanoates (PHAs) are bacterially

produced bioplastics that can be chemically modified,

bioengineered, and processed into low-value commodity

bioplastics or high-value medical materials (e.g., tissue

engineering scaffolds, drug carriers, sutures, and particle

vaccinations) (Kai and Loh, 2014) . The synthesis of
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polyphosphate (PolyP) is an evolutionarily ancient capability of

bacteria. PolyPs not only serve as a reservoir for phosphate but also

supply chemical energy for biosynthetic pathways, act as a buffer

against alkalinity, function as a metal-chelating agent, and play a

role in channel complexes for DNA uptake. Because of their

superior energy storage properties, industry has increasingly

investigated polyPs to drive energy-consuming enzyme-catalyzed

reactions (Yoo et al., 2018). In regenerative medicine, they are also

regarded as morphogenetically active biomaterials for bone

regeneration and cartilage repair (Müller et al., 2017). Unlike

other biopolymers, such as polysaccharides and polyesters,

extracellular DNA, polypeptides, and proteins are fascinating

programmable biomaterial platforms because of their genetic

programmability and simplicity of engineering (Nguyen et al.,

2018). The development of engineered living materials—that is,

living cells that are designed to autonomously self-assemble entire

materials with novel and tunable properties for a variety of

applications, including microbial electrosynthesis, biosensors,

electronic monitoring devices, and bioremediation—has attracted

a lot of attention recently due to the straightforward genetic

programmability of these polymers (Gilbert and Ellis, 2019).
1.5 Marine biofilms

In marine environments, a wide variety of surfaces can be

colonized by diverse microorganisms, including bacteria, archaea,

diatoms, fungi, flagellates, ciliates, and multicellular eukaryotes,

leading to the subsequent formation of highly complex biofilms.

These surfaces include both biotic surfaces, such as algae and

marine living animals, and abiotic surfaces like different types of

particles, aggregates, immersed constructs, vessel surfaces, and inert

or bio-reactive mineral substrata (Figure 3).

The association with these surfaces provides microorganisms

with numerous ecological advantages including increased access to

nutritional resources, improved organism interactions, and enhanced

environmental stability. These characteristics are particularly crucial

in marine habitats, where nutrients are usually a restrictive factor of

growth and ambient circumstances are highly dynamic and

occasionally unfavorable (Dang and Lovell, 2016). The composition

of the microbial community in marine biofilms is distinct from that

of freshwater and plankton (Battin et al., 2016; Catão CP et al., 2021).

For example, in freshwater biofilms, Pseudomonadota typically form

the dominating phylum, while in marine biofilms, their abundance is

lower (Battin et al., 2016). Furthermore, SAR11, Prochlorococcus,

and Synechococcus are prevalent in seawater; however, pennate

diatoms, Sphingomonadaceae of Alphaproteobacteria ,

Alteromonadaceae of Gammaproteobacteria, and Bacteroides are

widespread bacterial species in marine biofilms (Harrison et al.,

2018). The chemical composition of marine biofilms, such as EPS

and metabolites, alters during community succession; qualitative and

quantitative changes in the chemical profiles of marine biofilm

extracts were observed at different stages of development (Chung

et al., 2010). Moreover, the formation of marine biofilms and the

associated microbial metabolic activities can also lead to deleterious

outcomes such as biofouling, biocorrosion, the persistence of drug-
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resistant bacteria, and medical infections, resulting in significant costs

and health threats (Watnick and Kolter, 2000; Cottingham

et al., 2003).

Marine biofilms are primarily composed of prokaryotes in

oceans (Antunes et al., 2019). Globally, more than 25,000

operational taxonomic units (OTUs) of the 16S rRNA genes of

marine biofilm prokaryotes have been clustered (97% identity)

(Zhang W. et al., 2019). According to an empirical study, marine

biofilms are estimated to harbor a diverse assemblage of over 25,000

species, with the majority of strains exhibiting a sequence similarity

exceeding 97% based on the analysis of 16 S rRNA gene

(Konstantinidis and Tiedje, 2005). As the most diverse and

dynamic species, microorganisms are widely recognized for their

crucial role in marine environments by driving biogeochemical

cycles (Paerl and Pinckney, 1996; Hawley et al., 2017) and providing

substances and energy to higher trophic levels (Azam et al., 1983; de

Carvalho, 2012). Moreover, they are the primary residents on

marine surfaces , forming ubiqui tous biofi lms whose

configuration, dynamics, and function may be determined by

early colonizers (Dang et al., 2008, 2011). According to an

empirical study, marine biofilms are estimated to harbor over

25,000 species. These prokaryotic communities encompass a

diverse range of phyla including Proteobacteria, Acidobacteriota,

Actinomycetota, and Crenarchaeota, among which Proteobacteria

stands out as the predominant group (Zhang et al., 2019). The

microbial community composition of marine biofilms is distinct, as

demonstrated by a metagenomic survey that revealed 7,300 OTUs

exclusively found in marine biofilms (Zhang et al., 2019). Although

viral predation is restricted in biofilms due to the survival advantage

of biofilm microorganisms over their planktonic counterparts (De

Carvalho, 2018), it has been demonstrated that viruses confined

within a biofilm matrix can remain active and infect colonizing

cells, as evidenced by T7 phages (Bond et al., 2021). In a recent

study, a total of 2,446 connections between viruses and prokaryotes

were identified within 84 marine biofilms. The predominant

connections observed were between bacteriophages in the
Frontiers in Marine Science 05
Uroviricota phylum and bacteria belonging to the Proteobacteria,

Cyanobacteriota, and Bacteroidota taxa (Zhou et al., 2023).

Our understanding of the social behaviors and interactions of

microorganisms in natural biofilms is limited. According to the

hypothesis of species sorting, certain microbial species may

assemble into a community as a result of selective pressures exerted

by local abiotic and biotic environmental factors (Zhang et al., 2014).

Moreover, the spatial architecture of biofilms is primarily shaped by

microbial interactions among neighboring cells. Consequently, the

cooperative and competitive dynamics within marine biofilms are

significantly influenced by the spatial distribution of microbial cells

(Nadell et al., 2016). The findings of a recent study on signal

transduction in natural biofilm development indicate that signaling

molecules have the potential to modify the composition of marine

biofilms (Wang et al., 2020). The expression levels of signaling-related

genes, including several QS gene families (e.g., QS in Vibrio, QS in

Yersinia, QS regulation in Pseudomonas, AI-2 transporters, and AHL

inducers), two-component regulator families (e.g., two-component

regulatory systems in Campylobacter, mazE-mazF system, and

oxygen and light sensor PpaA-PpsR), virulence (e.g., Streptococcus

pyogenes virulence regulators), and unknown regulatory genes

associated with biofilm formation (e.g., biofilm formation in

Staphylococcus) were markedly elevated in biofilm samples

compared to planktonic cells, as demonstrated through an analysis

of signal transduction systems within 101 marine biofilms formed on

diverse surfaces and across multiple oceanic regions (Wang et al.,

2022). In addition, the taxonomic affiliation of signal transduction

genes in marine biofilms was found to be distinct from that observed

in seawater samples, with the potential for inter-phyla interactions

between bacteria residing in marine biofilms and those present in the

seawater (Wang et al., 2022). The interaction and communication

among microorganisms within marine biofilms and their response to

environmental changes remain poorly understood due to the limited

investigation conducted on natural marine biofilms.

Given the significant impacts of marine biofilms on the marine

industry and biogeochemical cycles, it is imperative to gain a
FIGURE 3

General formation model of the marine biofouling process.
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comprehensive understanding of the key participants, assembly

mechanisms, and functional roles. Biofilms formed on biotic

surfaces differ from those formed on abiotic surfaces due to

differences in selective forces. The focus of this review is only on

the microbial diversity, functions, microbial interactions, spatial

and temporal variations in microbial community structures of

marine biofilms formed on abiotic natural or manufactured

surfaces, and their impacts on maritime industries.
2 Marine biofilms on artificial surfaces

Marine biofilm formation on manmade surfaces and involved

microbial metabolic processes can have macroscale negative effects

including biofouling, biocorrosion, persistence, and transmission of

harmful or pathogenic bacteria and virulence determinants. The

following is a summary of the main types of adverse biofilms

formed on artificial marine surfaces, including major

characteristics, community composition, influence factor,

ecological roles, and impacts on human lives.
2.1 Microplastic biofilms

Oceans serve as a repository for plastic particles, hosting an

estimated 5.25 trillion pieces of plastic debris within the marine

system. Of these, 229,000 tons float on the surface, while 4 billion

microplastics per square kilometer are globally distributed in the deep

sea (Parker, 2015). Plastics, therefore, provide a distinctive and

enduring habitat that can be colonized by microbes and transported

over vast distances. This community of plastic-debris-associated

microorganisms is generally referred to as “the plastisphere” (Zettler

et al., 2013) (Figure 2E). In terms of open ocean waters, the known

biomass of plastisphere has been previously estimated to be 0.01%–

0.2% of total microbial biomass (Amaral-Zettler et al., 2020).

Several studies suggest that microbial diversity and richness

may be highly influenced by environmental factors and niche

partitioning (Dussud et al. , 2018; Frere et al. , 2018).

Biogeographical and environmental parameters such as salinity

and nutrient content have a strong influence on the structure of

marine microplastic biofilms (Amaral-Zettler et al., 2015;

Oberbeckmann et al., 2018). The microbial colonization of MP

surfaces is also significantly influenced by the unique structural

characteristics of the colonizing microorganisms and the properties

of the microplastics (Pompilio et al., 2008; Gong et al., 2019; Feng

et al., 2020). Electrostatic interactions governed by surface charge in

plastics and microbial communities result in chemical adsorption,

while the adhesion of microbial cells to substrates with extracellular

polymeric substances (EPS) leads to physical adsorption (Kor and

Mehdinia, 2020; Kumar et al., 2019). Bacteria possess a negative

charge and attach more rapidly to surfaces with a positive charge.

Compared to other microplastics, polyethylene and polystyrene are

less favorable to bacterial attachment due to their negative charges

(He et al., 2022). The polymer type of microplastics has been

extensively investigated (Lozano et al., 2021; McGivney et al.,

2020; Meng et al. , 2022). The varying composition of
Frontiers in Marine Science 06
microplastics regulates their explicit buoyancy and superficial

rugosities, which influence biofilm formation, microbial

colonization, and the capacity for long-distance dispersion of

microorganisms (Hossain et al . , 2019). A monitoring

investigation of biofilms on four distinct microplastics revealed

that polyolefins had the highest total suspended solids and organic

matter content due to their low surface energy (Artham et al., 2009).

Xie et al. indicated that the predominant bacteria on the surfaces of

four microplastics were associated with particular groups on the

microplastic molecules (Xie et al., 2021). It is intriguing to note that

the chemical components of the plastic debris collected from a

Mediterranean Sea beach affected the functions expressed by the

microbial communities rather than their structure (Delacuvellerie

et al., 2022). Moreover, Sooriyakumar et al. determined that surface

roughness influences the types of microorganisms that inhabit the

plastic surface (Sooriyakumar et al., 2022). Aged microplastics

exhibited an enhanced microbial community composition,

attributed to their high surface area, roughness, and polarity (Rai

et al., 2021). Goldstein et al. (2014) demonstrated a positive

correlation between the diversity of fouling microorganisms in the

North Pacific and the size of microplastic fragments (Goldstein

et al., 2014). Carson et al. (2013) observed that an increase in the

size of MP fragments corresponded with a rise in the abundance of

microbial taxa, while diversity remained unchanged (Carson et al.,

2013). According to Gong et al., microplastics with varying particle

sizes had surface biofilms with different microbial-community

compositions (Gong et al., 2023). Yao et al. proposed that the

maintenance of biomass in the biofilm may be compromised by the

more incompact biofilm formed on the surface that larger

microplastics (Yao et al., 2019). Smaller microplastics have a

larger surface area and potential surface chemical interactions,

which could have an impact on the adsorption capacity (Horton

et al., 2017). Furthermore, the particle size and surface modification

of plastics greatly influenced their potential toxic effects on aquatic

biofilms (Miao et al., 2019).

A core bacterial community comprising Cyanobacteriota,

Bacteriodota, and Proteobacteria typically represents the dominant

groups of microbial assemblages inhabiting microplastics in various

marine ecosystems (Oberbeckmann et al., 2014; Dussud et al., 2018;

Jiang et al., 2018; Xu et al., 2019; Li et al., 2020; Zhang et al., 2021).

Among these groups, Bacteroidia and Alpha-, and Gamma-

proteobacteria are the most abundant classes (Delacuvellerie et al.,

2019; Kirstein et al., 2019; Xu et al., 2019; Dudek et al., 2020).

Additionally, archaeal communities could also potentially be present in

plastic-associated biofilms. In a study, Crenarchaeota were found in all

deep ocean-collected micro- and mesoplastic biofilms (Woodall et al.,

2018). Moreover, using next-generation sequencing, De Tender et al.

(2017) investigated the biofilm ecosystems on polyethylene microplastics

cultured in marine environments. Their findings revealed a variety of

microorganisms belonging to the Ascomycota and Basidiomycota phyla,

with a lesser presence of Zygomycota (De Tender et al., 2017).

Paints used to coat surfaces in aquatic environments often

contain biocides to prevent biofouling, and as these coatings

degrade, antifouling paint particles (APPs) end up in aquatic, and

especially marine, sediments. Paint particles in the marine

environment are often overlooked in microplastic pools (Turner,
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2021). APPs release biocides and other chemicals that reduce the

formation of biofilms, inhibiting the proliferation of organisms on

submerged surfaces like ship hulls. Consequently, although

microplastics are rapidly inhabited by microbial communities

similar to those found on other inert substrates such as glass,

rock, or wood (Wright et al., 2020), antifouling surfaces offer a

niche that favors specific, albeit occasionally diverse, bacterial

populations that exhibit resistance to active biocides (Chen et al.,

2013; Flach et al., 2017). Tagg et al. (2019) investigated and

compared biofilm communities on microplastics and paint

particles collected from sediment grabs in the coastal Baltic.

Researchers discovered that alkyd- and epoxy-based paints,

presumably containing antifouling components, sustained unique

and more stable communities than biofilms on polypropylene and

polyvinyl chloride microplastics and on natural particles. The

prevalence of the Desulfobacteraceae family on certain paint

particles indicates that their presence in sediment may influence

the sulfur metabolism cycle (Tagg et al., 2019). A recent study

revealed that sediment microcosms contaminated with spiking

APPs exhibit a distinct and consistent alteration in their

microbial community, 71 indicator taxa associated with

antifouling presence and 454 associated with antifouling absence

were identified (Tagg et al., 2024).

Recently, the potential impacts of microplastics on the ecological

functions in coastal environments have attracted increasing attention.

For instance, the leaching of dissolved organic carbon from

microplastics has been shown to significantly influence the oceanic

carbon cycle by increasing microbial activity (Romera-Castillo et al.,

2018). The nitrification and denitrification of salt marsh sediments

were facilitated by polyurethane foam and poly(lactic acid) (PLA)

microplastics treatments, as demonstrated by Seeley et al.; conversely,

poly(vinyl chloride) (PVC) inhibited both processes (Seeley et al.,

2020). In addition, biodegradable microplastics were observed to

promote the microbial-mediated reduction of sulfate to chromium-

reducible sulfides in coastal sediments, demonstrating their substantial

effects on the coastal biogeochemical S cycle (Wang et al., 2023).

It is reasonable to assume that QS has the potential to influence

the formation and composition of the plastisphere, despite the fact

that the pertinent research has not yet been conducted.

Rhodobacteraceae were found to comprise 16.4% of the bacterial

biofilms of marine microplastics in the Yangtze River Estuary, China

(Jiang et al., 2018) and to occupy core populations in the plastisphere

(Debroas et al., 2017; Dussud et al., 2018). According to Zhang et al.

(2014), a significant percentage of Rhodobacteraceae in the

plastisphere was ascribed to the conserved and ubiquitous QS

signaling molecules involved in a number of metabolic processes,

particularly flagellum movement and biofilm formation on plastic

particles (Zan et al., 2014). QS may facilitate the attachment and

aggregation of Rhodobacteraceae to the surface of marine

microplastics and the inhibition of other bacteria, such as

Gammaproteobacteria. Furthermore, QS bacteria isolated from

marine microplastics demonstrated a strong capacity to form

biofilms and showed the ideal conditions for epiphytic growth.

Consequently, Oceanicola sp. strain D3, exhibiting QS capability,

was isolated from a PVC biofilm (Li et al., 2019). It is noteworthy

that bacteriostasis, algae inhibition, and the degradation ability of
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dimethylsulfoniopropionate (DMSP) by QS bacteria could influence

the pollution of microplastics in the marine environment (Gagné,

2017). Additionally, QS has the potential to serve as an innovative

approach to investigate the degradation of marine microplastic

biofilms. For instance, AHLs have the potential to alter the activity

of extracellular hydrolases (Jatt et al., 2015). Consequently, a QS

system that utilizes AHLs could play a significant role in the

degradation of microplastic biofilms. Furthermore, QS bacteria may

serve as effective indicators for monitoring MP contamination in the

marine environment due to their rapid sensitivity to organic

substances and dominant colonization.

It is believed that microbial communities present in

microplastics play a potential role in the degradation of plastic

polymers (Jacquin et al., 2019). Due to their hydrocarbon-clastic

nature, microbial biofilms could also change the physical properties

of microplastics, such as size and buoyancy, therefore allowing them

to utilize microplastics as a source of energy by breaking down

petroleum derivatives and complex biopolymers (Zettler et al., 2013;

Ogonowski et al., 2018). Alteromonadaceae and Burkholderiales,

Erythrobacter spp., and Alcanivorax borkumensis in microplastic

biofilms were demonstrated to be capable of degrading poly(3-

hydroxybutyrate-co-3-hydroxyhexanoate (PHBH), hydrocarbons,

and low-density polyethylene, respectively (Morohoshi et al.,

2018; Curren and Leong, 2019; Delacuvellerie et al., 2019).

Moreover, the ratio of microplastics microbiological communities

to free microbes in the oceans is expected to increase over time,

thereby potentially impacting environmental ecological dynamics

due to the presence of dense biofilms on these microplastics. The

formerly less active or inactive species of the marine ecosystem can

be selectively enriched on the newly introduced surface plastics in

oceans. In addition, the leachate from microplastics can

significantly enhance the levels of dissolved organic matter,

thereby elevating microbial biomass in the ocean (Romera-

Castillo et al., 2018). Wang et al. discovered that biofilms formed

on microplastics act as viable carriers for aquatic contaminants,

facilitating their trophic transmission across the food web to higher

organisms (Wang et al., 2021).

The growing concern about microplastics arises from their

potential to harm organisms and aquatic environments (Amaral-

Zettler et al., 2020). An especially significant issue is that

microplastics might act as substrates, facilitating the proliferation

and dissemination of diseases (Barros and Seena, 2021). Some

pathogenic bacteria were more prevalent on microplastics than on

natural substrates (Sabatino et al., 2024; Stevenson et al., 2024);

some pathogens were exclusively detected on microplastics (Hu

et al., 2021). Opportunistic pathogens, including Vibrio (Kesy et al.,

2021), Acinetobacter (Shi et al., 2021), and Mycobacterium (Zhao

et al., 2021), have a substantial tendency to adhere to microplastics,

as demonstrated by the most recent research. Moreover,

microplastics play an important role in the proliferation,

harboring, and dissemination of ARGs, hence exacerbating the

difficulty of managing and treating infections (Liu et al., 2021).

Moreover, in comparison to planktonic cells, horizontal gene

transfer (HGT) is believed to occur more frequently and be more

widespread in microplastic biofilms through type IV secretion

systems and conjugation (Arias-Andres et al., 2018). Although the
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underlying mechanisms are currently unknown, a high frequency of

exchange of antibiotic resistance genes (ARGs) has been observed,

which is postulated to contribute to the dissemination of

antimicrobial resistance (AMR) (Arias-Andres et al., 2018;

Donlan, 2000). The functionality of biofilms and the prevalence

and types of gene exchange taking place on marine microplastic

particles are both intriguing areas that continue to be subjects of

ongoing research.
2.2 Biofilms causing marine corrosion

Marine corrosion is a complex process that refers to the

electrochemical degradation of materials, typically metals, under the

influence of prolonged contact of marine structures with seawater

(Lawal et al., 2024). The seawater itself acts as an electrolyte with high

corrosive properties. Chemical corrosion is predominantly initiated by

pure chemical activity. Corrosion occurs when metal materials are

exposed to the marine environment and interact directly with it. Gases

such as SO3, SO2, and CO2 can dissolve in the liquid layer interacting

with the metal surface, resulting in an acidic environment that erodes

the metal (Sun et al., 2016). Additionally, the oceanic environment is

intricate due to the influence of marine organisms and their

metabolites, which collectively contribute to corrosion (Li et al.,

2019). Upon submergence in seawater, surfaces quickly become

colonized by microorganisms, leading to the formation of highly

heterogeneous and dynamic three-dimensional structures. This

deleterious biofilm formation has a significant impact on maritime

engineering, resulting in considerable damage and financial losses

worldwide (Enning and Garrelfs, 2014).

MIC is the corrosion of materials that is promoted directly by

the living activities of microbes or indirectly by their metabolites,

while marine biofouling is the result of the unfavorable settlement

and accumulation of marine microorganisms and macro-foulers on

submerged surfaces of materials (Li et al., 2019). Thus, MIC is a

corrosion process that takes place at the microscopic level, involving

interactions between microorganisms and material surfaces, while

biofouling is a macro-level process characterized by the deposition

and accumulation of fouling substances on surfaces. Both MIC and

biofouling are closely associated with biofilms that are formed by

marine microorganisms that are sorted by the initial film (KoChina

et al., 2022). Organisms associated with MIC are simply a variety of

microbes. Organisms associated with biofouling comprise different

microorganisms, plants, and animals. Microorganisms are the cause

of biofouling creation because they generate appropriate settling

sites and circumstances and nutrients that attract additional

organisms (Li et al., 2019).

Metal corrosion could be accelerated either directly or indirectly

by microbiological activities or their metabolites, known as

microbiologically influenced corrosion (Liu et al., 2017)

(Figure 2C). A prominent example of this phenomenon occurs in

the oil and gas industry, including storage and transportation

processes . While microbes play a crucial role in oi l

bioremediation, the microbial contamination in oil and natural

gas facilities is undesirable because they can metabolize

hydrocarbons, alter sulfur content, and affect oil density and
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viscosity. The anaerobic conditions common in the oil sector,

together with the abundance of microbe substrates, such as

hydrocarbons and organosulfur compounds, stimulate the biofilm

formation, which causes microbial-influenced corrosion (Vigneron

et al., 2016; Abu Bakar et al., 2017; Li et al., 2017).

Biofilm formation and development, which are influenced by

microbial metabolisms and corrosion, play a critical role in MIC.

Several studies have revealed that different stages in biofilm

formation exert varying impacts on corrosion. The formation of

heterogeneous biofilms due to the detachment of unstable ones can

result in localized corrosion, thereby accelerating the overall

corrosion rate (Xia et al., 2015; Lenhart et al., 2014).

There are two primary theories explaining the mechanism by

which microbial biofilms induce corrosion. According to the

oxygen concentration cell theory, when heterogeneous biofilms

form on a material surface, regions covered by dense biofilms

experience oxygen deprivation due to prevention of biofilm

formation and consumption by aerobic bacteria. Consequently,

these areas serve as anodic sites in the corrosion process.

Conversely, locations without biofilm or covered by thin biofilms

act as cathodic sites for electron consumption and oxygen reaction

(Jia et al., 2019). On the other hand, the bio-catalytic cathodic

sulfate reaction (BCSR) theory posits that sulfate-reducing bacteria

(SRB)-formed biofilms function as barriers to mass transfer,

hindering carbon source diffusion. As a result of limited external

carbon and electron availability, starved SRB near the metal surface

utilize iron as an electron donor leading to iron corrosion. The

released electrons are subsequently utilized by SRB for sulfate

reduction (Skovhus et al., 2017). Dinh et al. (2004) found that

unique marine deltaproteobacterial SRB enriched and isolated using

metallic iron as the only electron donor reduced sulfate faster than

traditional strains and were more corrosive. Furthermore, they

generated a large amount of H2 rather than scavenging it,

probably due to an initial excess of iron-derived reducing power

(Dinh et al., 2004). Accordingly, direct electron intake from iron has

been proposed as a kinetically more effective way to employ Fe0 for

sulfate respiration than through the slowly generated abiotic H2, i.e.,

through a faster bypass (Dinh et al., 2004). Under laboratory

conditions, sulfate- and iron-reducing bacteria were found in

different layers of anaerobic biofilm on carbon steel in seawater,

and electrochemical impedance spectroscopy (EIS) capacitance

changes could indicate corrosion product alterations. The primary

mechanism of corrosion inhibition is the formation of green rust,

which is induced by biofilms. The change in capacitance in EIS can

be used to indicate the change in corrosion products (Duan et al.,

2008). It is further discovered that two SRB strains, Desulfopila

corrodens strain IS4 and Desulfovibrio ferrophilus strain IS5, which

were isolated from marine sediment, rapidly reduced sulfate while

oxidizing metallic iron (as the only electron donor) (Enning et al.,

2012). Moreover, recent research has shown that outer-membrane

cytochromes (OMCs) are extensively conserved in sediment

oxidized sulfur species (OSS)-respiring bacteria and allow cells to

directly utilize electrons from insoluble minerals through

extracellular electron transport (Deng et al., 2018).

Assorted bacteria, including sulfur-oxidizing bacteria (SOB),

SRB belonging to the Delta-proteobacteria, non-cultivable iron-
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oxidizing bacteria (IOB) belonging to the Zeta-proteobacteria, iron-

reducing bacteria (IRB), slime-producing bacteria (SPB), and acid-

producing bacteria (APB), are known to be involved in bio-

corrosion (Enning and Garrelfs, 2014). The growth of biofilm was

found to be essential for electron uptake on a cathodic surface by

Desulfovibrio ferrophilus IS5, an iron-corroding strain. However,

the mechanism of electron uptake from the cathode may differ from

that involved in iron corrosion (McCully and Spormann, 2020).

Unlike hydrogenase-positive bacteria that typically utilize H2 as an

electron carrier, anaerobic microbial iron corrosion involves a more

direct acquisition of electrons from metallic iron rather than

through hydrogen consumption (Enning et al., 2012). The

corrosion process typically involves sulfate reduction, nitrate

reduction, metal reduction, sulfur oxidation, metal oxidation, and

fermentation processes. In natural biofilms, a diverse range of

species initiates a cascade of metabolic activities that result in

more severe corrosion compared to the effects caused by a single

species (Kip and Van Veen, 2015). SRB and IOB often cooperate

within biofilms formed on metal substrates, mediating this process

as the main culprits. IOB depletes oxygen, creating a favorable

environment for the growth of anaerobic SRBs, which subsequently

promotes corrosion by the matrix (Dong et al., 2011; Belkaid et al.,

2011; Jones and Amy, 2002). The coexistence of iron-oxidizing

bacteria (which directly contribute to corrosion) and iron-reducing

bacteria facilitates the continuous progression of the corrosion

process (Videla and Herrera, 2009). The formation and

maintenance of biofilm structures are crucial in the process of

marine biocorrosion. The biofilms contain high concentrations of

organic acids, which exhibit corrosive properties towards metals

and concrete (Procópio, 2019). Moreover, by selectively chelating

cations, the EPS of biofilms can serve as efficient electron

transporters between biofilms and metals (Ma et al., 2020).

Bacteria account for over 98% of the microbial population

assessed by qPCR in samples from three anaerobic biofilms inside

a severely corroded steel pipe at an offshore oil facility in the Gulf of

Mexico; however, archaea species were also detected (Vigneron

et al., 2016). The findings of various studies have consistently shown

that sulfur oxidizers and methanogens are the predominant

archaeal groups associated with marine microbial corrosion

(Usher et al., 2014; Zhang et al., 2019).

Biofilm formation on metal surfaces, however, can hinder

corrosion through various mechanisms, such as bacterial aerobic

respiration that neutralizes corrosive agents, the creation of

protective films, and the inhibition of corrosion-inducing bacteria

growth via antimicrobial secretion (Videla and Herrera, 2009).

Adequate evidence exists in the literature that molecules that

disrupt quorum sensing have been employed to mitigate

biocorrosion. These molecules function by either inhibiting the

release of signaling proteins or degrading them. These quorum

quenchers (QQ) or QS inhibitors (QSI), which were recommended

as a means of preventing the corrosion caused by multiple

microorganisms, consist of a variety of synthetic and natural

biocides, such as surfactin, magnesium peroxide, capsaicin,

penicillic acid, gramicidin, patulin, cinnamaldehyde, vanillin,

hexadecanoic acid, isonaamidine, phenolics, saponins, quinones,

tannins, terpenoids, AHL acylases, and AHL lactonases (Scarascia
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et al., 2016). There is still much to be explored regarding biofilm

growth and surface corrosion in the maritime environment.
2.3 Marine biofouling biofilms

The undesired settlement and aggregation of marine microbes,

plants, and animals on submerged material surfaces are referred to as

marine biofouling (Lindholdt et al., 2015). Marine substrates such as

aquaculture equipment, oil and gas installations, and ship hulls often

exhibit diverse accumulations of micro- and macro-foulers

(Blackwood et al., 2017). On a single ship’s hull, for instance, there

exists various materials and structures that provide distinct fouling

niches favored by different organisms. The formation of marine

biofouling biofilms increases frictional resistance leading to higher

fuel consumption. Additionally, it initiates or accelerates the corrosion

of metals and concrete, which elevates the risk of failure in marine

facilities and equipment (Blackwood et al., 2017) (Figure 2D).

Marine biofouling is a microbial biofilm-related process that

encompasses the following sequential steps, as depicted in Figure 4.

First, surfaces undergo rapid physicochemical alterations within

seconds to minutes due to the deposition of an organic conditioning

film composed of various organic molecules. Subsequently, bacteria

adhere to this film and develop into a biofilm as primary colonizers.

The biofilm communities colonizing artificial surfaces in Mauritian

coastal waters were predominantly composed of Proteobacteria,

specifically Gamma-proteobacteria (Rampadarath et al., 2017).

Third, secondary colonizers such as larvae, diatoms, and

microalgae spores accumulate on these surfaces to exploit the

nutrients provided by the pre-existing biofilm matrix. Finally,

macro-planktonic communities such as mussels and barnacles

subsequently settle and proliferate on material surfaces over time

(Roberts et al., 1991). As pivotal initiators of biofouling processes,

microbial biofilms create favorable settlement sites with optimal

conditions while also serving as nutrient sources for attracting new

species. The production of macro-foulers may be regulated by

bacterial activities, while the presence of macro-foulers can offer

protection for bacteria and their biofilms against eradication.

Marine biofilms play a crucial role in facilitating the settlement

and morphogenesis of macro-fouling organisms (Agostini et al.,

2021). Model studies have demonstrated that specific bacterial

strains can induce morphogenesis in marine invertebrates by

extracellular phage-like structures or the released vesicles

(Dobretsov and Rittschof, 2020). The morphogenic development

of brown and green algae, in contrast, requires the co-cultivation of

distinct strains (Tapia et al., 2016; Wichard, 2023). This symbiotic

relationship appears to be validated by model testing of anti-fouling

strategies. A study investigating various cementitious materials for

biofouling prevention demonstrated that surfaces with biofilms

exhibiting lower total cell counts exhibited a correspondingly

reduced total biomass of macrofouling organisms (Hayek et al.,

2021). Similarly, a study on the development of Shewanella

marisflavi biofilms and their impact on mussel settlement

revealed that enzymatic inhibition of total bacterial protein count

significantly reduced both the bacterial cell count and the settlement

of mussels (Hayek et al., 2021).
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Marine biofouling is a significant international challenge that

has a substantial impact on global economies and ecosystems. It

manifests as the widespread and costly colonization of submerged

surfaces by marine organisms, and the global transportation of

invasive, harmful species (Byers et al., 2023). The utilization of

antifouling coatings has emerged as the predominant method for

preventing fouling, owing to their efficacy, cost-effectiveness, and

ease of maintenance (Liu et al., 2023). Currently, long-term effective

anti-fouling coatings are non-passive. These systems predominantly

depend on the exfoliation of surface layers (self-polishing), which

consistently release deleterious metallic ions and accompanying

booster biocides into the surrounding environment. In spite of the

stringent environmental regulations in Europe, the 11 antifouling

biocides that have been approved continue to pose a danger to the

marine environment (de Campos et al., 2022). While these coatings

can greatly reduce adherent organisms on exposed surfaces, their

toxic effects on nearby marine ecosystems and indiscriminate

targeting of all proximate marine species have depleted essential

marine-based human food sources (Ali et al., 2024).

The Galvanic Anode Cathodic Protection system (GACP) is

extensively employed to protect submerged metallic structures from

corrosion. Due to their low mass consumption, high efficiency,

negative corrosion potential, and, of course, affordability, aluminum

(Al), zinc (Zn), and magnesium (Mg) are the main metals that

compose galvanic anodes (Levallois et al., 2023). Because the

galvanic anode has a lower electrochemical potential than the

metal to be protected, the metal oxidizes and releases

toxicologically significant components into the marine

environment as ions or oxyhydroxides (Reese et al., 2020). In

addition, electroactive bacteria are naturally present in marine
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environments. These bacteria spontaneously colonize anodes to

form biofilms and maintain electrooxidation processes on their

surface (Flemming et al., 2016). As more immerged metallic

structures are and will be protected by galvanic anodes, such as

the growing number of offshore wind farms, the potential effects of

metals released by galvanic anodes on marine ecosystems are

critical. Nevertheless, the coatings industry appears to be very

conservative, primarily as a result of economic and technical

constraints. Passive technology development is now beyond

critical. The majority of current research on the synthesis of

alternative passive anti-fouling solutions has concentrated on

natural-occurring interfacial derivations (Ali et al., 2024). The

development of environmentally benign, high-performance, and

broad-spectrum surfaces has been facilitated by evolutionary

processes in nature. Current research is focused on the adaptation

of these innovative structures (Ali et al., 2024). Furthermore, an

ambitious and comprehensive regulatory framework is essential to

facilitate the necessary green technological revolution while

balancing economic sustainability, global trade interests,

conservation initiatives, and inspiring future innovations.
3 Marine biofilms formed on inert
natural surfaces

3.1 Seafloor microbial mats

Despite the functional importance of mediating biogeochemical

cycles, research on biofilms in their natural settings, particularly at
FIGURE 4

Marine biofilms on various abiotic surfaces in the ocean. Microbial coverage is present on various surfaces in marine environments, including
seafloor microbial mats that are formed by multiple biofilms of microorganisms embedded in a matrix of exopolysaccharides, in a vertical fashion,
multispecies biofilm formation on the surface of microplastic particles, MIC biofilm formed on submerged ship hulls, microbial biofilms in fractured
suboceanic sediments, and biofilms coating sand particles.
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the sediment–water interface, has received limited attention.

Microbial mats are a specialized type of biofilm that typically

consist of one to several cell layers and vary in thickness from a

few millimeters to a centimeter (Bolhuis and Stal, 2011). Another

defining feature of microbial mats is that the vast majority of them

is autotrophic; in other words, they utilize inorganic carbons as

carbon sources photosynthetically or chemosynthetically (Zammit

et al., 2021; Nakagawa and Takai, 2008).

The seafloor mats are vertically stratified benthic microbial

communities that thrive at the seawater–seabed interface.

Depending on the environmental circumstances, these mats can

cover entire basins or span a few thousand square meters (Valentine

et al., 2016). Functional groups of marine microorganisms are

densely compacted into a thin mat laterally where varying

amounts of minerals such as silicates and carbonates may also be

embedded (Stal et al., 1984). The formation of mat is primarily

driven by microbial activities, interactions between microorganisms

and their grazers, and the viral shunt (i.e., viral lysis that converts

microbial biomass into a pool of dissolved organic matter; Rastelli

et al., 2017). The development of the mat is facilitated by the mat-

associated microbiota, which produces EPS and encases organic

sheaths (Flood et al., 2021). The hyphae of fungi can enhance the

stability of microbial mats and serve a structural function by

traversing the physicochemical gradients present in the layers

(Pasulka et al., 2019; Velázquez et al., 2016). Seafloor mat

residents, specialized consortia of bacteria and archaea, interact

closely with each other in spatial and temporal physiological

couplings (Allen et al., 2009; Spring et al., 2015). Diverse

metabolic activities can occur in close proximity due to rapid

nutrient cycling across microgradients and potential niche

diversification within mat layers. As a result, these conditions

create an excellent setting for cross-genera communication and

the formation of unique community symbioses.

The processes of denitrification, metal reduction, and sulfate

reduction are prevalent and essential in microbial mats.

Photosynthesis is the primary energy source for microbial mats at

shallow depths. The Cyanobacteria in shallow-water mats utilize

solar energy to assimilate inorganic carbon, synthesize sugars, and

release oxygen; many of them also possess the ability to fix N2,

resulting in intricate patterns of nitrogenase activity (Prieto-Barajas

et al., 2018). The SRBs also play a crucial role in microbial mats by

facilitating the conversion of sulfates into sulfur and the oxidation

of organic materials (Bolhuis et al., 2014). At deeper depth, marine

microbial mats are typically supported by chemosynthetic processes

(Kato et al., 2018). Microbial mats formed on the benthic–

planktonic interface of deep-sea vents and cold seeps are

predominantly self-sustaining, as they support most of the major

biogeochemical cycles. Seafloor-associated bacteria that establish

close symbiotic relationships with metazoans form the foundation

of the food chain, resulting in highly specialized and diversified

metazoan vent communities (Dubilier et al., 2008).

In the oligotrophic deep sea, hydrothermal vents and seeps

function as oases of life with exceptional biodiversity and

productivity, owing to the elevated concentration of metals

contained in the expelled fluids that can be utilized by

chemoautotrophs. Commonly, SRBs from the Delta-proteobacteria
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are consistently found in hydrothermal sites (Houghton et al., 2007;

Frank et al., 2013). Additionally, SOBs typically dominate the

chemosynthetic microbial communities in many hydrothermal vents

(Huegler et al., 2010; Flores et al., 2011; Jaeschke et al., 2012). At cold

seeps, microbial mats support a diverse community of methane- and

sulfur-oxidizing bacteria (Crepeau et al., 2011). Mat-forming, sulfur-

oxidizing Gamma-proteobacteria and Epsilon-proteobacteria (e.g.,

Sulfurovum and Sulfurimonas), particularly filamentous forms such

as Beggiatoa and Thiothrix, are responsible for the visually noticeable

white-colored microbial mats (Crepeau et al., 2011; Yamamoto and

Takai, 2011; Kato et al., 2012) (Figure 2F). Depending on the

environmental condition, Beggiatoa oxidize sulfide to elemental

sulfur and usually further to sulfate-utilizing oxygen or nitrate as a

terminal electron acceptor in cold seeps (Grünke et al., 2011). The

reverse tricarboxylic acid (rTCA) cycle is utilized by other microbial

mat formers, such as Sulfurovum (Campylobacterota), for carbon

fixation. These organisms exhibit remarkable metabolic adaptability,

including the ability to oxidize hydrogen and sulfur while reducing

oxygen, nitrates, and sulfur compounds (Stokke et al., 2015).

The production of a variety of extractable QS signals by mats

has been demonstrated (Charlesworth et al., 2019; Decho et al.,

2009). It has been proposed that QS could be in charge of the

coordination of metabolic processes in these closely linked

ecosystems reflecting strongly coupled microbial interactions

(Prescott and Decho, 2020). Particularly, QS-mediated S

transformations may play a particularly significant role in

microbial mats. Sivakumar et al. (2019) identified a relationship

between QS and sulfate reduction in two SRB: the marine bacterium

Desulfobacterium corrodens and the soil bacterium Desulfovibrio

vulgaris. Their results showed that QSI addition dramatically

reduced the growth rates, biofilm formation, and sulfate reduction

capacities of these strains, even at subinhibitory concentrations

(Sivakumar et al., 2019).

Microbial mats play an important role in regulating the erosive

reaction of sediment particles to hydrodynamic forces (Paterson et al.,

2000; Gerbersdorf et al., 2008; Vardy et al., 2007). Upon settling at the

sediment surfaces, microbial-secreted EPS glue the sediment particles

together in the matrix (Decho, 1990; Flemming, 2011), effectively

covering and shielding excessive portions of the sedimentary surfaces

from erosion (Noffke and Paterson, 2008), a process known as “bio-

stabilization” (Paterson, 1989). Furthermore, mineral precipitation is

closely associated with the development of microbial mats (Sanz-

Montero and Rodriguez-Aranda, 2013). Initial mats can further

evolve into solid, typically reef-like structures like stromatolites, by

retaining sediment particles and facilitating mineral precipitation

(“biomineralization”) under favorable conditions (Noffke and

Paterson, 2008; Phoenix and Konhauser, 2008). When the by-

products of microbial reactions disrupt the chemical balance of the

micro-environment, substances such as carbonate, iron sulfide, iron

oxide, or silica precipitate. For example, microbial mats can facilitate

biological carbonate precipitation through processes like

photosynthesis, biological oxidation, reduction, or hydrolysis

(Grotzinger and Knoll, 1999). In addition, when mineral elements

(such as iron) are concentrated by complexing (binding) with organic

molecules produced by mats communities, mineral precipitation can

be triggered (Baskar et al., 2008). Moreover, in certain seafloor
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environments, such as thermal springs, abiotic precipitation can

occur. In such cases, mat microbes may act as templates for

precipitation when fluid saturation level is sufficiently high for

spontaneous precipitation (Dupraz et al., 2009). As stromatolite

analogs, microbial mats are widely recognized as the oldest

ecosystem on Earth, with their fossils dating back nearly 3.5 billion

years (Margulis et al., 1980).
3.2 Deep suboceanic sedimentary biofilms

Over geological timeframes, the deep biosphere serves as a vital

component of biogeochemical fluxes and processes in the Earth’s

system (Parkes et al., 2014). Despite typically low level of activity,

with generation durations spanning thousands of years,

comprehensive calculations indicate that subsurface sediments

contribute significantly to sediment activity, establishing their

global biogeochemical relevance (Colwell and D’Hondt, 2013). It

has been confirmed that the deep marine biosphere is actively

populated by microbial cells, which gradually form clusters (Teske,

2005). The deep oceanic subsurface represents a habitat

predominantly dominated by biofilms, particularly in regions

exhibiting high biogeochemical activity.

The estimated range of the habitable deep suboceanic zone

extends from 0.5 km to 5 km crust depth (from 1 million year old to

180 million year old), based on modeled 120°C isotherms (with

120°C as the temperature limit for microbial life) (Bar-On et al.,

2018; Heberling et al., 2010). Despite concerns about its validity,

lipid analysis reveals that the deep suboceanic biosphere harbors

approximately 90% of the suboceanic biomass, with archaea

accounting for up to 35% of the biomass in marine subsurface

sediments (Danovaro et al., 2015). The basaltic layer with significant

porosity serves as the main layer that provides space for microbial

residence and activities (Schrenk et al., 2010). Crustal communities

act as a conduit for critical elements transfer from the mantle to

surface water (Menez et al., 2012).

The acquisition of samples and separation of sessile cells pose

challenges in studying subsurface biofilms, with key aspects of their

ecology remaining unclear. Homogenization of sediment samples,

followed by separation and enrichment of microbial cells contained

within, which are subsequently counted using fluorescence

microscopy (Morono and Inagaki, 2016), has been established as

a direct approach for the quantification of sessile cells. However,

both direct and indirect approaches fail to distinguish between

single cells, aggregates, and mature biofilms.

Under energy constraints, adhesion to surfaces has been

regarded as a survival strategy (Marshall, 1985). Substrates such

as fatty acids can adhere to the particles surfaces and accumulate

locally (Lever et al., 2015), providing a plausible explanation.

Sediment particles serve as excellent colonization substrates for

biofilms, offering nutrients and different types of electron acceptors

and donors (Battin et al., 2016). The marine sediments harbor the

largest methane reservoir on Earth (Liu et al., 2022). Sessile bacteria
Frontiers in Marine Science 12
in the subsurface reduce carbon dioxide or low-molecular-weight

organic compounds, forming the biotic proportion (Thorseth et al.,

2001). Boetius et al. demonstrated that marine microbial consortia

performed anaerobic oxidation of methane in anoxic sediments

(Boetius et al., 2000). The oxidation primarily takes place in biofilms

formed by anaerobic methanotrophic archaea (ANME), generally

together with SRB partners (Knittel and Boetius, 2009; Yang et al.,

2021) (Figure 2G).

The sedimentary biofilm microbiota is affected by physical and

chemical parameters in its surrounding environments, which in

turn exerts influences on the intricate nature of sediments.

Therefore, a thorough understanding of both deep-sea microbial

l i fe and marine sediment dynamics relies heavily on

comprehending the critical process of microbial biofilm formation

on particle surfaces. Several studies conducted on natural sediments

have demonstrated that sand and silt particles are preferred

habitats, while clay particles are rarely colonized due to their

small size (Weise and Rheinheimer, 1978; Deflaun and Mayer,

1983). Additionally, the degree of roundness of particles plays a

significant role in microbial colonization: as particle roundness (and

age) increases, microbial colonization decreases. Moreover, it is

observed that microbial biofilms tend to form within low-relief

areas on particles, such as crevices, depressions, and surface fissures

where cells are better protected from external mechanical damage

(Meadows and Anderson, 1966; Weise and Rheinheimer, 1978).

Furthermore, subsurface sediment layers can be stabilized by

biofilm-associated activity during fluid eruption events. In pelagic

environments, these pervasive biofilms can alter the characteristics

of eroded sediment flocs including size, shape, density, and settling

velocity. Consequently, sediment transport and deposition

processes are influenced (Droppo, 2001, 2004).
4 Conclusions

Various marine surfaces harbor diverse, distinct microbial

communities that remain poorly explored. In this review, the

recent advancements in understanding marine surface

colonization and biofilm formation on multiple abiotic surfaces

are synthesized and discussed (Figure 4). However, there are still

significant knowledge gaps regarding community diversity,

metabolites, ecological functions, and their response and influence

on the changing marine environment. Testing and applying new

bioinformatics pipelines with reduced cost and errors, techniques

with high spatial and temporal resolution targeting cell phenotype,

metabolism, and response to environmental fluctuations, and

sensitive in situ measurements are essential for investigating

natural marine biofilms. Integrating ecological findings combined

with metabolic network reconstructions and biogeochemical

modeling would provide valuable insights into higher-level

properties of the biofilm-associated populations such as

cooperative and other socio-microbial functions and

biogeochemical roles.
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