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3D reconstructions of stranded
marine mammals via easily
accessible remote sensing tools
for use in morphometrics
and visualizations
Brendan Cottrell 1, Margaret Kalacska1, J. Pablo Arroyo-Mora2,
Oliver Lucanus1, Paul Cottrell3, Taylor Lehnhart3

and Stephen Raverty4*

1Applied Remote Sensing Lab, Department of Geography, McGill University, Montreal, QC, Canada,
2Flight Research Laboratory, National Research Council of Canada, Ottawa, ON, Canada, 3Fisheries
and Oceans Canada, Vancouver, BC, Canada, 4Animal Health Center, Abbotsford, BC, Canada
This study investigates the practicality and potential impact of three-dimensional

(3D) scanning technology to assessmarinemammal strandings. Mobile phoneswere

used to evaluate the technology and its capability to accurately reconstruct

topographic features of 11 distinct marine mammal species, across diverse

environmental conditions. This process was validated by initially measuring an

inflatable whale to an accuracy of greater than 99%, with most morphometrics

collected being within 3% of conventional tape rule measurements. Our findings

demonstrate the adaptability of the technology in remote environments, particularly

for large whale strandings, while showcasing its utility to record morphometrics and

enhance necropsy documentation. The study underscores the transformative role of

3D scanning inmarinemammal postmortem examinations and conservation efforts,

offering avenues for improved research, education, and management practices. It

emphasizes the importance of accessible technology in engaging communities and

advancing wildlife conservation efforts globally.
KEYWORDS

3D scan, LiDAR, marine mammals, necropsy, morphometrics, photogrammetry, remote
sensing, visualizations
1 Introduction

As sentinels of broader ocean health (Bossart, 2011), marine mammals reflect the intricate

balance of marine ecosystems and play a crucial role in providing insights into complex and

dynamic environmental changes (Simmonds and Isaac, 2007; MacLeod, 2009; Derville et al.,

2019; Burek et al., 2008), pollution levels (Williams et al., 2023), and other factors (Bowen, 1997;

Rhodes-Reese et al., 2021). The study of marine mammals such as large whales, dolphins, and
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other pelagic creatures often poses significant challenges due to the

time spent submerged and vast and remote oceanic habitats (Nowacek

et al., 2016). Necropsies, the postmortem examination of deceased

animals, offer invaluable opportunities to assess marine mammal

health, shedding light on both individual and population-level

factors influencing their wellbeing (Küker et al., 2018). Necropsies

not only provide insights into the cause of death but also offer unique

glimpses into other aspects of marine mammal health. Tracking

emerging diseases (Waltzek et al., 2012; Leguia et al., 2023;

VanWormer et al., 2019), assessing variations in body condition

(Castrillon and Bengtson Nash, 2020), and identifying anthropogenic

trauma (Schoeman et al., 2020; Cassoff et al., 2011) are critical

observations that can be derived from necropsies and ancillary

diagnostic studies. Results from these examinations facilitate

temporospatial monitoring of stranding events (Wund et al., 2023),

identify trends in mortality rates and proximate causes of death

(Bogomolni et al., 2010), and assess the impacts of environmental

stressors on marine mammal populations (Carrier-Belleau et al., 2021).

Best practices in conducting necropsies worldwide continue to

improve the information collected around marine mammal

strandings and overall health. In remote areas where access to

specialized equipment, personnel, and expertise is limited, it is

difficult to extract a consistent level of detail from these

examinations in comparison to resourced areas (Fitton et al., 2021).

In regions like British Columbia, Canada, where expansive marine

mammal populations thrive amidst hundreds of kilometers of remote

coastline, the need for innovative approaches to necropsy procedures

becomes increasingly relevant. Despite these challenges, extensive

data have been compiled on stranding trends (Raverty et al., 2024;

Barbieri et al., 2013), anthropogenic threats (Storlund et al., 2024),

emerging diseases (Berhane et al., 2022; Teman et al., 2021;

Rosenberg et al., 2016), and contaminant levels (Lee et al., 2023a,

2023b) of marine mammals in this region. The opportunity to

improve the quantity and quality of data derived from postmortem

examinations is critical and can be further developed by available

imaging instruments and procedures (Tsui et al., 2020). Improved

documentation and sample management are other enhancements for

necropsy procedures (Brownlie and Munro, 2016).

Novel complementary methods enhance necropsy data collection

and analysis and can be realized in part by the application of rapidly

developing three-dimensional (3D) reconstruction sensors and

technology (Bois et al., 2021; Farahani et al., 2017). Continued

advancements in this technology will further improve the

accessibility and usefulness of 3D reconstruction tools. By

providing detailed visualizations of marine mammal anatomy and

pathology, these virtual reconstructions have the potential to enhance

public engagement, interest, and education (Au and Lee, 2017).

Virtual reality (VR) environments in particular offer immersive

experiences (Cipresso et al., 2018) that will potentially allow users

to explore reconstructed marine mammal specimens in

unprecedented detail, fostering greater awareness and appreciation

for these creatures and the challenges they face.

Models of marine mammals have been used successfully to

estimate body size and morphology, often to understand animal

health and bioenergetics. Digital modeling combining photographs

and select morphometric measurements have been successfully
Frontiers in Marine Science 02
applied to create 3D models of pilot whales (Adamczak et al.,

2019), finless porpoises (Zhang et al., 2023), and humpback whales

(Hirtle et al., 2022), as well as many other animals (Irschick et al.,

2022). These models are typically used as a proxy for live animals

and animated for biomechanical or nutritional analysis. Often these

models are validated using stranded animals, which further justifies

the need for continued and improved collection of morphometric

data during necropsy of marine mammal species. Digital imaging

has also been combined with 3D printing to create high-definition

3D printed specimen replicas of a killer and blue whale for use in a

marine science center (Mills et al., 2022). In Alaska, a humpback

whale was 3D scanned using an iPad and unmanned aerial vehicle

(UAV) photogrammetry to create a “Virtual Necropsy” educational

tool (Chenoweth et al., 2022). The use of accessible remote sensing

tools is invaluable for both education and in documentation of

stranded animals, although the technology must continue to be

tested, improved, and implemented to provide long-term value for

marine mammal conservation. This includes being tested in time-

constrained situations, non-ideal environmental conditions, and by

inexperienced users with varied specimens and species.

In this paper, we present a novel rapid approach for 3D

reconstruction to complement conventional necropsy techniques in

various necropsy conditions and species. The primary purpose of our

work is to showcase the current state of the imaging technology with

marine mammal strandings, and that it can be utilized by community

partners to improve information collected during a necropsy,

particularly in challenging and resource-poor environments. This

includes testing the feasibility of collecting 3D data in the typical

(often poor) environmental conditions where marine mammals are

beach cast or live stranded in British Columbia. This is particularly

important for large whale strandings, or in cases where carcass

relocation from remote areas is not feasible. In these cases, limited

external examinations and sample collection must be conducted in

place. Our methodology was tested by collecting data from a diverse

range of marine mammal specimens, including large whales,

dolphins, porpoises, pinnipeds, and sea otters, with a focus on

accessible and user-friendly handheld devices equipped with

LiDAR sensors. This approach was pursued in conjunction with a

validation of the method using an inflatable pilot whale. Ancillary

data included UAV photogrammetry of large whales to provide a

comparison to LiDAR. In cases of large cetacean strandings with

comprehensive necropsies, individual datasets of organ systems were

opportunistically collected. These scans were processed and created

into detailed virtual models for morphometric assessments, and/or as

a visualization and educational tool. These scans were also

implemented in a web application and VR environment as an

example of marine mammal stranding data visualization for

multiple species. Our study demonstrates the potential of 3D

reconstruction technology with easily available sensors (cell

phones) to enhance the study of marine mammal health and

morphometrics. Detailed visualizations of marine mammal

specimens and continued collection of these data afford researchers,

community members, and educators with valuable tools to better

document and understand marine mammal stranding events. We

highlight the importance of innovation in necropsy procedures for

advancing our understanding of marine mammal health and
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informing conservation efforts particularly in remote and

challenging environments.
2 Materials and methods

2.1 Study area

The province of British Columbia, located on the western

seaboard of Canada, is renowned for its diverse and dramatic

physical geography along its extensive coastline. Spanning over

27,000 km, the coastline features a complex network of fjords, inlets,

and islands, including the prominent Vancouver Island and Haida

Gwaii (Taylor et al., 1997). The coastal waters are characterized by a

mixture of cold, nutrient-rich currents and deep ocean upwellings

that support a diverse and vibrant marine ecosystem including

many marine mammals. There are 31 species of marine mammals

recorded in British Columbian waters, including 25 cetaceans

(whales, dolphins, and porpoises) and 6 species of carnivores

(seals, sea lions, and sea otter) (Ford, 2014).

Marine mammal strandings in British Columbia are monitored

province-wide by the British Columbia Marine Mammal Response

Network (BCMMRN) coordinated by the Department of Fisheries

and Oceans Canada (DFO). Necropsies for this study were

conducted in cooperation with Indigenous Community Members,

Fisheries Officers, Canadian Coast Guard (CCG), research

scientists, non-government organizations, and the Provincial

Animal Health Centre in Abbotsford, British Columbia.

In May 2022, data collection for strandings that were conducive

to a postmortem examination and 3D reconstruction within the

territorial waters of British Columbia was initiated. In this case

series, 11 species and 13 specimens were examined, including 8

cetacean and 3 carnivore species.
2.2 3D model reconstruction background

While in-depth descriptions of the background theory for the

methods used can be found elsewhere (see Gomes et al., 2014; Kang

et al., 2020; Ma and Liu, 2018; Zhou et al., 2024), given the novelty

of the application, a short overview is presented here.

Light Detection and Ranging (LiDAR) is a remote sensing

technology that employs laser pulses to measure the distance

between the instrument and a target surface or object. Distance is

determined through a measure of the time it takes for the pulses

generated by the instrument to travel to the surface and be reflected to

the sensor. This process generates precise, high-resolution data about

the physical environment. The resulting output, typically a 3D point

cloud, provides a detailed representation of surfaces and objects,

making LiDAR a versatile tool for applications ranging from

topographic mapping to structural analysis (Wandinger, 2005).

LiDAR systems are available in various types, including

terrestrial, RPAS, airborne, and handheld devices, each suited to

specific applications. In recent years, LiDAR technology has been

miniaturized and integrated into consumer-grade mobile devices,
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such as the latest iPhones and iPads (Vacca, 2023). Third-party

applications make use of these iOS integrated devices to generate

3D point clouds and solid meshes with minimal user training

needed. They are also relatively low-cost and more accessible than

survey-graded systems. Although these built-in systems lack the

range and resolution of professional-grade devices, they are

sufficient for many applications, including conservation (Abbas

et al., 2024), small-scale mapping (Abdel-Majeed et al., 2024), and

preliminary structural analysis (Tondo et al., 2023). Handheld and

mobile LiDAR devices are particularly efficient for data collection in

diverse environments, from controlled indoor spaces to rugged field

settings (Bauwens et al., 2016; Chio and Hou, 2021; Desai et al.,

2021). Advanced techniques, such as simultaneous localization and

mapping (SLAM) algorithms, also enhance the functionality of

these systems, enabling real-time processing of spatial data, even in

dynamic or GPS-deprived environments (Al-Tawil et al., 2024).

While professional LiDAR systems can be costly, with tripod-

based survey devices typically ranging in excess of US$20,000, iOS

mobile devices with integrated LiDAR provide a lower-cost

alternative (Yen et al., 2011). For instance, an iPhone equipped

with LiDAR can be purchased for under US$1,500 (Apple,

Cupertino, California), offering researchers and professionals an

affordable way to perform 3D scanning and mapping tasks.

In contrast to LiDAR, structure-from-Motion Multi-View

Stereo (SfM-MVS) photogrammetry is a technique used to create

3D models from 2D photographs (Eltner and Sofia, 2020). By

capturing a series of overlapping photographs from different

angles, SfM software can identify common points within the

images and reconstruct their 3D positions. This process involves

camera calibration, feature detection, and matching, followed by the

generation of a sparse point cloud that represents the object’s or

scene’s geometry (Fathi and Brilakis, 2011). Further refinement

through dense point cloud reconstruction is achieved through

algorithms such as MVS (Strecha et al., 2012).

A 3D point cloud is a collection of discrete points in 3D space,

each representing a specific location on the surface of an object or

scene. These points collectively describe the object’s geometry but

lack information about the surface’s continuity (Liu et al., 2019). In

contrast, a 3D mesh provides a more structured representation,

consisting of vertices, edges, and faces that form a continuous

surface (Rassineux, 1997). Figure 1 shows what the two different

formats of point cloud (a) and 3Dmesh model (b) represent visually

for reference on an inflatable test whale.
2.3 Marine mammal specimens examined

Over the study period, 13 marine mammal specimens

composed of 11 species were collected or examined for this study.

A summary of the stranding information and 3D data collection for

each case is provided in Supplementary Table 1, and the geographic

location of each specimen is shown in Supplementary Figure 1. In

addition to the specimens listed in Supplementary Table 1, LiDAR

and SfM data from an inflatable test whale were also collected to

validate the process of data collection for beach cast animals.
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2.3.1 Validation of reference measurements
In July 2022, 15 LiDAR datasets of an inflatable pilot whale were

collected (British Divers Marine Life Rescue, East Sussex, UK),

typically used for live stranding training. These data were collected

with ideal clear sky conditions at the DFO warehouse on Annacis

Island, British Columbia. Multiple software settings were tested and

scanning sequences were completed to determine what may work

ideally in the field. A 5.00-m tape measure was set up as a ground

reference to assess the accuracy of the reconstructed model. Three

UAV flights to collect photogrammetry data were also performed

(Supplementary Table 2).

Standard photographs and morphometric measurements were

collected for each stranding in accordance to conventional marine

mammal necropsy procedure (Pugliares et al., 2007). This was

performed opportunistically with the maximum possible number

of samples and measurements taken given the surrounding

conditions and time limitations, resources, and personnel

available for the postmortem exam.

2.3.2 Large whale specimens collected
In September 2024, a 20.07-m female adult fin whale

(Balaenoptera physalus) was discovered dead and floating in

Prince Rupert, B.C. The animal was towed to a site on Digby

Island, where it was secured up the shoreline at high tide. As the tide

receded, the whale became accessible for a full necropsy, conducted

on 3 September 2024. The animal was positioned in dorsal

recumbency, and for human safety concerns, the right lateral

aspect of the torso from the thoracic inlet to the peduncle was

not accessible. Dissection of the head and neck confirmed acute

subcutaneous hemorrhage and edema, consistent with a “suspect”

vessel strike. The animal presented in good body and moderate

postmortem condition, with widespread skin sloughing, as well as
Frontiers in Marine Science 04
the cervix and a 1-m segment of the colon exteriorized. During this

period, two 3D datasets of the animal were collected: one prior to

the necropsy and one following its completion.

In May 2023, a 12.30-m female gray whale (Eschrichtius

robustus) and calf were entrapped in a tidal lagoon at the end of

Jarvis Inlet, approximately 10 km northwest of Port Hardy, B.C.

Despite rescue attempts, only the calf escaped from the lagoon. The

mother was found floating dead outside of the lagoon a few days

after the final rescue efforts in late August 2023. At necropsy, the

animal presented in poor body and postmortem condition.

Generalized emaciation was attributed to entrapment in the

lagoon, lack of appropriate prey, and sustained lactation for 4

months. The calf was assessed as well nourished. After detection

outside the lagoon, the animal was towed to a nearby inlet and

winched as close as possible to shoreline at high tide. As the tide

receded, the animal was accessible, and two 3D datasets of the

animal were completed: one pre- and one post-necropsy. Heavy

rain during the postmortem examination precluded UAV flights

collecting photogrammetry data; however, a video of moving the

whale to the necropsy site was collected.

In June 2022, a 9.9-m male gray whale (E. robustus) presented

stranded on the west side of Nootka Island. The animal was in fair

to poor postmortem condition (decomposition code 3.5

(Bogomolni et al., 2010)) and moderate body condition. The

abdomen was moderately distended and firm. The CCG was able

to bring three personnel to attend this necropsy via CCG helicopter.

The animal was on shore at low tide allowing for examination

during a half tidal cycle. The timeline limited the external

examination of the carcass but allowed for a limited “windowed”

approach, where rectangular sections of the abdomen and thorax

were opened to access organs for examination and sampling. To

collect photogrammetry data and obtain video of the pathologists
FIGURE 1

Point cloud representation of inflatable test whale collected from LiDAR (A) and the resultant 3D mesh model (B).
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sampling the animal, two UAV flights (Supplementary Table 2)

were completed, and two 3D datasets of the animal were completed:

one pre-necropsy with the animal as it was stranded, and one

post-necropsy.

In May 2022, a 12.2-m female humpback whale (Megaptera

novaeangliae) was stranded on Langara Island, Haida Gwaii. The

animal was in moderate body and fair postmortem condition

(decomposition code 3.5). The opportunity was available for three

personnel to attend this remote necropsy. The whale was floating in

a narrow tidal gorge, precluding any meaningful necropsy, but the

decision was made to anchor the animal to shore as far up the inlet

as possible at high tide. At low tide the following day, the animal

was on shore and more exposed and the necropsy was completed

during the half tidal cycle before the animal refloated. Two UAV

flights were completed: one to collect photogrammetry data and the

other to record video of the pathologist sampling the animal. One

3D dataset of the animal post-necropsy was collected, which

included stepping on the animal itself as the surrounding terrain

was inaccessible. The animal’s fluke and a portion of the tail was

submerged during the examination, precluding that portion of the

animal from being included in the 3D dataset.

2.3.3 Dolphin specimens collected
In March 2024, a 6.00-m pregnant adult female and calf killer

whale (Orcinus orca) were entrapped in a lagoon, ultimately

resulting in a live stranding event near Zeballos, BC. Despite

efforts to refloat the animal, the adult female died later in the day.

Multiple personnel were available to assist with this necropsy, with

pre-necropsy 3D datasets collected on both the adult and unborn

fetus. Logistic and personnel challenges unfortunately precluded

additional scans from being conducted.

In July 2023, a 2.23-m juvenile Risso’s dolphin (Grampus

griseus) was stranded on East Beach, Haida Gwaii. The animal

was in poor body condition and very poor postmortem condition

(decomposition code 4). The animal was subsequently frozen, and a

necropsy was conducted in August 2023 in Daajing Giids as part of

a training course for First Nations community partners and

Fisheries Officers in marine mammal conservation. 3D datasets of

the animal were collected pre-necropsy.

In August 2023, a 1.95-m adult female striped dolphin (Stenella

coeruleoalba) live stranded near Ucluelet, B.C. The animal was

agonal and attempts to refloat and release the animal were

unsuccessful. The dolphin was frozen and, in October 2023, had a

full postmortem exam at Annacis Island. This analysis included 3D

datasets of the body before and after necropsy, as well as individual

excised organs and organ systems that were suitable for scanning.

2.3.4 Porpoise specimens collected
In May 2022 a 2.04-m adult male Dall’s porpoise (Phocoenoides

dalli) was found floating dead in open water near Victoria, B.C. The

animal was in fair-poor body condition with insect larvae around its

mouth and prominent abdominal distention. The animal was

frozen in Victoria and transported to Annacis Island for a full
Frontiers in Marine Science 05
necropsy in July 2023. This included collecting 3D datasets of the

body before and after necropsy as well as images of excised organs.

In May 2023, a 1.50-m adult male harbor porpoise (Phocoena

phocoena) was stranded on Salt Spring Island, B.C. in moderate

body condition. The animal was frozen and stored at Annacis Island

until a full necropsy was performed in August 2023. Datasets of the

animal before and after necropsy in addition to individual excised

organ systems were collected.

In July 2023 a 0.83-m harbor porpoise calf was live stranded in

Tsawwassen, B.C. Efforts to transport the animal to the Vancouver

Aquarium’s marine mammal rescue facility were unsuccessful. The

animal died in transit. The animal was frozen at Annacis Island, and

a full necropsy was performed in August 2023. 3D datasets of the

animal before and after necropsy in addition to excised organ

systems were collected.

2.3.5 Carnivore specimens collected
In January 2021, an 0.80-m juvenile female northern fur seal

(Callorhinus ursinus) was stranded near Port Hardy, B.C. in poor

postmortem and fair body condition. The animal was frozen and

transported to Annacis Island, where a necropsy was performed in

July 2023. 3D datasets of the animal before and after necropsy in

addition to excised organ systems were collected. In December

2023, a 0.79-m harbor seal (Phoca vitulina) calf was reported

abandoned in Vancouver, B.C. The animal was collected by the

Vancouver Aquarium’s marine mammal rescue team but died in

transit to the facility. The animal was frozen, and a full necropsy was

conducted in January 2024 at Annacis Island. 3D datasets of the

animal before and after necropsy in addition to organ systems were

collected. Lastly, in March 2022 a 1.14-m subadult male sea otter

(Enhydra lutris) was stranded near Tofino, B.C. in fair body and

moderate postmortem condition. The animal was frozen and

transferred to Annacis Island for necropsy in July 2023. 3D

datasets of the animal before and after necropsy in addition to

individual organ systems were collected.
2.4 LiDAR data acquisition and processing

LiDAR data were collected using an iPhone 12 Pro (Apple,

Cupertino, CA) using the free Scaniverse application (Niantic, San

Francisco, CA). The LiDAR sensor is available on the Pro and Pro

Max models of the iPhone 12 and later, in addition to iPad Pro

models from 2020.

The acquisition was achieved by walking around the animal

with the iPhone in hand, carefully covering the entire extent of the

animal and ensuring to not exceed the adjustable LiDAR range (i.e.,

0.3–5 m) in distance from the surface of the animal while scanning.

This range was adjusted as needed per animal, with the larger

whales generally requiring a farther range in order to enable the

data collector to step around the animal and not lose contact with

the animal surface. The details of the range used for each scan is

contained in Supplementary Figure 1. For large whales, data
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collection took up to 10 min, where with the smaller marine

mammals, this process was completed in a maximum of 2–3 min.

The Scaniverse app collects both LiDAR and photographs from

the phone’s main camera. Processing through the application

generates a realistic triangular 3D mesh as the primary output. The

scanning systems on iOS device applications use a form of SLAM that

continuously tracks the sensor’s position and orientation in three

dimensions over time. SLAM relies on optical data overlaps, utilizing

previously observed features to establish relative coordinates and

maintain accurate image registration (Lehtola et al., 2021). The

Scaniverse interface and an example workflow for marine mammal
Frontiers in Marine Science 06
data collection and subsequent export capabilities using the

Scaniverse application are depicted in Figure 2.
2.5 Structure-from-motion
photogrammetry acquisition
and processing

For large whale necropsy conditions that allowed for collection of

UAV photogrammetry, a Mavic Professional [Da-Jiang Innovations

(DJI), Shenzhen, China] UAV was used. Data collection consisted of
FIGURE 2

Workflow using the Scaniverse application for the purpose of collecting marine mammal scans. On the left is a written explanation of the processing
steps. On the right is the same steps in pictorial form as would be viewed in the Scaniverse application.
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capturing photographs of the exposed surfaces of stranded whales

and the surrounding area. The UAV was flown manually as opposed

to the widely used preprogrammed orthogonal flight path transects as

no previous understanding of the stranding sites was available to

create a detailed flight plan. During the manual flights, the best effort

was made to create orthogonal flight lines with high overlap (~80%)

in a cross-hatched pattern. See Supplementary Table 2 for flight

details. Pix4DMapper (Pix4D, Prilly, Switzerland) was used to

implement the SfM-MVS workflow. The resultant 3D mesh output

for these large whale cases was used primarily to provide additional

context for the large whale strandings.

One important consideration in the creation of realistic models

is the determination of scale. The LiDAR system measures distances

accurately and therefore evaluates the appropriate scale of the

models within Scaniverse without the need for input of a known

reference measurement in the scene. In the case of UAV

photogrammetry here, the geotagging of each image used to

create the model provides this distance measurement within a

scene that is required to produce accurate scale. For non-

georeferenced images, a known reference measurement is

required to add these scale constraints to the model.
2.6 Data processing workflow
and visualization

The acquired marine mammal datasets were generally

categorized into two main groups, each corresponding to distinct

use cases. The first is the application of 3D data collection in the

instance of remote or inaccessible necropsies that benefit from the

ease of use of these sensors and software. This is the case where

trained regional partners are most likely to use this technology to

collect 3D reconstruction information in the field where the animal

is too large (for large whales) or too remote to be transported for a

full postmortem examination or for pathologists to travel to the

area. In this scenario, the mesh output of the Scaniverse workflow

from a handheld device (Figure 2) provided an acceptable

reconstruction without postprocessing. When possible, the use of

UAV photogrammetry for large whales was implemented, to

provide more environmental context and auxiliary data to the

handheld LiDAR collection alone. This procedure could only be

done if appropriate personnel and equipment were available. The

second case is more exploratory in using this technology in the

context of animals that were stranded or were transported to

resourced areas where a full necropsy can be conducted, with all

organ systems sampled and excised with a 3D dataset collected.

Both data collection protocols followed a similar workflow, which is

outlined in depth in Supplementary Figure 2.

Following processing and inspection of the resulting model, the

meshes were exported to both.obj (geometry definition file format)

and.las (RGB 3-dimensional point cloud data) files from the

Scaniverse application to further refine in post-processing.

Post-processing the Scaniverse output was done by the free

open-source 3D point cloud and mesh processing software
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CloudCompare Version 2.13. The two main tools used were to

crop and segment data as well as merge multiple scans of the same

specimen. For the cases where UAV photogrammetry data were

collected, Pix4DMapper Version 4.8 was used to process the UAV

data into meshes that could then be combined with the Scaniverse

mesh outputs in CloudCompare.
2.7 Morphometric measurements

The key morphometric quantities of interest for cetaceans during

postmortem exams and photogrammetry (and in general) are

straightline length (from rostral limit of upper jaw), appendage

lengths, girth, and blubber thickness. There are 12 straightline length

measurements, 4 appendage measurements, 4 girth measurements, 2

throat pleat measurements (if applicable), and 9 blubber measurements

typically recorded for complete morphometric characterization during

postmortem exams (Supplementary Figure 3). For carnivores,

morphometrics typically include straightline and curvilinear length

(tip of snout to tip of tail), two appendage measurements, three girth

measurements, and three blubber measurements (if applicable)

(Rowles et al., 2001; Burns and Gillespie, 2003; IJsseldijk et al., 2019).

In this case series, digital morphometric measurements (Euclidean

distance) were made in Scaniverse using a straightline length or using a

polyline measurement for curvilinear measurements of length or girth.

For all carcasses, the multiple digital measurements are compared

against the manually collected morphometric data as a proof of

concept. One important consideration in this work is that there is no

way to verify the accuracy of the manual measurements; experienced

personnel were primarily tasked with these measurements, but there is

an unquantifiable source of error intrinsic to manual measurements

that must be mentioned. To minimize the impact of this, only qualified

personnel with appropriate necropsy experience were taking

measurements in these cases, with the veterinary pathologist

supervising if unable to take the measurement themselves.
2.8 Web visualization and virtual reality

The generated 3D reconstructions of the specimens and

auxiliary information were stored in an accessible web platform

for visualization and further investigation. The exported. obj

meshes were uploaded to a server using the open-source 3D

Heritage Online Presenter (3DHOP) framework (Visual

Computing Laboratory - ISTI-CNR, Pisa, Italy) for interactive

web presentations of high-resolution 3D models. These models

can be evaluated through this medium for their quality,

reproducibility, and reusability.

Uploading and incorporating the models into VR was

implemented using the ENGAGE VR (Immersive VR Education,

Ireland) platform. This platform allows for the uploading of.glb

files, which, unlike.obj, provide a packaged single file containing all

textures and shaders of a model. Within the platform, a

presentation was created to view the output of these scans in
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lifelike sizes, providing an opportunity to view what happens during

a necropsy through VR for multiple species types.
3 Results

3.1 Validation of model geometry with
inflatable whale

The 5.00-m measuring tape next to the inflatable whale was used

as a reference and measured over 15 scan iterations within the

Scaniverse app to be 4.99 ± 0.03 m. This demonstrates that barring

any obvious distortions, errors in scanning, or errors in using the

measurement tool within Scaniverse, measurements achieved

through reconstructions have approximately a 1% uncertainty.

These three error sources must be closely monitored to obtain

accurate measurements from a 3D reconstruction. An example of

the reference measurement as well as three example morphometric

measurements of the inflatable whale including dorsal fin height,

flipper anterior length, and half tail fluke width are shown in Figure 3.

The proportions and overall shape of the inflatable whale are not

entirely comparable to a real animal; however, the reconstruction can

clearly distinguish the structure of the fins, as well as the body shape.

During testing, it was found that for most cases, using “detail

mode” (photogrammetry) for processing within Scaniverse

occasionally resulted in large artifacts (e.g., two tails) especially

for the large whales, while in “area mode”, the structural data

provided by LiDAR allow for the best representation of true form in

all cases. For smaller animals and excised organ systems, detail

mode was able to better represent the surface texture, which is

important for diagnostics.
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3.2 Large whales

The fin whale that presented dead in Prince Rupert had ample

subcutaneous and visceral adipose stores and the animal is well

muscled as seen in Figure 4. Pre-necropsy morphometrics via 3D

data showed a measured straightline length of 19.45 m, which

differed by 3.14% from the straightline length determined from the

manual measurement (20.07 m) seen in Figure 4A. The tail fluke

width differed by 2.25% (Figure 4C), while the anterior flipper

length differed by 0.43% (Figure 4D). The dorsal fin height differed

by 2.60% (Figure 4E). Externally, the right dorsolateral aspect of the

head and neck shows localized swelling and asymmetry, consistent

with acute subcutaneous hemorrhage and edema caused by the

suspected vessel strike. Multifocal skin erosions and occasional

ulcerations appear as irregular surface textures and depressions

on the body. The reduced blubber thickness in the ventral third,

indicative of moderate atrophy, is evident, particularly in cross-

sectional views. Post-necropsy in Figure 4B, the internal trauma to

the head and neck is clearly visible, with areas of hemorrhage and

edema in the underlying musculature appearing as disrupted and

discolored tissue. Additionally, muscle degeneration and necrosis in

the skeletal musculature are apparent as irregular and separated

muscle fibers with fluid accumulation. Together, the 3D datasets

capture the extent of trauma and pathological findings consistent

with a suspected vessel strike. The gross necropsy findings of edema

(and hemorrhage) are borne microscopically and also consistent

with cause of death due to a traumatic incident.

The gray whale that was reported dead after a 4-month

entrapment in a lagoon was severely emaciated but presented with

some postmortem bloating. Pre-necropsy morphometrics via 3D data

in addition to a post-necropsy representation of the animal that
FIGURE 3

3D model (generated from Scaniverse) of the inflatable pilot whale used for live stranding training. (A) Reference assessment against known length
(5.0 m), and straightline measurement of the whale at 4.40 m. (B) Side profile of whale for reference and display shape of inflatable. (C) Simulated
measurement of anterior flipper length. (D) Simulated measurement of dorsal fin height. (E) Simulated measurement of (half) tail fluke width.
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FIGURE 4

3D reconstruction of fin whale stranded on cargo ship recovered near Prince Rupert. (A) Straightline length calculated in Scaniverse. (B) Animal after
necropsy. (C) Tail fluke width measurement. (D) Anterior flipper measurement. (E) Dorsal fin measurement.
FIGURE 5

3D reconstruction of gray whale stranded near Jarvis Inlet after being trapped in a tidal lagoon for 4 months. (A) Straightline length calculated in
Scaniverse. (B) Tail fluke measurement (underestimated if straightline length used). (C) Anterior flipper measurement, underestimated by 10% due to
water cutoff. (D) From mid dorsal looking towards head. (E) Front dorsal towards tail obvious “peanut head” as a result of extreme emaciation before
death captured in the 3D reconstruction. (F) Animal after necropsy.
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displays several internal organs are shown in Figure 5. With full

exposure of the animal at necropsy, an accurate straightline length

can be determined directly from Scaniverse. The measured

straightline length (12.35 m) was <1% different from the value

measured manually in the field (12.30 m). The axillary girth,

doubled at half, was different by a factor of 1.4%. This can partially

be explained by the discrepancy when using a polyline measurement

in Scaniverse as opposed to a tape measure that can adequately lie

flush to the animal. In addition, postmortem bloat, liquefaction of the

blubber, posture of the carcass on the beach, and other factors may

have contributed to this discrepancy. In this case, polyline

measurements at less than 10 cm between vertices were used. The

tail fluke measurement had a discrepancy of 0.4 m or approximately

10% if using a straightline fluke length, reduced to 2% using a six-part

polyline measurement. This is an important consideration in this case

and other strandings where the animal’s fluke was in a curved shape,

meaning a straightline length as shown in Figure 5B will

underestimate this value if the morphometric measurement was

done with a tape measure flush to the fluke length as was done

here. A 13% discrepancy can be seen with the anterior flipper

measurement as a small portion of the pectoral was submerged,

another consideration when compiling morphometrics from 3D data.

The animal had marked reductions in subcutaneous and visceral

adipose stores and was poorly muscled. There was salmon

discoloration of the blubber. This emaciation manifests in a

“peanut head” appearance, or a marked bilaterally symmetric

narrowing of the caudal aspect of the skull, which is readily

apparent in the 3D representation of the animal (Figures 5D, E).

The salmon discoloration of the blubber has been observed in other

gray whales, and it is difficult to infer whether this may be related to

dietary changes (abundant carotenoids), endogenous pigment

production, or some other process. The animal also had

generalized sloughing of the skin, attributed to postmortem change.
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The gray whale stranded on Nootka island was bloated, and

upon incision of the abdominal musculature, there was marked

deflation of the abdominal cavity. Figure 6 displays the UAV 3D

model output obtained during this necropsy and 3D dataset

collection conducted before and after necropsy. The animal’s total

length was estimated at 9.9 m from nadir UAV photographs; the

fluke of the animal was still submerged at low tide. The analysis

included a correcting factor given the estimated 20° decline of the

tail in the water. An anterior flipper measurement from the pre-

necropsy LiDAR in Scaniverse was collected to be 1.44 m, within 2%

of the manual measurement of 1.47 m. In the post-necropsy scan, it

is apparent that, upon incision, a moderate amount of brown–red

fluid was drained from the animal as a result of advanced autolysis.

The small intestines and colon were distended with gas, which was

well characterized by the 3D reconstruction. The post-necropsy

dataset of this animal did not characterize the head adequately. This

is due to the LiDAR collection losing contact (out of range) halfway

through the scan. The processing software cannot register where the

data are collected from and must re-register from a new reference

point. This resulted in this scan essentially having two lower halves

of the animal separated by approximately 15°, which was rectified in

postprocessing via segmentation of the scan at the point of

deviation and subsequent re-registration through the use of

equivalent reference points that are present in both segments (Xu

et al., 2023). Despite the visual success shown in Figure 6D, this scan

is not suitable for use in morphometric analysis, only a

visual assessment.

The stranded humpback whale in Haida Gwaii was in dorsal

recumbency and the UAV photogrammetry and 3D dataset are

presented in Figure 7. The UAV photogrammetry shown before and

after necropsy especially outlines the steep tidal gorge the animal

was in that precluded much of the normal necropsy procedure for

safety concerns. LiDAR data were collected after necropsy and
FIGURE 6

3D reconstruction of gray whale stranded on Nootka Island. (A) UAV photogrammetry output before necropsy. (B) LiDAR output before necropsy.
(C) UAV photogrammetry output after necropsy. (D) LiDAR output after necropsy.
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showed that on incision of the musculature, multiple tense loops of

gas that inflated the small intestine were extruded. The flukes and

distal third of the peduncle were submerged. The oral cavity was

also only partially exposed from the water. Morphometric

measurements were collected solely through assessing the 3D

reconstruction and UAV images due to the difficult environment,

although some measurements such as that of the anterior flippers

could be verified via a measuring tape. With some areas of the

animal inaccessible to the scanner being underwater, the

straightline length could not be calculated directly in Scaniverse.

The animal’s length was estimated at 12.2 m from these scans and

associated photographs in postprocessing. Other morphometrics

were collected from Scaniverse, including an example anterior fluke

measurement at 2.47 m, consistent with the manual measurement

(2.50 m) to within 2%. The 3D reconstruction adequately displays

the animal’s moderate body condition, prominent mammae, and

open abdominal cavity, including a moderate amount of ingesta

primarily consisting of herring bones.
3.3 Dolphins and porpoises

Stranded killer whales are rare in British Columbia relative to the

large whales (Barbieri et al., 2013) and each event provides a unique

opportunity to showcase 3D reconstructions of this species. For the

adult pregnant female transient that was stranded near Zeballos, this

was especially true. This animal initially was live stranded but

subsequently died despite efforts to refloat her, and a postmortem

examination was undertaken within 36 h. Figure 8 displays the pre-

necropsy scan of the near-term pregnant killer whale. Extremely wet

and humid conditions caused specular anomalies of the scanner

operator and other surrounding areas to be present on the surface of

the whale in the 3D reconstruction. This did not impact the LiDAR

information obtained from the scan (and thus ability to collect
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morphometrics). The straightline length is measured at 6.02 m

with a 6.00-m tape measurement in the field. The straightline

length of the fetus was measured to within 1% of the field

morphometric measurement, with the 1.50-m measurement in

Figure 8E comparable to the 1.53 m measured in the field.

The Risso’s dolphin specimen was found with extensive scavenging

and poor postmortem condition, with extensive skin sloughing. The

animal was 2.21 m in Scaniverse compared to 2.23 m during the

necropsy with a difference of less than 1%. The pre-necropsy scan of

the animal is shown in Figure 9. The suboptimal nutrition of this

animal coupled with the lack of ingesta and blubber atrophy found

during the necropsy is consistent with a negative energy balance that

would have been severe enough to cause the loss of this animal. There

were no other apparent internal or external lesions.

The live stranded striped dolphin is shown through its 3D

reconstruction in Figure 10. The animal had superficial abrasions

on the leading edge of the dorsal fin and edges of the tail flukes,

possibly as a result of the live stranding event. The straightline

length of the animal was measured by Scaniverse at 1.91 m, with a

field measurement of 1.95 m, an approximately 2% discrepancy.

This animal and the remaining carcasses included in this case series

had complete necropsies and tissues were scanned in situ and

excised as was logistically feasible. The following strandings with

full necropsies were less time- and resource-constrained and

allowed for more focused systematic visualization of the stranded

animal and associated internal anatomy. This procedure facilitated

review of the stranded animal as a 3D dataset to compare against

different specimens or measure/visually assess areas, including that

of organ systems. The sequential removal of all tissues and organs

during the full necropsy is displayed for select organs. The

topographic features and unique structure of the organs and

stomach, pluck including goosebeak and thoracic viscera, as well

as the kidney were well depicted by the scan and are displayed in

Figure 10. There were no significant lesions in the adipose tissue,
frontiersin.or
FIGURE 7

3D reconstruction of humpback whale in Haida Gwaii. (A) UAV photogrammetry output before necropsy. (B) UAV photogrammetry output after
necropsy. (C) LiDAR output after necropsy.
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peripheral vasculature, penis, urinary bladder, trachea, kidney,

thyroid gland, adrenal gland, diaphragm, or liver.

The stranded Dall’s porpoise is shown via its reconstruction in

Figure 11. The animal was measured to be 1.97 m straightline length

by Scaniverse, a difference of 3.5% from the manual measurement of

2.04 m. The animal had reduced subcutaneous and visceral adipose

stores and was fairly muscled. There were no apparent internal or

external lesions that would have contributed to the loss of this

animal. All organs were sampled with select scans of organ systems

shown in Figure 11.

Two harbor porpoise reconstructions are displayed in Figure 12.

The adult was moderately fleshed with possible otitis interna.

Incised cutaneous wounds are visible on this animal and

suggestive of a possible vessel strike interaction. These wounds

are visible on the scan and can be subsequently analyzed by various

characteristics of the injury (Byard et al., 2012). The animal was

measured with a straightline length of 1.46 m, within 3% of the

manual measurement of 1.50 m. All organs were sampled with
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select organ systems shown in Figures 12a–g. The harbor porpoise

calf was in good postmortem and body condition with no apparent

internal or external lesions. The animal was measured at a

straightline length of 0.81 m, within 2% of the manual

measurement of 0.83 m. Selected scans of the calf’s overall body

condition and organ systems are shown in Figures 12A–E.
3.4 Sea otter, northern fur seal, and
harbor seal

All carnivore full-body reconstructions are displayed in Figure 13.

The use of “detail” mode in Scaniverse improved the resolution of the

fur texture in some scans. The sea otter was autolyzed, with a

pendulous fluid filled abdomen. The abdomen was fluctuant with a

prominent fluid line on ballottement. The reconstruction confirmed

moderate abdominal distention with fluid accumulation in Figure 13a.

The straightline length of the animal was 1.09 m using the
frontiersin.or
FIGURE 8

3D reconstruction of killer whale stranded near Zeballos. (A) Straightline length calculated in Scaniverse. (B) Tail fluke measurement (underestimated
if straightline length used). (C) Dorsal fin measurement. (D) Anterior flipper measurement. (E) Unborn fetus removed from the whale.
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reconstruction, a difference of 4% from the manual measurement

during the examination of 1.14 m. The subcutis is a dull pale green

brown and tacky, and the liver is moderately enlarged. Oysters in the

stomach contents can be viewed in a scan of the digestive system, along

with scans of various organs presented in the web application

(Supplementary Table 3). Unfortunately, postmortem change

hampered a gross examination of the animal although the suspected

cause of death is trauma to the head. The northern fur seal specimen

was also in a state of advanced autolysis, although was fairly fleshed

(Figure 13A). There is mild swelling of the head and vulva, and the

lungs are mottled pale to dark red. The animal was measured at 0.77 m,

approximately a 3% difference from that of themanual measurement at

0.80 m. The reconstructed harbor seal pup is presented in Figure 13a;
the reconstruction measurement was 0.78 m with a difference of

approximately 1% from the manual morphometric measurement of

0.79 m.

A summary of each specimen and associated measurement

types, manual and model morphometrics, and the percentage

difference between the two is compiled in Table 1.
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3.5 Web application and virtual reality

All the scans presented here in addition to those of other organ

systems or stages of the necropsy are in Supplementary Table 3,

where the scans can be visualized, explored, and zoomed into. These

manipulations are a major advantage of 3D data versus a series of

two-dimensional photographs. Future strandings where LiDAR or

photogrammetry data are collected will continue to be added to this

dataset, which is intended for public access.

The VR implementation of these scans was achieved through a

short presentation in ENGAGE VR, which highlights the importance

of marine mammal necropsies and the possibility of VR in improving

the science and education of necropsies. The users within the VR

environment can walk around and experience several perspectives of

necropsies at close to life size while a video of the stranding response

and pathologists dissecting the whale is displayed above. The

application provides a unique sense of the scale of necropsies to

those that have never witnessed them in this context. An example

screenshot of navigating the VR environment is shown in Figure 14.
FIGURE 9

3D reconstruction of a Risso’s dolphin with necropsy conducted as part of a training exercise with community partners. (A) Measurement of
straightline length of the animal. (B) Animal lying on the left side. (C) Animal lying on the right side.
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4 Discussion

While all marine mammal 3D datasets were well visually

reconstructed in the field, challenges such as water immersion

affecting straightline measurements for large whales were noted

(Figures 6, 7), prompting the need for complementary data

integration methods like UAV photographs for large whale

strandings for accurate measurements. For larger specimens (e.g.,

the fin whale in Figure 4 at 20 m), deviations in the manual

measurement due to bending and warping of the tape measure

over the larger distance are magnified and provide a potential

explanation for differences between measurements obtained from

the models and those gathered manually. Polyline measurements

were utilized for curvilinear metrics such as girth or flukes that
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rested curved and showed good agreement to manual tape

measurements (Figure 5). Specific excised organ system scans for

smaller carcasses including the striped dolphin, porpoises, and

carnivores facilitated unique data collection opportunities,

enhancing documentation and the ability to revisit interpretation

of necropsy results, particularly concerning internal and external

lesions (e.g., previous sign of vessel strike interaction in Figure 12).

The integration of 3D reconstruction technology into necropsy

procedures offers several benefits that were conducted with minimal

reduction in the capacity to perform thorough postmortem

examinations in this case series. This is despite the fact that many

of the remote necropsies were conducted by a small complement of

three to four personnel. This technology enables the collection of

comprehensive data beyond what is achievable through photographs
frontiersin.or
FIGURE 10

3D reconstruction of a striped dolphin that was live stranded in Ucluelet and was euthanized. (A) Measurement of straightline length of the animal.
(B) Removal of external blubber layer. (C) Carcass with organ systems removed. (D) Digestive system. (E) Pluck including goosebeak. (F) Reniculate
(lobed) kidney seen in marine mammals.
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and morphometric data sheets alone. The detailed topographic and

anatomic information obtained from 3D data facilitates more

accurate assessments of causes of mortality and pathology when

the physical specimen is not accessible, while also serving as datasets

for morphometric analysis and virtual reconstructions. 3D

reconstruction technology enables researchers to visualize, consult,

and analyze remotely stranded specimens in ways that were

previously impossible, opening new avenues for research and

education. This enhanced documentation of a specimen’s anatomy

is useful in creating unique additions to permanent records of

necropsy findings and simplifying data sharing with other

researchers or regions for collaborative analyses. These 3D
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reconstructions can also be easily overlaid and compared between

multiple specimens, enabling the identification of patterns, variations,

and anomalies across different individuals or species. Where access to

specialized equipment and facilities may be limited, handheld devices

equipped with LiDAR sensors such as that of current mobile phone

models (iPhone) offer a cost-effective and portable solution to

conduct necropsies and collect ancillary data. Although all scans

can be subsequently processed after data collection, the more accurate

and representative the initial scans are, the more likely community

partners will be motivated to continue using and finding value in

them. This reduces the effort and barriers to making the adoption of

this technology standard for postmortem exams.
FIGURE 11

3D reconstruction of a Dall’s porpoise. (A) Measurement of straightline length of the animal. (B) Removal of external blubber layer. (C) Carcass with
organ systems visible. (D) Digestive system. (E) Pluck including goosebeak. (F) Testes. (G) Reniculate (lobed) kidney seen in marine mammals.
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The findings of this study suggest that the application of this

technology is accessible to most users when the outlined instructions

are followed diligently. The highest value of this technology is currently

in scenarios where conventional necropsies are limited or novel species

may be investigated, such as shown with large whales in Figures 4–7.

Two primary use cases emerge: supplementing limited external

examinations and complementing internal complete necropsies. The

first case is essential for morphometric analysis where traditional

measurements are not feasible, and the identification of external

lesions, particularly signs of trauma. The second case enables later

assessment of internal lesions and organs. While all species are viable

subjects, animals assessed in rainy conditions or with high specular

reflection, such as the killer whale case here, may exhibit visual

anomalies during the creation of the 3D mesh. The combination of

LiDAR and photogrammetry during scans collected by Scaniverse is
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crucial for creating lifelike representations. LiDAR data are critical for

accurate morphometric measurements.

The advent of scanning technology in handheld phones has

made this technology easily accessible in a broad range of

applications primarily in mapping and geosciences (Tavani et al.,

2022; Günen et al., 2023; Luetzenburg et al., 2021), and in fields such

as human body measurement (Mikalai et al., 2022). The use of iOS-

based LiDAR has been studied for repeatability and bias against

reference values collected via manual measurements of a vehicle

and filing cabinet (Heinrichs and Yang, 2021). These scans are

analogous in size to a large whale and smaller cetaceans/carnivores,

respectively, with their results also producing centimeter-level

deviations from manual measurements as seen in these cases for

marine mammals. These systems have also been used for cultural

heritage applications, where different iOS scanning applications
FIGURE 12

3D reconstruction of an adult and calf harbor porpoise. (a) Measurement of straightline length of the adult harbor porpoise. (b) Carcass with organ
systems visible. (c) Carcass with organ systems removed. (d) Digestive system. (e) Testes. (f) Heart. (g) Pluck including gooseback. (A) Measurement
of straightline length of harbor porpoise calf. (B) Carcass with blubber flensed. (C) Carcass with organ systems removed. (D) Pluck. (E)
Digestive system.
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were tested against each other and distance metrics were compared

(Teppati Losè et al., 2022). This study outlines that although all iOS

LiDAR sensors are comparable, the choice of scanning application

impacts the outcome of the scan by dictating parameters such as

scanning point density. In this work, only Scaniverse was used and

evaluated, although other applications such as 3DScanner, Polycam,

and SiteScape perform similar functions. In one study comparing

these applications, point clouds against high-precision terrestrial

LiDAR scanners (Askar and Sternberg, 2023), it was shown that

Scaniverse has a far lower density of points than any other

application, which makes on-site field processing far more rapid

in Scaniverse. This is especially useful in the use cases outlined in

this study for remote and inaccessible environments where quickly

analyzing the scan output is important to ensure the scan was

captured properly. This does come at the expense of a less-dense

point cloud, although in our examinations, the meshes output by

Scaniverse were within an acceptable margin of error for

morphometric assessments, given these measurements in the field

are subject to their own errors, especially in the large whale cases.

Previous studies that have investigated 3D reconstructions of

stranded marine mammals primarily emphasize using this

technology either for creating a digital collection of fossils or

specimens for museums (Merella et al., 2023; Franci and Berta,

2018; Niven et al., 2009), or for input into models that can estimate

free-ranging animals’ body mass and volume for objectives such as

bioenergetic analysis and swimming dynamics (Zhang et al., 2023;

Irschick et al., 2022). The former cases have created extremely

detailed reconstructions that can be 3D printed and re-articulated

into true representations of skeletons. The later purpose is rapidly
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developing and allows for accurate determinations of many aspects of

living marine mammals and advance the ability to study and

understand these species in the wild. The only identified uses of

this technology in assessing stranded marine mammals in the field is

the case of the “Virtual Necropsy” conducted in Alaska (Chenoweth

et al., 2022) as well as a fin whale reconstruction in Italy (Del Pizzo

et al., 2021). The former appears to be the first time that this

technology was used to generate a 3D reconstruction of a necropsy

over the course of a decomposing animal. This work garnered broad

interest and showcased the value of these scans for use in education,

research, and public interest. In the fin whale case, the use of mobile

phone photogrammetry to reconstruct a large fin whale was also

successful. In this work, we provide a complement and extension to

this kind of data collection by providing scans from a variety of

necropsy situations and species types and showcasing their utility as a

documentation and visualization tool as this technology progresses.

The continued advancement of 3D reconstruction technology in

the field of marine mammal strandings has significant implications for

overall research and conservation efforts in this field. The

morphometric and structural data obtained from 3D data offer

invaluable reference and validation datasets for constructing accurate

models of free-ranging cetaceans, crucial for bioenergetics and other

physiological studies. These data also immortalize these animals,

enabling revisitation and improved documentation of rare events

such as killer whale strandings. This is essential for monitoring

causes of death and population health over time and providing

context for future stranding events of all species. The collection of

3D data across populations also simplifies comparative studies in body

condition, offeringmore nuancedmethods of comparison beyond girth
FIGURE 13

3D reconstruction of an adult sea otter, juvenile fur seal, and harbor seal pup. (a) Measurement of straightline length of adult sea otter (b) Sea otter
carcass with organ systems visible. (c) Sea otter carcass with organ systems removed. (A) Measurement of straightline length of the juvenile fur seal.
(B) Fur seal carcass with organ systems visible. (C) Fur seal carcass with organ systems removed. (a) Measurement of straightline length of harbor
seal pup. (b) Harbor seal carcass with organ systems visible. (g) Harbor seal carcass with organ systems removed.
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and straightline length. The accessibility of this handheld technology

allows non-experts and community members in remote or inaccessible

regions to perform scans and engage actively in marine mammal

conservation. Beyond British Columbia, this technology provides an

opportunity for stranding programs globally with lower resources to

collect more comprehensive data on marine mammal strandings by

simply using their phone and downloading a 3D scanning application.

An example of this is the recent Unusual Mortality Event (UME) for

gray whales, where areas with lesser capacity to respond to strandings

such as Mexico reported almost half (44.9%) of all strandings in the

Eastern North Pacific relative to a small 4.2% in British Columbia by

comparison (Raverty et al., 2024). The utilization of simple accessible

tools such as that presented here could augment the limited data
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collection from stranding hotspot location in lower-income nations

with limited capacity to respond and collect comprehensive stranding

information going forward. Preserving these data for analysis by

experts that cannot attend a necropsy is another use case of this

technology as progressive decomposition from delayed examination

limits the utility of a traditional assessment. Progressive decomposition

also compromises the utility of measurements for validation of free-

living animals as the animal decomposes, bloats, and changes shape

(Christiansen et al., 2019). The fresher the specimen, the more likely

both external and internal factors can be observed and determined to

contribute to cause of death. These scan products when combined with

rapidly improving tools such as VR also present the potential to

improve training the new generation of responders and volunteers in
TABLE 1 Morphometrics of each specimen achieved manually and through measurement of the models.

Species Measurement type Manual morphometric
measurement (m)

Model morphometric
measurement (m)

Percentage
difference (%)

Inflatable whale Straightline length 4.41 4.40 0.23

Anterior flipper length 0.72 0.71 1.40

Dorsal fin height 0.27 0.26 3.77

Tail fluke width (half) 0.50 0.48 4.08

Fin whale Straightline length 20.07 19.45 3.14

Dorsal fin height 0.38 0.39 2.60

Tail fluke width 4.04 3.95 2.25

Anterior flipper length 2.34 2.33 0.43

Gray whale (Tsibass) Straightline length 12.30 12.35 0.41

Axillary girth (doubled
at half)

5.64 5.60 0.71

Tail fluke width 3.17 3.10 2.23

Anterior flipper length 2.27 1.98 13.65

Gray whale (Nootka) Anterior flipper length 1.47 1.44 2.06

Humpback whale Anterior flipper length 2.50 2.47 1.21

Killer whale Straightline length 6.00 6.02 0.33

Tail fluke width 1.44 1.42 1.40

Dorsal fin height 0.63 0.61 3.23

Anterior flipper length 0.95 0.94 1.06

Killer whale fetus Straightline length 1.53 1.50 1.98

Risso’s dolphin Straightline length 2.23 2.21 0.90

Striped dolphin Straightline length 1.95 1.91 2.07

Dall’s porpoise Straightline length 2.04 1.97 3.49

Harbor porpoise (adult) Straightline length 1.50 1.46 2.70

Harbor porpoise (calf) Straightline length 0.83 0.81 2.44

Sea otter Straightline length 1.14 1.09 4.48

Northern fur seal Straightline length 0.80 0.77 3.82

Harbor seal Straightline length 0.79 0.78 1.27
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necropsy procedures, enhancing their preparedness for stranding

events and improving examination efficiency and outcomes. The

integration of website and VR visualizations not only facilitates data

compilation and dissemination but also ensures its longevity and

accessibility to diverse user groups, including students, researchers,

and conservation practitioners. The continued collection and use of

data from 3D reconstructed marine mammals contributes to a growing

integration of technology into wildlife conservation and ecological

studies. Further work with this dataset will combine these

reconstructions with that of medical imaging including computed

tomography (CT) and magnetic resonance imaging (MRI)

(Dennison et al., 2012) to showcase the ability of imaging products

to improve the ability to diagnose, document, and understand marine

mammal health.
5 Conclusion

This study investigates the potential application of 3D scanning

technology within the domain of marine mammal strandings, to assess

its applicability, practicality, and consequential impact. By leveraging

accessible LiDAR scanners present in mobile phones, we explored the
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technology’s capacity to reconstruct marine mammal carcasses with

accuracy and consistency across varied postmortem conditions,

geographic regions, and species. Our investigation demonstrated the

utility of 3D reconstructions in precisely measuring morphometrics in

field settings, offering valuable supplementation to traditional field

measurements and enhancing documentation practices. In most cases,

discrepancies between manual morphometric measurements and that

of the 3D reconstruction were less than 3%. For larger specimens (e.g.,

the fin whale in Figure 4 at a colossal 20 m), deviations in the manual

measurement due to bending and warping of the tape measure over the

larger distance are magnified and provide a potential explanation for

differences betweenmeasurements obtained from themodels and those

gathered manually. The adaptability of this technology extends to

educational realms, where it can be employed to train responders and

volunteers in necropsy procedures, thereby improving stranding event

preparedness, procedures, and outcomes. The integration of VR and

web visualizations serves to disseminate these data effectively across

diverse user groups and stakeholders in marine mammal health and

management. Our research underscores the potential impact 3D

scanning technology can have on marine mammal and ecological

studies, offering a pathway for enhanced research, education, and

conservation efforts.
FIGURE 14

Navigation and example of the VR environment where students can investigate what conditions are like during a marine mammal necropsy. (A) The
humpback whale shown in VR with the video outlining the necropsy playing above. (B) The gray whale from Nootka Island relative to a person
navigating the VR environment.
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