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Urbanization as the main cause
of ecological environment
deterioration in cross-border
coastal zones of northeast Asia
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1College of Geography and Ocean Sciences, Yanbian University, Yanji, China, 2Tumen River Basin
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The coastal zone, as a transition zone connecting terrestrial and marine

ecosystems, has a relatively unique ecological environment. It is also one of

the regions with the most intense human activities, highly sensitive to global

changes, and has a fragile ecological environment. Therefore, it is crucial to

accurately and timely assess the spatial and temporal patterns of ecological risks

in the context of global changes. This study systematically assessed the

ecological risks in the transboundary coastal zone of Northeast Asia from 1990

to 2020. The results show that the ecological environment in the transboundary

coastal zone of Northeast Asia improved significantly over the past 30 years, and

the greatest improvement occurred between 2000 and 2010. Among the five risk

levels, High and Low increased, while Medium declined. The areas of ecological

risk at the High and Low levels increased by 2,979 km² and 4,554 km²,

respectively. The ecological quality was highest on the Chinese and Russian

sides of the study area, while the Republic of Korea and Japanese sides are

considered to be more disturbed, with urbanization being the main factor

affecting the coastal ecological quality in this region. On the Democratic

People’s Republic of Korea side, environmental protection policies effectively

improved ecological quality between 2000 and 2010, with a 28% reduction in

high ecological risk in 2010 compared to 2000. The results of this study provide a

scientific basis for ecological protection and sustainable management in the

Northeast Asia region.
KEYWORDS
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1 Introduction

The coastal zone is a transitional area where terrestrial and marine ecosystems converge

(Mentaschi et al., 2018), providing essential habitats for coastal flora and fauna. Globally, about

two-thirds of the population reside near cities with over 500,000 people within tidal estuary

regions (Cracknell, 1999), and approximately 70% of large cities and populations are

concentrated in coastal areas (Tu et al., 2022), exerting immense pressure on coastal
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ecosystems. In addition, factors such as sea-level rise (Murray et al.,

2019), land reclamation (Li et al., 2022), infrastructure development

(Wang et al., 2020) have caused significant ecological degradation.

Human-induced land cover changes have affected multiple aspects of

the Earth system, including climate, hydrology, biodiversity, and land

sustainability (Mustard et al., 2004). Intensive human activities have

already significantly altered ecosystems (Gong et al., 2023), making

coastal resource investigation and management particularly urgent

(Ghosh et al., 2016). Monitoring long-term land cover changes and

assessing ecological risks in coastal regions are thus critical for

advancing sustainable societal transformation (Wang et al., 2022).

Ecological Risk Assessment (ERA) is a scientific approach to

quantifying the potential impacts of human activities and climate

change, and has become an essential tool in environmental

evaluation (Levine et al., 2019). Among various ERA methods,

landscape ecological risk (LER) assessment has been widely applied

(Qian et al., 2022; Guo et al., 2024). LER evaluates ecological conditions

based on land use and landscape structure, making it suitable for long-

term ecological risk studies (Ju et al., 2021). It reflects the adverse effects

of natural or anthropogenic factors on landscape patterns and

ecological processes (Peng et al., 2014) and serves as an effective tool

for constructing ecological networks and achieving sustainable

ecosystem management (Feng et al., 2019). The landscape index

method is commonly used in LER (Zhang et al., 2022; Ahmadi

Mirghaed and Souri, 2022), using metrics such as disturbance,

fragmentation, vulnerability, and diversity to characterize landscape

composition and configuration. Although effective in revealing

landscape heterogeneity (Zhang et al., 2020), this method lacks

attention to ecological processes and dynamics, limiting its

applicability in complex systems like coastal zones (Xu et al., 2021).

Landscape Ecological Quality (LEQ) research, as an emerging

field in landscape ecology, uses integrated remote sensing-based

ecological indices to evaluate environmental conditions (Xiong

et al., 2021), offering new perspectives for regional-scale ecological

assessment (Luo and Li, 2021). The Remote Sensing Ecological

Index (RSEI), which integrates four indicators—greenness, dryness,

wetness, and heat—has been widely adopted in ecological quality

assessment (Xu et al., 2019; Zheng et al., 2022; Yuan et al., 2021).

However,current research seldom integrates LEQ and LER

frameworks (Du et al., 2023), leading to significant limitations in

evaluation results: traditional LER focuses on external risks while

neglecting the internal health status of the system, whereas LEQ

reflects ecological quality but fails to capture potential risks. This

binary divide between risk and quality significantly constrains the

scientific basis for integrated coastal management.

To address these methodological gaps, this study proposes an

integrated assessment framework—the Ecological Risk Index (ERI).

ERI couples the Landscape Ecological Risk Index (LERI) and the

Landscape Ecological Quality Index (LEQI), enabling a two-

dimensional evaluation of external risk pressure and internal

ecological health in coastal ecosystems. Specifically, LERI

quantifies external risks based on landscape vulnerability,

disturbance, and fragmentation, while LEQI reflects ecological

health through remote sensing indicators such as vegetation

cover, land surface temperature, and moisture content. By
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determining the weights of LERI and LEQI, the ERI framework

can more comprehensively identify ecological risk hotspots.

Given the limitations in land use classification and ecological

risk assessment methods in existing studies, and the scarcity of

systematic research on transboundary coastal zones, this study

focuses on the coastal areas bordering China, Japan, Russia, the

Republic of Korea (ROK), and the Democratic People’s Republic of

Korea (DPRK). First, long-term land cover maps over the past three

decades were developed using remote sensing data, OpenStreetMap

(OSM), and manual interpretation. Second, LERI was calculated

based on landscape metrics, while LEQI was constructed using

remote sensing indices extracted via the Google Earth Engine

platform. Finally, by integrating LERI and LEQI, ERI was

developed to assess the spatial patterns and temporal evolution of

ecological risk. This research provides a scientific basis for

ecological conservation and resource management in complex

and dynamic transboundary coastal regions.
2 Materials and methods

2.1 Study area

The Sea of Japan is located between 30°-53°N and 125°-142°E. It

is the largest marginal sea in the northwest Pacific, separated from

the northwest Pacific by Japan and Sakhalin Island. As a moderately

productive ocean, it supports abundant marine biological resources

(Yoo and Park, 2009). With hydrological characteristics similar to

the North Atlantic, it is often referred to as a miniature ocean

(Senjyu and Shiota, 2023). Its small scale allows for the observation

of global ocean environment change trends in a relatively short

period. The Sea of Japan has a profound impact on the economy,

culture, and life of coastal countries, providing important fishery

resources and maritime transportation and trade routes. It is also a

geopolitical focal point, involving territorial and maritime rights of

multiple countries. This study area, the transboundary coastal zone

of Northeast Asia is a 60 km buffer zone of the Sea of Japan

(Figure 1), with coastline data from GSHHG data version 2.3.7-

Level_1. The baseline of the Sea of Japan coastline was extracted

using GSHHG data, extending 50 km inland and 10 km into the sea,

with local edits for ROK and Japan to ensure complete coverage of

aquaculture ponds. The buffer zone range is determined based on

human activities and nearshore aquaculture range.
2.2 Data sources

Themain data used in this study include remote sensing

imagery, land classification data, OSM data, digital elevation

model (DEM) data, and coastline data. Remote sensing imagery

was obtained from the Google Earth Engine (GEE) platform, using

the Landsat Collection 2 Level 2 Tier 1 dataset of Landsat 5, 7, and 8

satellites for coastal zone land classification. The land samples were

selected with reference to various datasets, including GLC-FCS30,

ESRI-10, GLC-30, ESA-World, Nicholas J. Murray’s global tidal
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flats classification data, and OSM data. The coastline data was

extracted from GSHHG 2.3.7 at the highest resolution and used as

the baseline for creating the coastal zone buffer (Table 1).
2.3 Methods

2.3.1 Coastal zone classification system
The classification of the coastal zone mainly refers to three

global land cover products (GLC-FCS30, ESRI-10, GLC-30).

Currently, representative coastal zone classification systems
Frontiers in Marine Science 03
include the NOAA Coastal Change Analysis Program(CCAP) and

the Australian Land Use and Management (ALUM) Classification

System, but these classification systems are biased towards national

scales. Based on this, the study reconsidered 11 coastal land cover

types, first incorporating the main types of global land cover

products, including forest, shrub, grassland, cropland, impervious

surface, bare land, and water. The classification also emphasized

subclasses of coastal wetlands: Natural wetlands as the basic type of

CCAP classification and an important type of coastal land cover on

the Russian side of the study area; aquaculture ponds as an

important land cover type in the southern part of the ROK and
FIGURE 1

Location of study area and availability of time series Landsat images. (a) Location of study area and coverage of Landsat Worldwide Reference
System 2 (WRS-2) path/row; (b) the number of all Landsat images in each path/row; (c) total numbers of images by sensors (Landsat 5/7/8); (d) the
distribution of good-quality observation numbers of all pixels.
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Japanese sides, representing significant human activity features;

mudflats are habitats for many birds, mollusks, and benthic

organisms, with areas such as the Shinan Tidal Flat and Boseong-

Suncheon Tidal Flat on the ROK side being listed as World Heritage

Sites in 2021; sandy beaches are important for coastal ecosystems

and weathering processes and are popular tourist destinations.

Therefore, mudflats and sandy beaches were included in the

classification scheme.

2.3.2 Training sample acquisition
In this study, a stratified sampling method was used to generate

randomly distributed samples in coastal areas. Using three global

land cover products from 2020 (GLC-FCS30, ESRI-10, GLC-30)

and other data (OSM beach data, tidal flat map, ESA-WORLD, etc.)

assisted in automatic sampling, producing 1,000 samples for each

class. In sampling forest, cropland, built-up land, grassland, and

water classes, samples were extracted from the corresponding

categories of the three global land cover products. These land

types had a higher proportion in previous land cover data, so

samples were obtained within the intersection range of each

category. Since no high-resolution beach map was available,

coastal beaches were extracted from OSM vector data labeled

beach. For natural wetlands, defined as land primarily covered by

natural herbaceous plants and permanently or periodically flooded,

this definition is similar to the submerged vegetation defined by

ESRI-10 and the herbaceous wetland defined by ESA-WORLD, so

the intersection of the two datasets was used to obtain samples. The

mudflat data were generated using Nicholas J. Murray’s global tidal

flat data. For shrub and bare land, six inland land cover types

(forest, cropland, built-up land, grassland, shrub, bare land) were

used to mask larger land cover types (forest, cropland, built-up land,

grassland) and parts of coastal wetlands (mudflat, sandy beach,

natural wetland), and the intersection part of (GLC-FCS30, ESRI-

10, GLC-30) was used. Samples for 1990, 2000, and 2010 were

obtained by annual screening, replacing erroneous sample points,

and finally obtaining sample points for four periods from 1990 to

2020. After sampling, erroneous classified samples were deleted to

correct obvious misclassification issues, such as confusion between
Frontiers in Marine Science 04
high reflective urban areas and beaches, and misclassification due to

time differences in mudflat data sampling.

2.3.3 Land cover classification method
The study first used a pixel-based classification method (Li et al.,

2019), selecting the fused images from three years around 2000,

2010, and 2020 during the vegetation growing season (May 1 -

September 30) of the Landsat satellite (Feyisa et al., 2014; Zhou

et al., 2017). For 1990, due to incomplete coverage by Landsat

images, all remote sensing images from May to September 1984-

1992 (cloud cover <10%) were used. Land classification considered

five spectral bands (red, green, blue, near-infrared, shortwave

infrared) and seven spectral indices (Normalized Difference

Vegetation Index (NDVI), Normalized Difference Built-up Index

(NDBI), Normalized Difference Water Index (NDWI), Modified

Normalized Difference Water Index (MNDWI), Normalized

Difference Moisture Index (NDMI), Automated Water Extraction

Index (AWEI), and Enhanced Vegetation Index (EVI)), with each

index added as an independent band in the classification (Jiang

et al., 2014; Zeng et al., 2019). Additionally, texture features and

DEM data were included to aid classification. The texture features

selected were the most commonly used two features: contrast

(B8_CONTRAST) and correlation (B8_CORR), and slope and

elevation were extracted from DEM data to participate in the

coastal zone classification. Finally, a random forest classifier with

250 decision trees was run on the Google Earth Engine platform,

with other parameters kept default, to obtain the final

classification results.

Due to the similar physical properties (such as water color and

submersion frequency) of coastal aquaculture ponds and seawater,

it is challenging to classify aquaculture ponds and water bodies

using pixel-oriented methods (Zou et al., 2022). However,

compared with coastal waters, aquaculture ponds have a unique

spatial grid structure, which can be accurately identified through

manual classification methods. The classification of aquaculture

ponds relies on visual interpretation. In this study, after processing

the median synthetic images of three years, the NDWI was used,

and the OTSU algorithm was employed to divide the landscape

within the study area into water and non-water bodies. Google

Earth, NDVI, and composite images of red, green, blue, and near-

infrared bands were used to assist interpretation. To evaluate the

accuracy of the classification results, 30% of the sample point data

was selected as the test set. The Kappa coefficient of coastal zone

land classification from 1990 to 2020 was calculated using the

confusion matrix to validate the results.

2.3.4 Ecological risk assessment of coastal
landscape

This study proposes an integrated Ecological Risk Index (ERI),

which combines two core indicators—the Landscape Ecological

Risk Index (LERI) and the Landscape Ecological Quality Index

(LEQI)—to assess both potential ecological risks and the current

state of the ecosystem.To quantify ecological risks, the study divides

the coastal zone into 10 km × 10 km grid cells. The ERI is calculated
TABLE 1 Data and sources.

Data Data Source Website Link

GLC-FCS30 https://data.casearth.cn

ESRI-10
https://www.arcgis.com/apps/instant/media/

index.html?appid=fc92d38533d440078f17678ebc20e8e2

GLC-30 https://www.webmap.cn/commres.do?method=globeIndex

ESA-World https://viewer.esa-worldcover.org/worldcover

Open Street Map https://www.openstreetmap.org

Tidal Flats https://www.intertidal.app/download

Digital Elevation
https://developers.google.com/earth-engine/datasets/

catalog/USGS_SRTMGL1_003

GSHHG 2.3.7 https://www.soest.hawaii.edu/wessel/gshhg/
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as a weighted sum of LERI and LEQI (Equation 1), with equal

weights (0.5). This dual-index approach captures both external

pressures and internal ecosystem health.

ERIk = wLERIk + wLEQIk (1)

In Equation 1, ERIk represents the Ecological Risk Index of the

k-th risk unit, LERIk is the Landscape Ecological Risk Index of the k-

th risk unit, LEQIk is the Ecological Environmental Quality Index of

the k-th risk unit, and w is the weight of LERIk and LEQIk (0.5).

When calculating the ERI, both LERIk and LEQIk need to be

normalized. The higher the LEQI, the better the regional

ecological environment. When normalizing LEQI, the values need

to be reversed. Below are the calculation methods for the

two indices:

(1). Construction of the LERI: The LERIk is used to measure the

sensitivity of the ecosystem to external disturbances and its

potential risks (Egbueri, 2020). The calculation of this index is

based on Fragstats Version 4.2 software. Using the land use data

obtained in Section 2.3.3, independent risk calculations are

performed for each land type within each 10km × 10km grid. The

overall landscape risk for each grid is obtained by summing the

individual risks of each land type (Equation 2). It incorporates two

factors: Landscape Vulnerability Index (LVi), based on land use

types; Landscape Disturbance Index (LDi), derived from

fragmentation(Fi), separation(Si), and dominance(Di) metrics.

LERIk =o
n

i=1

Aki
Ak

� LVi� LDi (2)

Aki represents the total area of the i-th landscape type in the k-th

risk unit, and Ak represents the total area of the k-th risk unit.

LVi represents the degree of structural fragility associated with

different landscape types, reflecting their capacity to resist and

recover from external disturbances. Vulnerability levels were

determined based on previous studies (Zhu et al., 2022; Mo et al.,

2017) and adjusted according to the specific environmental

characteristics of the study area. Six relative vulnerability levels

were classified and normalized, with higher values indicating

greater ecological fragility. The assigned normalized values are as

follows: bare land (0.29), due to lack of vegetation cover, is highly

susceptible to wind and water erosion; water bodies (0.24) are

vulnerable to pollution and climate change, with limited recovery

capacity; cropland (0.19) experiences long-term anthropogenic

disturbance, weakening its ecological resilience; grassland (0.14)

possesses moderate self-recovery ability but remains sensitive to

environmental and human pressures; forest and shrubland (0.09)

have stronger ecological functions and more stable internal

structures; impervious surfaces (0.05), formed primarily through

urbanization, exhibit relatively stable structures. Additional types

include tidal flats and mudflats (0.29), located in transitional coastal

zones and exposed to wave erosion, storm surges, and human

development; natural wetlands (0.29), primarily in the lowlands of

Sakhalin Island, Russia, are significantly affected by flooding, tides,

and wave action; and aquaculture ponds (0.05), mainly distributed
Frontiers in Marine Science 05
along southeastern ROK and western Japan, which are primarily

used for artificial marine cultivation and demonstrate stronger

resistance to disturbance.

LDi is composed of three parts and is used to measure the extent

of damage to landscape types under external disturbances (Xu and

Kang, 2017)(Equation 3). Fi reflects landscape structural integrity

and patch fragmentation, higher fragmentation, common in

urbanized coastal zones, weakens ecological resilience and

increases risk, whereas natural landscapes like forests show lower

fragmentation and better stability (De Montis et al., 2017)

(Equation 4); Si reflects spatial isolation between landscape types,

high separation in coastal areas due to development (ports, tourism)

limits species movement, disrupts connectivity, and increases

extinction risk (De Montis et al., 2020) (Equation 5); Di measures

the dominance of a specific landscape type. By calculating and

comparing the Di values of different landscape types, it can reveal

whether a particular type dominates the coastal zone, especially

land use types with weaker ecological functions (such as urbanized

or agricultural areas), which often reduce biodiversity and

ecosystem functions (Ricotta and Avena, 2003) (Equation 6).

LDi = aFi + bSi + cDi (3)

Fi =
Ni
Ai

(4)

Si = 0:5� Ni
A

� �0:5

� A
Ai

(5)

Di =
(1 + Ni

N + Ai
A )

3
(6)

a, b, c are the weights for each indicator, where a = 0.5, b = 0.3,

and c = 0.2. i represents the landscape type, Fi is the Landscape

Fragmentation Index, Si is the Landscape Separation Index, and Di

is the Landscape Dominance Index.Ni represents the number of

patches of landscape type i, and Ai represents the total area of

landscape type i.Ni represents the number of patches of landscape

type i, A is the total area of the landscape, and Ai is the total area of

landscape type i.Ni represents the number of patches of landscape

type i, N is the total number of patches, A is the total area of the

landscape, and Ai is the total area of landscape type i.

(2). Construction of the LEQI: This study constructs the LEQI

based on five key remote sensing indices—Surface Potential Water

Abundance Index (SPWI), Normalized Difference Latent Heat

Index (NDLI), Land-Surface Temperature (LST), Ratio Vegetation

Index (RVI), and Normalized Difference Soil Index (NDSI)—to

comprehensively reflect the coupled relationships among water,

vegetation, soil, and heat in coastal zones. Compared to the RSEI

method for ecological quality assessment, this approach places

greater emphasis on the role of water-related ecological factors, as

coastal areas tend to have higher humidity than inland regions.

Water bodies are not only vital for the survival of flora and fauna

but also improve the ecological environment through evaporation
frontiersin.org
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and transpiration (Ling et al., 2020). By evaluating ecological quality

from multiple perspectives, this index helps provide a more

comprehensive understanding of coastal ecosystem health. All

indices were then normalized. The five indices are as follows:

SPWI mainly reflects potential water abundance and moisture

changes in coastal areas (Jiao et al., 2021). By identifying water-

rich and dried-up zones, it plays a key role in water resource

management and ecological restoration (Equation 7); NDLI

indicates vegetation evapotranspiration capacity and water-use

efficiency (Yang et al., 2020). Essential for monitoring drought

responses and assessing regional ecological stability (Equation 8);

LST directly affects organism growth and regional climate, serving

as a key indicator for assessing coastal heat stress and

environmental pressures (Equation 9); RVI measures vegetation

health (Adeyeri et al., 2017), effectively identifying degraded areas

for coastal ecological risk analysis (Equation 10); NDSI reflects the

moisture content of the soil (the larger the NDSI, the drier the soil;

the smaller the NDSI, the wetter the soil) (Deng et al., 2015),

particularly useful for monitoring ecological health in land-water

transition zones (Equation 11).

SPWI =
NIR − SWIR2 + Blue
NIR + SWIR2 + Blue

(7)

NDLI =
Green − Red

Green + Red + SWIR1
(8)

LST = TIRS − 273:15 (9)

RVI =
NIR
Red

(10)

NDSI =
SWIR1 − NIR
SWIR1 + NIR

(11)

NIR represents the Near-Infrared band, SWIR represents the

Short-Wave Infrared band, Blue represents the Blue band, Green

represents the Green band, and Red represents the Red band. In

Landsat 8, ST_B10 is used, while in Landsat 5 and Landsat 7, ST_B6

is used.

After calculating the five remote sensing indices, this study

employed the entropy weight method to determine the weights of

each index within each grid cell. This approach allows for an

objective assessment of the relative importance of each indicator

in evaluating the overall ecological quality (Sreeparvathy and

Srinivas, 2020; Li, 2021; Jiao et al., 2021). This method

automatically assigns weights based on the variability of each

ecological indicator. First, five indicators are normalized. Then,

the information entropy Ej (Equation 12) (Gao et al., 2020) of the

five indicators is calculated to measure their degree of dispersion.

Information entropy reflects the spatial dispersion of each

indicator; the higher the entropy value, the more evenly

distributed the indicator is spatially, resulting in a higher weight.

Finally, based on the normalized values of each indicator and their
Frontiers in Marine Science 06
corresponding weights Wj (Equation 13) (Gao et al., 2020), the

weighted LEQIi (Equation 14) is constructed. The LEQI values for

all pixels are normalized to the range [0, 1].

Ej = −
1

ln no
n

i=1
(pij ln pij)

Pij =
X0ij

on
i=1X

0ij
(12)

Wj =
1 − Ej

K −ok
m=1Em

(13)

LEQIi =o
k

j=1
Wj · X0ij · Sgnj (14)

Ej represents the information entropy of the jth indicator, n is

the total number of valid pixels in the study area, Pij represents the

proportion of the jth indicator in the ith pixel, Xij represents the

original value of the ith pixel for the jth indicator, X′ij represents the
normalized value of the indicator, Wj is the information entropy of

the jth indicator, and K is the total number of ecological indicators

(in this study, K = 5). The Sgnj for positive indicators (SPWI, NDLI,

RVI) is positive, while for negative indicators (LST, NDSI), Sgnj is

negative. LEQIi represents the Landscape Ecological Quality Index

for the ith pixel. Table 2 shows the weights of each indicator

determined by the entropy weight method.

According to the Natural Breaks method, the average value of

the ERI results is divided into five levels. Following the method

proposed by Wang et al. (2020), the coastal zone ERI change areas

are classified into five categories based on risk transfer levels:

extremely ecologically deteriorated area (EEDA): ERI level

decreases by ≥2; ecologically deteriorated are (EDA): ERI level

decreases by 1; ecologically stable area (ESA): ERI level remains

unchanged; ecologically improved area (EIA): ERI level increases by

1; extremely ecologically improved ecological area (EEIA): ERI level

increases by ≥2.By combining the GADM (https://gadm.org/)

global country vector data, the average value of the ERI changes

in the coastal zones of each coastal city is calculated. Figure 2

illustrates the technical approach used in this study.
TABLE 2 Weights determined using the entropy weight method.

Remote Sensing Index 1990 2000 2010 2020

SPWI 0.18 0.18 0.19 0.16

NDLI 0.14 0.12 0.18 0.13

LST 0.21 0.18 0.13 0.19

RVI 0.25 0.29 0.25 0.23

NDSI 0.22 0.24 0.24 0.28
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3 Results

3.1 Land cover change in the
transboundary coastal zone of northeast
Asia

This study divides the land types in the transboundary coastal

zone of Northeast Asia into 11 categories: cropland, forest,

impervious surface, shrub, grassland, bare land, water, sandy
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beach, mudflat, natural wetland, and aquaculture pond. Among

them, forest, cropland, and water areas are the largest, averaging

87.54% of the total area of the transboundary coastal zone of

Northeast Asia, while bare land, sandy beach, and aquaculture

ponds account for less than 1% (Table 3). Forest is the largest land

type in the transboundary coastal zone of Northeast Asia, averaging

55.29% of the area. Bare land is mainly distributed on the DPRK

side and in high mountain areas. Natural wetlands are mostly found

in the northwest of Sakhalin Island and river outlets. Cropland and
FIGURE 2

Technical workflow diagram.
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construction land are concentrated in coastal areas on the Japanese

and ROK sides, and aquaculture ponds are mostly distributed in the

southern coastal areas of ROK and Japan. Overall, the area of

cropland decreased significantly from 40,842km² in 1990 to

31,413km² in 2020, with an average annual decrease of 0.77%,

approximately 314 km² per year. The area of construction land

increased by 78.83%, with an average annual increase of about

200km². Shrub and grassland areas increased rapidly from 1990 to

2010, with slower growth in the following decade. The area of sandy

beach increased in the first 10 years but decreased slightly in the

following 20 years. The area of mudflat changed little in the first and

last 10 years but decreased rapidly from 2000 to 2010. The area of

coastal aquaculture ponds, although small in proportion, showed a

rapid increase overall.

The study shows that the average overall accuracy of land

classification results in the transboundary coastal zone from 1990

to 2020 was 87.85%, with Kappa coefficients of 0.88, 0.86, 0.83, and

0.88 for the four periods. Forest, water, mudflat, and impervious

surface classifications had the highest accuracy, averaging 94.49%,

92.68%, 91.38%, and 90.72%, respectively. The average accuracy of

sandy beach, natural wetland, and cropland classifications also

exceeded 85%, but the accuracy of shrub classification was the

lowest at 79.73%. Overall, the classification accuracy meets the
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needs of coastal land cover analysis and does not affect the further

analysis results.

According to the results of the transition matrix (Figure 3),

overall, the areas of cropland, forest, and mudflat decreased over

the past 30 years, while impervious surfaces increased. Cropland

mainly transitioned to construction land, forest to grassland, mudflat

to cropland, and impervious surfaces from cropland. From 1990 to

2000, there was a significant outflow of cultivated land and forest

land. Specifically, 5% of cultivated land was converted to grassland,

6% to impervious surfaces, and 5% to shrubs. Additionally, 2% of

forest land was converted to cultivated land and 4% to grassland. For

other land types, the area of inflow exceeded the outflow, showing an

increasing trend. During this period, grassland area increased the

most over the 30 years, reaching 9,919 km².From 2000 to 2010,

cultivated land and forest land continued to decrease by 2,190 km²

and 3,101 km², respectively. The area of bare land also decreased,

with 12% being converted to cultivated land. The inflow area of

mudflats and sandy beaches was smaller than the outflow area.From

2010 to 2020, the cultivated land area continued to decrease by 1,503

km², while the decrease in forest land was reversed, with an increase

of 2,622 km². The area of natural wetlands experienced significant

changes, decreasing by 4,373 km², with the main transfer directions

being to forest land (2,664 km²) and grassland (1,539 km²).
TABLE 3 LUCC area change percentage from 1990 to 2020.

Land Cover Type 1990LUCC 2000LUCC 2010LUCC 2020LUCC

Cropland 9.20% 7.91% 7.41% 7.08%

Forest 57.39% 54.87% 54.16% 54.76%

Impervious surface 1.71% 2.05% 2.40% 3.07%

Shrub 0.82% 1.51% 1.85% 1.85%

Grassland 3.07% 4.21% 4.80% 5.05%

Bare land 0.39% 1.02% 0.49% 0.46%

Water 23.86% 23.81% 24.99% 24.73%

Sandy beach 0.27% 0.42% 0.35% 0.33%

Mudflat 1.42% 1.46% 0.57% 0.68%

Natural wetland 1.87% 2.74% 2.95% 1.96%

Aquaculture pond 0.01% 0.01% 0.03% 0.04%
FIGURE 3

Land use transition matrix of transboundary coastal zones in Northeast Asia. (a) 1990-2000; (b) 2000-2010; (c) 2010-2020; (d) 1990-2020.
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3.2 Spatial and temporal patterns of
landscape ecological risk

Based on ERI results, the multi-year average proportions of Low

and Medium Low risk areas were 64% (Russia), 65% (China), 41%

(DPRK), 41% (ROK), and 52% (Japan). In contrast, the High and

Medium High risk areas accounted for 12%, 18%, 30%, 28%, and

27%, respectively. Overall, the spatial distribution shows higher

risks along the coast and lower risks inland. Among the five

countries coastal areas, the ecological risk in the Russian coastal

zone was the lowest (Figure 4). Over the past 30 years, the areas of

High and Medium High risk zones in the transboundary coastal

zone of Northeast Asia increased by 4%, with the High risk zone

increasing by 2,970 km² and the Medium High risk zone by

15,129 km².

From 1990 to 2020, the area of the Medium risk zone on the

Chinese side increased by 7%, while other ecological risk levels

showed an overall decreasing trend, with the overall ecological

quality improving compared to 1990; The area of the Medium risk

level on the Japanese side showed a decreasing trend, with overall

risk zone changes being relatively stable. The highest risk was in the

southern Kyushu region; On the ROK side, the area of Low and

Medium Low zones fluctuated, reaching a maximum in 2000 (46%),

while High and Medium High zones reached their lowest value

(19%) in 2000. Overall, the ecological environment of ROK in the

eastern coastal zone is better than in the southern coastal zone.

Gyeongsangnam-do and Gyeongsangbuk-do are regions in the

coastal zone of ROK where Low and Medium Low ecological

quality categories are widely distributed. Yi (2021) found that the

ecosystem service value in these regions increased between 1980

and 2000; The Russian side has the best ecological quality among

the five countries coastal zones, with multi-year averages of 30%

and 34% for Low and Medium Low zones, respectively. In 2010, the

Low and Medium Low zones reached their maximum area, while

the High and Medium High zones reached their minimum area,

indicating the best ecological quality during this period; On the
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DPRK side, the areas of High and Medium High risk zones reached

their maximum (34%) in 2000, while the Medium zone reached its

peak (40%) in 2000 and then gradually decreased, with the Low and

Medium Low zones reaching their minimum in 2000 and increasing

over the past 20 years. This can be attributed to the improvements

in the DPRK Forest Law and the implementation of the Ten-Year

Forest Restoration Plan, which have led to an increase in coastal

vegetation (Piao et al., 2021).
3.3 Spatial and temporal changes in
landscape ecological risk

Overall, the southeast coastal areas of ROK deteriorated, while

the eastern and southern regions improved. Gyeongsangnam-do

saw improvements in the marine environment from 1990 to 2000

(Figure 5). From 2000 to 2010, the eastern coastal environment

improved more significantly than the southern region. From 2010

to 2020, EEDA and EEIA areas significantly decreased, with EIA

and ESA being the main changes; On the DPRK side, the

environment in Hamgyongbuk-do deteriorated significantly from

1990 to 2000. From 2000 to 2010, EIA and EEIA areas increased

significantly in Hamgyongbuk-do. The study also found that the

environment in the border area between DPRK and ROK,

particularly in Gangwon-do, experienced major changes

dominated by EIA and EEIA transitions. On the Chinese side, the

coastal zone mainly located in Jilin Province showed an overall

improvement in the environment after the initial 10-year period of

EDA being the main trend. From 1990 to 2000, EEDA and EDA

were mainly located in the southern regions of Japan (Fukuoka

Prefecture, Saga Prefecture, Miyazaki Prefecture) and central

regions (Hyogo Prefecture, Kyoto Prefecture, Fukui Prefecture).

The environment improved from 2000 to 2020, with Niigata

Prefecture being relatively high-risk. Overall, the risk zones on

the Japanese side over the past 30 years mainly distributed in the

southwestern coastal areas and cities on both sides centered around
FIGURE 4

Spatial distribution of ecological risk levels in transboundary coastal zones of Northeast Asia. (a) 1990; (b) 2000; (c) 2010; (d) 2020.
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Ishikawa Prefecture; On the Russian side, from 1990 to 2010, EEDA

and EDA areas shifted from the northwest to the southwest, with

EEDA and EDA areas mainly located in northern coastal swamp

wetlands. However, it is worth noting that, as shown in Figure 4, the

spatial distribution of EEDA and EDA on the Russian side is mainly

influenced by the transition between the Low, Medium Low, and

Medium risk levels, and the overall ecological environment remains

the best among the five countries in the transboundary coastal zone

of Northeast Asia. Using the GADM global vector database to

divide the ecological risk distribution by administrative units, it was

found that the coastal cities on the Russian side experienced a
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deterioration in the ecological environment over large areas in 2020

compared to 2010. On the DPRK side, coastal cities saw a significant

improvement in the ecological environment in 2010. On the ROK

side, the overall ecological environment of coastal cities has been

improving, except in the southeastern region. Japanese coastal cities

have also seen some improvement in the ecological environment

over the past decade. Overall, in the past 30 years, the ecological

environment of 23 coastal cities has deteriorated, while 40 cities

have seen improvements (Figure 6). On the whole, the overall

ecological environment of coastal cities has improved over the past

30 years.
FIGURE 6

The ecological environment change trends of 63 coastal cities: negative values indicate deterioration, while positive values indicate improvement in
environmental quality. Panels (a–c), and (d) represent the changes in coastal cities during different periods, and panel (e) shows the overall change in
coastal cities over the past 30 years.
FIGURE 5

Spatial distribution map of landscape ecological risk transitions in transboundary coastal zones of Northeast Asia from 1990 to 2020. (a) 1990-2000;
(b) 2000-2010; (c) 2010-2020; (d) 1990-2020.
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4 Discussion

4.1 Impact of human activities on
ecological risk

The high ecological risk areas in ROK are primarily influenced

by rapid urbanization. The increasing impermeable surfaces in the

southeastern coastal industrial areas (mainly including Busan,

Gyeongju, and Ulsan) have led to a reduction in cultivated land

and forest areas, exacerbating ecological risks (Jin et al., 2019). Over

the past 30 years, urbanized areas in the southeastern coastal cities

of ROK have expanded 2.65 times, while coastal cultivated land has

decreased by 13%. As a result, the ecological risk in the southeastern

region has gradually shifted from Low to Medium Low and

Medium, with the highest-risk High areas increasing by 33%. The

expansion of impermeable surfaces and landscape fragmentation

caused by urbanization have significantly reduced ecosystem service

functions (Kang et al., 2018).It is noteworthy that in 2009, the ROK

government revised the Coastal Management Act, granting local

governments the authority to manage coasts independently (Chung

et al., 2015), indicating ROK’s proactive attitude towards coastal

protection. This landscape fragmentation due to rapid urbanization

essentially reflects the disruption of ecological processes by urban

development. Based on the current source-sink theory in landscape

ecology, it is recommended to maintain certain ecological corridors

in industrial areas within the existing regulatory framework (Tang

et al., 2020), while also adopting the ecological red line system (Hu

et al., 2020) to implement stricter urban growth boundary controls.

Japan’s urbanization process began earlier, and the challenges it

faces in terms of ecological risk lie in the conflict between high-

density urbanization and limited land resources. High-risk areas are

mainly concentrated in Kyushu and central regions such as Toyama

and Ishikawa Prefectures. For example, densely populated areas in

Fukuoka Prefecture, Kyushu (with a population density of 1,000-

5,514 people/km²), have transformed large amounts of agricultural

and natural conservation land into residential and commercial areas

(Yokohari et al., 2010; Irizuki et al., 2018). Over the past 30 years,

cultivated land has decreased by 21%, and both forests and coastal

wetlands have also decreased. This leads to a reduction in coastal

ecosystem biodiversity, loss of habitats, and the disappearance of

coastal wetlands, which also affects local fisheries and water

quality.The ecological risk in Japan’s coastal areas exhibits typical

features of high-density urbanization. Based on the Nature-based

Solutions (NBS) concept (Lafortezza et al., 2018), it is

recommended to implement a three-dimensional ecological

compensation strategy. This would require high-density urban

development projects to include sky gardens or vertical forests,

equivalent to a certain proportion of the land area. These measures,

through the use of three-dimensional space rather than horizontal

expansion, can alleviate land pressure and ensure the continuity of

certain ecological processes even in areas with high urban density.

The increase in ecological risk in DPRK is primarily attributed

to deforestation and the conversion of agricultural land, with

intensive land use leading to land degradation (e.g., in North

Hamgyong Province). DPRK has the highest proportion of bare
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land among the five countries, and cultivated land is also

experiencing degradation due to improper management (a

decrease of about 39%). Forests have been converted into

grasslands, weakening the stability of the ecosystem’s structure.

While urbanization in DPRK is relatively low, its areas with

Medium High and High ecological risks account for an average of

29%, which is lower than Japan and ROK but much higher than

Russia (12%) and China (18%). Intensive agricultural land

conversion has destroyed natural ecosystems, leading to habitat

loss and a decline in biodiversity (Yao et al., 2024). Deforestation

has reduced vegetation cover, and the increase in bare land has

further triggered erosion risks.However, the Ten-Year Forest

Restoration Plan implemented between 2000 and 2010 reduced

ecological risks. The restoration of forests helped decrease landscape

fragmentation and isolated patches, which is beneficial for

ecosystem stability (Colombo et al., 2012; Mori et al., 2017).

Despite this, the ecological environment quality has declined after

2010 (Figure 4c), indicating that environmental problems are often

long-term and complex. Given DPRK’s unique national

circumstances, it is recommended to combine forest restoration

with food security strategies. In severely degraded areas like North

Hamgyong Province, the cultivation of salt-tolerant economic crops

such as seabuckthorn can be promoted. This agroforestry system

not only helps to prevent soil erosion but also provides additional

economic benefits through fruit processing industries.
4.2 The impact of natural factors on
ecological risk

Russia faces ecological risks primarily from coastal erosion

affecting natural wetlands, leading to the degradation and

fragmentation of coastal wetlands. This is particularly evident in

the western coastal wetlands of Sakhalin Island, where the area of

marshes and sediment drainage zones exceeds 200 km² (Afanas’ev,

2023). The coastal terraces experience erosion at a rate of 1.9 × 105

m³ per year, with over 50% of this area consisting of peatlands and

shallow silty sediments rich in organic carbon, which are

particularly vulnerable to erosion (Afanas’ev, 1991). The

ecological risk level in these areas has gradually shifted from

Medium and Medium Low to Medium High. These coastal

erosion processes lead to wetland degradation and fragmentation,

resulting in the loss of habitats and biodiversity (Duan et al.,

2022).Although there is minimal human activity in this region, its

unique natural geographic features contribute to a relatively high

Ecological Risk Index (ERI). To address coastal erosion, vegetation

buffer zones dominated by salt-tolerant species should be

established along the coastal erosion front to effectively reduce

hydrodynamic scour (Benazir et al., 2024). Additionally, peatland

carbon sink monitoring technologies should be developed,

prioritizing the protection of high-value wetland areas by

quantifying organic carbon loss rates. It is important to note that

natural erosion processes are often difficult to completely prevent,

but establishing an early warning system can provide critical time

for species migration and conservation efforts (Wang et al., 2023).
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4.3 Limitations and future directions

This study used Landsat data to visually interpret the spatial

distribution of nearshore aquaculture ponds, finding that

aquaculture ponds are primarily located in the southern part of

Japan, with offshore farming being the dominant method. However,

the study also identified several limitations. Since aquaculture

ponds share similar spectral characteristics with seawater in

bands such as blue and green, confusion may occur at the

boundaries of classifications, especially in turbid waters. To

minimize errors, the study first used the normalized difference

water index (NDWI) to highlight the edges of water bodies,

combining historical data from Google Earth and RGB raster

imagery for comprehensive interpretation. To ensure consistency

in interpretation, the work was completed by a single researcher.

Although this method may not identify all aquaculture ponds, the

overall expansion trend of ponds is still clearly detectable.

Additionally, the 30-meter spatial resolution (covering a 900m²

area) may not capture the full extent of smaller aquaculture ponds,

leading to an overall underestimation of their area. Since the time

range of this study spans the past 30 years, commonly used high-

resolution datasets such as Sentinel-2 (10-meter resolution) do not

provide sufficient coverage in this region.We acknowledge the

subjectivity inherent in visual interpretation. During the visual

interpretation process, it was observed that the dominant

aquaculture methods in the southern coastal areas were cage

farming and raft farming. In the future, visual interpretation

could be used as validation data, combined with high-resolution

remote sensing data and deep learning technologies to improve the

accuracy of pond identification. Moreover, it is important to further

explore the potential ecological risks posed by aquaculture activities,

particularly regarding water quality changes and species diversity.

Based on the regional differences in coastal ecological risks,

future management policies should aim to build a nature-society

collaborative resilience system: For ROK rapid urbanization, strict

enforcement of urban growth boundary policies is needed.

Legislation should establish inter-municipal ecological corridor

networks to maintain connectivity between different urban and

natural areas; In high-density urban areas such as Japan, three-

dimensional spatial ecological compensation could be promoted.

Future development policies should incorporate the construction of

sky gardens/vertical forests as a condition for land development

permits, advancing the creation of sky ecosystem. For DPRK and

other agriculture-driven regions, the future should focus on

developing a model that combines economic crop cultivation +

ecological restoration. Exploring the implementation of carbon

trading mechanisms for the restoration of degraded farmland

could also be beneficial. This would involve planting economic

crops to generate verifiable carbon credits, attracting international
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climate finance support, such as the UN’s REDD+ (Reducing

Emissions from Deforestation and Forest Degradation) program;

For areas in Russia and other regions affected by natural erosion, the

development of a carbon loss-erosion rate correlation model is

necessary. Priority protection should be implemented based on the

carbon storage value of peatlands, ensuring the preservation of these

valuable ecosystems. At the same time, it is recommended to

establish an international coastal ecosystem database. Machine

learning could be utilized to predict risk transmission paths under

various scenarios, providing decision support for adaptive

management strategies in response to ecological risks.
5 Conclusions

This study integrates the LERI and the LEQI to create a more

comprehensive ecological risk assessment framework. The aim is to

identify the current health status of coastal landscapes, potential

risk changes, and to reveal ecological risk hotspot areas under

various driving factors.The findings of this study provide scientific

evidence for governments in Northeast Asia to develop future

coastal protection policies and implement ecological restoration

measures. By identifying current high-risk areas, this research offers

guidance for future ecological restoration priorities, resource

protection, and sustainable land-use planning in these regions.

Furthermore, these findings also serve as a reference for cross-

border ecological risk early warning systems and long-term

monitoring, promoting coordinated cooperation between

countries in ecological governance.The risk identification and

assessment have facilitated the achievement of the United Nations

Sustainable Development Goals (SDGs) 11 (Sustainable Cities) and

14 (marine eco-environment protection).
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