
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Wupeng Xiao,
Xiamen University, China

REVIEWED BY

Zhixuan Feng,
East China Normal University, China
Yichong Wang,
Xiamen University, China

*CORRESPONDENCE

Navya Prakash

navya.prakash@uni-oldenburg.de

RECEIVED 29 August 2024
ACCEPTED 20 March 2025

PUBLISHED 28 April 2025

CITATION

Prakash N and Zielinski O (2025) AI-enhanced
real-time monitoring of marine pollution: part
1-A state-of-the-art and scoping review.
Front. Mar. Sci. 12:1486615.
doi: 10.3389/fmars.2025.1486615

COPYRIGHT

© 2025 Prakash and Zielinski. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Systematic Review

PUBLISHED 28 April 2025

DOI 10.3389/fmars.2025.1486615
AI-enhanced real-time
monitoring of marine pollution:
part 1-A state-of-the-art and
scoping review
Navya Prakash1,2* and Oliver Zielinski2,3

1Marine Sensor Systems, Institute for Chemistry and Biology of the Marine Environment
(ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Lower Saxony, Germany,
2Marine Perception, German Research Center for Artificial Intelligence (DFKI) GmbH, Oldenburg,
Lower Saxony, Germany, 3Leibniz Institute for Baltic Sea Research Warnemuende (IOW), Rostock,
Mecklenburg-Western Pomerania, Germany
Marine pollution, especially from oil spills and litter, poses significant threats to

marine ecosystems, aquaculture and fisheries. The proliferation of pollutants

requires advanced monitoring techniques to enhance early detection and

mitigation efforts. Artificial Intelligence revolutionizes environmental

monitoring by enabling rapid and precise pollution detection using remote

sensing and machine learning models. This review synthesizes 53 recent

studies on Artificial Intelligence applications in marine pollution detection,

focusing on different model architectures, sensing technologies and

preprocessing methods. The most deployed models of Random Forest, U-

Network, Generative Adversarial Networks, Mask Region-based Convolution

Neural Network and You Only Look Once demonstrated high prediction rate

for detecting oil spills and marine litter. However, challenges remain, including

limited training datasets, inconsistencies in sensor data and real-time monitoring

constraints. Future research should improve Artificial Intelligence model

generalization, integrate multi-sensor data and enhance real-time processing

capabilities to create more efficient and scalable marine pollution

detection systems.
KEYWORDS
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GRAPHICAL ABSTRACT
1 Introduction

Pollution is the release of harmful substances into the

environment, leading to adverse changes in the ecosystem. Marine

contamination is a significant part of global environmental pollution,

as water covers a vast area of the Earth’s surface (NASA, 2023). The

annual European Union (EU) Blue Economy Report (MARE, 2021)

reported oil spills, litter, plastic debris, and ship emissions as

significant harmful contaminants affecting the marine ecosystem.

Another annual EU Blue Economy Report (EU, 2019) that followed

discussed that 9 million tons of plastic litter are deposited on beaches

and afloat in oceans, degrading marine ecosystems. Subsequently, the

United Nations (UN) report (UN, 2022) mentioned that 17 million

metric tons of plastic litter entered the ocean in 2021, and it is

predicted to increase exponentially by 2040.

Furthermore, the research of Patil et al. (2016) addressed that

the Caribbean Sea has dead zones with nearly 2.7 to 4.8 million tons

of plastic litter entering annually. According to the research studies

of Chinglenthoiba et al. (2023); Diem et al. (2023), and Fagiano et al.

(2023), plastic contaminants are abundant in marine ecosystems.

The maximum percentage of marine plastics and litter recorded are

from the fishing fleet, merchant ships, recreational fishing, boats,

coast guards, beachgoers, and industry wastes (COAPS, 2022;

NAOO, 2022; OECD, 2022; UNEP, 2022). Furthermore, several

studies, such as those of Leistenschneider et al. (2023); Ferreira et al.

(2023); Kalter and Passow (2023), and Tedesco et al. (2024), have

revealed that plastic litter and oil spills are two major marine

pollutants that cause severe hazards to the ecosystem. Specifically,

oil spills suffocate marine organisms, disrupt photosynthesis in

aquatic plants, and lead to long-term contamination of marine

habitats. Plastic litter, on the other hand, entangles marine animals,

is ingested by fish and seabirds, leading to internal injuries and

starvation, and degrades into microplastics that accumulate in the

food chain, posing risks to marine biodiversity and human health
Frontiers in Marine Science 02
(Diez et al., 2019). Additionally, Diez et al. (2019) reported on

marine plastics and oil spill impact in the Caribbean Sea, with a

concentration of 200,000 pieces of plastics measured per square

kilometer in the northern region and around 250 oil spills estimated

to occur yearly due to ship traffic.

However, several approaches from COAPS (2022); NAOO

(2022); OECD (2022), and UNEP (2022) have proposed a Triple

Planetary Crisis (TPC) (UNEP, 2022) to prevent and monitor

pollution. TPC proposes measures for contamination, nature

biodiversity loss, and climate change (Ford et al., 2022; Lincoln

et al., 2022; UNFCCC, 2024; Sharma et al., 2023). The strategies to

resolve TPC include the Sustainable Development Goals (SDGs),

Marine Strategy Framework Directive (MSFD), and Good

Environmental Status (GES). The UN defined the SDGs (UN,

2022), notably Goal-6 of “Clean Water and Sanitation”, to ensure

water and sanitation availability with sustainable management and,

in addition, Goal-14 of “Life Below Water” to conserve and

sustainably use the ocean, sea, and marine resources for

sustainable development (UNEP, 2022). According to the annual

SDGs Report (UNEP, 2022), plastic or litter, overfishing, ocean

warming, acidification, and eutrophication are primary reasons to

implement SDG Goal-14. Additionally, it reported increasing

acidification (CO2) from maritime traffic emissions and industrial

wastes, threatening the marine ecosystem and consequently limiting

the ocean’s capacity to moderate climate change (UN, 2022). The

TPC’s next strategy, MSFD, aims to protect the marine

environment across Europe (MSFD, 2008) and achieve good

environmental conditions (GES, 2020). The main propositions of

the GES are to protect the marine environment, prevent

deterioration, and restore the damaged ecosystem. The primary

GES descriptors are marine litter, contaminants, eutrophication,

and biodiversity. The European Commission proposed the

Sustainable Blue Economy (Pauli, 2010; EU, 2019) for all

economic activities related to oceans, seas, and coasts. It is an
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initiative to use the sea sustainably, including preventing marine

pollution, especially plastics (EU, 2019; Smail et al., 2019).

Furthermore, preventing and eliminating marine pollution is

necessary (Meyerjürgens et al., 2023; Nama et al., 2023; Su et al.,

2023), so the intention to incorporate artificial intelligence (AI)

(refer to Supplementary Material) with remote sensing satellite

imagery for marine pollution analysis existed in 1990 (Muller-

Karger, 1992). However, according to the following reports and

studies (UN, 2022; COAPS, 2022; OECD, 2022), marine pollution

still exists worldwide. Thus, recently developed marine sensor

technologies (Zielinski et al., 2009; Helinski et al., 2021; Salgado-

Hernanz et al., 2021) are deployed for real-time investigation of

marine contamination. Moreover, new technologies have been

developed to determine marine pollution, predominantly using

AI. The conjunction of optical sensors with AI models for

monitoring and analyzing marine oil and plastics can assist in

achieving the TPC goals of preventing marine pollution. The

research of Moorton et al. (2022) supports using deep learning

(refer to Supplementary Material, Figure_dl) to locate debris in the

ocean as it does not harm aquatic life and adapt it for marine

pollution prediction as AI is extensively used in various

environmental disciplines (Zhang et al., 2023; Konya and

Peyman, 2024). Hence, this study accumulated 53 research

articles to compare state-of-the-art AI models that predicted

marine pollution and proposes scoping methodologies for future

research. The outline of the proposed review methodology for

recent studies and technological advancements in machine

learning applications for marine oil spills and litter pollution is

discussed in Section 2. Furthermore, in Section 3, AI’s effectiveness

for marine pollution analysis is discussed and current

methodologies and limitations are summarized. Section 4

concludes this review with a brief outlook and future

research directions.
2 Proposed state-of-the-art and
scoping review methodology

The proposed study aims to comprehensively review recent

(2016–2023) and ongoing research on state-of-the-art machine-

learning-based (refer to Supplementary Material, Figure_ml)

marine oil spills and litter models. It compares and briefly

summarizes the effectiveness of different neural network model

architectures, discusses the data types, and evaluates these

technologies to contribute to more effective marine litter

management strategies. Through the proposed review, we

highlight the progress in recent marine pollution research and

identify areas that require further research and innovation to

combat the growing threat of marine litter and oil spill pollution.

Therefore, the proposed study approach can be categorized as a

state-of-the-art and scoping review (Grant and Booth, 2009).

The review methodology comprises two phases as depicted

in Figure 1:
Frontiers in Marine Science 03
1. Literature search method: The literature search method

fulfilled the main criteria for this systematic review of

recent developments in AI-based research methods to

analyze marine pollution. Thus, published articles were

chosen from journals and conferences. This search

included websites such as Google Scholar, ResearchGate,

arXiv, JSTOR, SpringerLink, ScienceDirect, Academia.edu,

Scopus, PubMed, andWeb of Science. The following search

filters were applied: the article selection consisted of

“review” or “research” keywords with publication years

from 2016 until 2023. All review and research articles

were considered for the initial stage of scrutiny; the

publication years were limited to 2016 until 2023 as this

review aims to discuss progress in AI with recent marine

research (Jia et al., 2023a, 2023b; Politikos et al., 2023;

Pérez-Beltrán et al., 2024), followed by a high number of

articles published with the importance of utilizing AI in

various environmental research fields (Konya and Peyman,

2024). Furthermore, the subject area filters were

“environmental science” or “computer science”. All open-

access and locked-access publications from conference

proceedings and journal articles were considered for the

search. The keywords for the title search included with

conjunctions of “and” and “or” are as follows: “marine

pollution” , “machine learning” , “deep learning” ,

“marine litter”, “pollution detection”, “litter detection”,

“marine plastic”, “marine waste”, “marine debris”, “oil

spills”, and “marine oil”. The literature analysis involved

a systematic and thorough examination of all articles. The

initial process included reading and understanding each

article in the following order: abstract, conclusion,

experimental results, introduction, and other sections.

The initial process order was formulated intentionally

and proved feasible and efficient by saving time and

resources. The corresponding author of this article

scrutinized the research methods of each article to ensure

the inclusion of machine learning (refer to Supplementary

Material, Figure_ml) or deep learning (refer to

Supplementary Material, Figure_dl) models for marine

pollution analysis. The second process involved

thoroughly reading and understanding every article to

identify its comparative analysis and any successive

publications. In a few cases, the proposed study used the

chain or snowball sampling method to identify related

research articles.

2. Literature review protocols: The literature review protocols

included various state-of-the-art AI techniques emphasizing

machine learning and deep learning algorithms for marine

pollution analysis of two significant contaminants: oil spills

and plastics or litter. The proposed study articulated optical

sensors, datasets (spectra, images, videos, multispectral data,

hyperspectral data), pollutant classes, pre-processing

methods, and model architectures with performance
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Fron
analysis. The optical sensors were a significant criterion for

this review scrutiny because of their extensive use in marine

pollution analysis over the past few decades, especially with

satellite remote sensing (Zielinski et al., 2009). Another

significant criterion was that data acquisition had to be

from a real-world or natural environment caused by ship

traffic, ship collisions, or oil rig accidents. Similarly, the litter

data acquisition should include either of the following: litter,

plastics, macro- or micro-plastics, floating plastics,

underwater litter, deformed litter, beach litter, debris, beach

debris, and laboratory (artificially created or simulated) or

real-world or natural environment pollution. Lastly, 53

research articles fulfilled these proposed protocols and

were scrutinized and compared.
tiers in Marine Science 04
2.1 AI-based spectral marine oil pollution
analysis

Oil spill incidences such as the Bravo blowout on the Ekofish

fields in 1977 at the North Sea led to the formation of the

Norwegian Clean Seas Association for Operating Companies

(NOFO) in 1978 to develop oil spill response technologies and

skimmers. This was followed by the Deep Water Horizon (DWH)

oil rig explosion in the Gulf of Mexico in 2010, creating a massive

leak. These incidents have formed state-of-the-art data acquisition

locations for extensive research and majorly analyzed with remote

sensing satellites such as Synthetic Aperture Radar (SAR) images

(Topouzelis and Psyllos, 2012; Guo and Zhang, 2014). A cumulative

literature review is represented in Table 1, and its connected graph
FIGURE 1

PRISMA-based pictorial representation of the proposed review methodology.
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of research citations is in Figure 2. The following subsections

compare recent research on marine oil pollution analysis methods

with distinguished data acquisition techniques such as remote

sensing with aerial vehicles and satellites.

2.1.1 Remote sensing with aerial vehicle
In recent studies on oil spill detection, various methods have

been employed to enhance the accuracy (McHugh, 2012) (refer to

Supplementary Material, Equation (1)) and efficiency of identifying

and classifying oil spills with spectral data. One such approach

developed by Liu et al. (2016) used an airborne visible infrared

imaging spectrometer (AVIRIS) to detect oil spills from the DWH

incident, employing a decision tree (Quinlan, 1986) classifier

enhanced with minimum noise fraction (MNF) (Green et al.,

1988; ENVI, 2022) transformation for noise reduction and feature

extraction. This method classified oil spill thickness levels but was

influenced by environmental factors. Furthermore, using the same

dataset of the DWH incident, Hu (2022) developed an advanced

approach by developing a multi-scale convolutional neural network

(CNN) integrating 1D-CNN for spectral features and 2D-CNN for

spatial features, achieving high classification accuracy with F1-

scores of up to 0.99. Moreover, De Kerf et al. (2020) introduced

MobileNet-FCN8 for unmanned aerial vehicle (UAV)-based

controlled oil spill detection using visible and thermal infrared

images, incorporating extensive pre-processing techniques and

hyperparameter optimization. The ensemble of MobileNet-FCN8

(Sandler et al., 2018) with RMSprop (Hinton et al., 2012) achieved

the highest mean IoU of 0.89, demonstrating superior performance

over traditional methods. These studies collectively highlight

advancements in oil spill detection from hyperspectral analysis to

deep learning-based UAV monitoring.

Manual inspection versus convolutional neural networks: Jiao

et al. (2019) proposed UAV-based oil spill detection using deep

learning and image processing techniques, significantly reducing

detection costs by 57.2% compared to manual inspection. A DJI

Phantom 4 Pro UAV captured high-resolution images pre-

processed using Otsu (Otsu, 1979) and MSER (Matas et al., 2004)

techniques combined with a deep learning model to enhance the

detection accuracy. Furthermore, Ren et al. (2016) developed a

faster regional-convolution neural network (R-CNN) (Girshick

et al., 2014) pre-trained on ImageNet (Deng et al., 2009) with

transfer learning (Goodfellow et al., 2016), which achieved the

highest mean average precision (mAP) of 0.9930. Comparative

evaluations with other models, including You-Only-Look-Once

(YOLO) (Redmon et al., 2015) (0.9918 mAP) and Fast R-CNN

(0.8771 mAP), confirmed Faster R-CNN’s superior performance.

The study highlighted the efficiency, accuracy, and cost-

effectiveness of integrating UAV technology with deep learning

for oil spill monitoring.

Earlier studies, such as that of Liu et al. (2016), utilized MNF-

decision tree analysis for hyperspectral oil spill detection, while Hu

(2022) improved the classification accuracy with a multi-scale

CNN. De Kerf et al. (2020) introduced MobileNet-FCN8 for

UAV-based monitoring, achieving a high mean IoU of 0.89.

Collectively, these advancements highlight the transition from
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traditional spectral analysis to AI-driven UAV and CNN models,

enhancing oil spill detection with higher accuracy, efficiency, and

real-time capabilities.

2.1.2 Remote sensing with satellite
Traditional machine learning techniques and convolutional

neural networks have been employed to detect marine oil

pollution using SAR data from different satellite missions. A

summary of their comparative analysis is discussed in

this subsection.

Machine learning model comparisons: State-of-the-art machine

learning algorithms, including SVM, decision trees, random forest,

and k-nearest neighbor (k-NN) (Fix and Hodges, 1951; Cover and

Hart, 1967), have been applied to detect marine oil pollution using

sensor and remote sensing data. A random forest classifier

developed by Tong et al. (2019) using PolSAR data from

RADARSAT-2 and UAVSAR effectively distinguished oil slicks

from look-alikes with F1-scores of 0.92 and 0.82, respectively,

after pre-processing with LEE filtering (Lee et al., 2003) and

multi-polarimetric feature extraction. Similarly, Trujillo-Acatitla

et al. (2022) trained k-NN, random forest, and SVM on Landsat

multispectral data for binary oil spill classification, where k-NN

achieved 1.00 accuracy but lacked validation against overfitting.

Additionally, an SVM model with active learning (Burr, 2010;

Mohri et al., 2018) was developed by Cao et al. (2016) which

classified oil spills and look-alikes from SAR images of

RADARSAT-1 and RADARSAT-2 with an AUC value of 0.66,

demonstrating its capability to reduce training data dependency.

These studies highlight the effectiveness of ML models in oil spill

detection, leveraging different data sources and feature

extraction techniques.

CNNs for oil spill detection: Various CNN models have been

developed for oil spill detection using Synthetic Aperture Radar

data—for example, Cantorna et al. (2019) proposed a six-layer

CNN (Hou and Zhao, 2017) trained on ENVISAT and Sentinel-1

data, achieving an AUC value of 0.99 and outperforming

clustering algorithms like k-means (Faber, 1994; Hastie et al.,

2009) and Logistic Regression (Cramer, 2002). A CNN with multi-

scale convolution of Seydi et al. (2021) detected oil spills from

Landsat-5 SAR data, achieving F1-scores of 0.93 (cloud-free) and

0.88 (cloudy). Song et al. (2020) developed a deep CNN (DCNN)

(Rosenblatt, 1958) for polarimetric SAR (PolSAR) images,

integrating PCA and RBF-SVM, achieving F1-scores of 0.98,

0.94, and 0.80 across different datasets. This was followed by a

23-layer CNN by Shaban et al. (2021) trained on Sentinel-1 SAR

images that outperformed U-Net and SegNet with an F1-score of

0.79 but which struggled with multi-class classification.

Furthermore, Chen et al. (2017a) applied SAE and DBN to

RADARSAT-2 data, with SAE achieving 98.92% accuracy.

Chaudhary and Kumar (2020) utilized UAVSAR and RISAT-1

data, where Wishart Supervised Classification (Wishart, 1928)

outperformed SVM with an accuracy of 0.845. These studies

demonstrate the effectiveness of deep learning and machine

learning techniques in oil spill detection, leveraging SAR data

with advanced pre-processing techniques.
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TABLE 1 Cumulative literature of recent AI-based spectral marine oil pollution analysis (2016–2023).

Pre-processing
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analysis
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ctive learning-
boosted SVM

For all 6 AL: AUC
= 0.66

Ensembled with other CNNs
and more training samples
could improve performance

inimum noise
form-decision tree

Eigenvalue spectra: 0.69
—thin oil

FLAASH of ENVI for pre-
processing, RoI

SAE, DBN Accuracy: SAE = 0.98
Other models trained: SVM

and ANN

N (like DeepLab) Overall accuracy = 0.81
Ensembled with VGG-16 or U-

net CNN, it could
improve performance

CNN F1-score = 0.89
Other models trained: k-means,

FCM, SKFCM,
logistic regression

DeepLabv3+
For all classes:

DeepLabv3 + 0.65
mean IoU

U-Net performed best for oil
spills with 53.79 mean IoU;
other models trained: U-Net,
Link-Net, PSPNet, DeepLabv2.

N with Faster R-
N and VGG16

mAP = 0.99 YOLO had a similar mAP

andom forest
F1-score: RADARSAT-2

– 0.92
Random forest used a self-

similarity factor

shart Supervised
lassification and
RBF-SVM

Accuracy: Wishart
Supervised Classifier

= 0.84
SVM did not perform better

MobileNet-
CN8-RMSprop

Mean IoU = 0.89

Feature extractors: MobileNet,
ResNet 50, VGG, FCN, SegNet;
image segmentation models

such as Unet, PSP,
Segnet, FCN

re fusion: DCNN-
A, Classification:
RBF-SVM

F1-score: Dataset
1– 0.98

Ensembled with autoencoders
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Cao et al., 2016
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A

Liu et al., 2016 AVIRIS
RGB, infrared images,
spectrometric data

Oil spill—thin,
thick, medium

Dimension reduction, denoising,
feature extraction, radiometric

calibration, atmospheric
correction, mask processing

M
tran

Chen et al., 2017a RADARSAT-2
Polarimetric RGB
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Oil spill, biogenic
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Orfanidis et al., 2018
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testing: 106 images),
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Cantorna et al., 2019 Envisat, Sentinel-1
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Krestenitis et al., 2019 Sentinel-1 SAR images
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ships, land, sea surface

ROI cropping, image scaling,
radiometric calibration, speckle-

median filters,
linear transformation
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Tong et al., 2019
RADARSAT-
2, UAVSAR

PolSAR data
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Average F1-score = 0.99
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Pre-processing: FLAASH-
ENVI software
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Pre-processing: QGIS software;
feature extractors: PCA, t-SNE;

other model trained:
Random Forest
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Feature extraction: calculated
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parameters, image stretching
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Zeng and Wang, 2020
ENVISAT, ERS,

COSMO Sky-Med SAR
SAR images (336) Oil spills, look-alikes

Segmentation, intensity
estimation, dark patch extraction,

data augmentation
OSCN

Shaban et al., 2021 Sentinel-1 SAR data (310 images)
Oil spill, look-alikes,

ships, land, sea

ROI cropping, image scaling,
radiometric calibration, speckle-

median filters,
linear transformation

CNN

Seydi et al., 2021 Landsat-5
SAR data (2

multispectral images)
Oil spills

Radiance values, brightness
temperature,

atmospheric correction
CNN-S

Chen and Wang, 2022 Sentinel-1
PolSAR (35 images),

wind speed information
Oil spill, look-alikes

Polarimetric entropy, anisotropy,
mean scattering angles

AUOS

Wang et al., 2022 RADARSAT-2
Quad PolSAR (training:

3 images)
Oil spill, look-alikes

Coherency matrix, scattering
matrix, entropy

BO-DR

Ghara et al., 2022 Sentinel-1, EnviSat SAR (99 images) Oil spill, look-alikes
SNAP software, labeled with

Supervisely
software, augmentation

U-Ne

Hu, 2022 AVIRIS
RGB, infrared images,
spectrometric data

(2 images)

Oil spills—
discontinuous, thin,
emulsified; seawater

Radiometric calibration,
atmospheric correction

CNN

Trujillo-Acatitla
et al., 2022

Landsat (4-5 TM, 7
ETM+, 8)

SAR data (175 images)
Oil, plastic, vegetation,

soil, water
Reflectance, masking clouds k-NN

Zhang et al., 2022 Sentinel-1 SAR (8 images)
Oil spill, look-alikes,

clean sea, land and ship
LEE filter, scattering matrix,

semantic segmentation
ResNe

Dehghani-Dehcheshmeh
et al., 2023

Sentinel-1

SAR (training: 3,900
images of smaller
dimensions, testing:

420 images)

Oil spill (long, linear),
look-alikes

ROI cropping, image scaling,
radiometric calibration, speckle-

median filters,
linear transformation

DeepLabv

Fan and Liu, 2023
Sentinel-1, ERS-1/2 and

GF-3
SAR data (total: 120) Oil spill, look-alikes

ROI cropping, image scaling,
radiometric calibration, speckle-

median filters, linear
transformation, coherent spot
filtering, LEE filter, terrain

correction, semantic segmentation

GAN
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Advancements in CNN architectures: Several studies have

explored deep learning models for marine oil spill detection using

Sentinel-1 and RADARSAT-2 SAR images. Orfanidis et al. (2018)

and Krestenitis et al. (2019) demonstrated that DeepLab (Chen et al.,

2017b)-based CNNs performed well in segmenting oil spills, with

DeepLabv3+ (Chen et al., 2018) achieving a mean IoU of 0.6506.

Ghara et al. (2022) showed that U-Net outperformed DeepLabv3,

achieving 0.78 accuracy, while Dehghani-Dehcheshmeh et al. (2023)

found that the DeepLabv3-ViT (Dosovitskiy et al., 2020) hybrid

achieved the highest F1-score of 0.78. Wang et al. (2022) introduced

BO-DRNet (Frazier, 2018), which surpassed FCN-8s (Jégou et al.,

2017; Long et al., 2015) and DeepLabv3+ with a mean accuracy of

0.75. Additionally, U-Net variants like OSCNet by Zeng and Wang

(2020), ResNet-based DNN by Hasimoto-Beltran et al. (2023), and

Attention U-Net by Chen and Wang (2022) have shown high

classification accuracy, with F1-scores ranging from 0.84 to 0.98.

Zhang et al. (2022) used ResNet (He et al., 2015) for Persian Gulf SAR

data, achieving a mean IoU of 0.85. TheMFSCNet of Fan et al. (2023)

integrated multi-feature learning and outperformed other CNNs with

an F1-score of 0.79. Fan and Liu (2023) employed a GAN-based

classifier, achieving 0.97 accuracy in distinguishing oil spills from

look-alikes. Therefore, this comparative analysis reveals that U-Net,

DeepLab, and hybrid CNN-ViT models have consistently

outperformed traditional machine learning techniques like SVM

and random forest, proving their effectiveness in oil spill detection

in SAR imagery.

The significant research gaps identified from these 24 research

articles in recent AI-based spectral marine oil pollution analysis are

as follows:
• Limited generalization and small datasets—Most studies

rely on limited datasets (often less than 1,000 images),

which reduce model generalization across diverse oil spill

conditions, SAR sensors, and geographical regions. The

need for more extensive, standardized, and diverse

datasets remains a critical gap.

• Insufficient multi-modal data integration—While some

studies incorporate wind speed and polarimetric SAR

features, few leverage multi-sensor fusion (e.g., optical,

infrared, and hyperspectral data) to improve oil spill

detection accuracy under varying environmental conditions.

• Challenges in differentiating oil spills from look-alikes—

Despite a high classification accuracy, many models

struggle with distinguishing oil spills from look-alike

phenomena (e.g., biogenic slicks, low wind areas) due to

limited spectral and textural differences in SAR imagery.

• Lack of real-time and computationally efficient models—

Many deep learning architectures are computationally

intensive, making them unsuitable for real-time

appl icat ions in mari t ime monitor ing sys tems ,

necessitating lightweight and edge-compatible AI models.

• Limited benchmarking and standardization—The absence

of standardized evaluation metrics, benchmark datasets,

and comparative studies across multiple AI models

hinders the reproducibility and scalability of these
T
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Fron
approaches for operat ional use in marine oi l

spill monitoring.
Future research can address the gaps identified in recent

research and significantly advance the effectiveness and reliability

of marine oil detection and analysis technologies by implementing

the improvements listed below:
• Integration of multi-sensor and multi-modal data—

Combining SAR with optical, infrared, and hyperspectral

data can enhance oil spill detection accuracy by leveraging

complementary spectral and spatial information.

• Development of generalized and transferable AI models—

Creating deep learning models that generalize well across

geographic regions, sensor types, and environmental

conditions will improve real-world applicability.

• Enhancing real-time and edge computing capabilities—

Implementing lightweight AI models optimized for real-

time processing on satellites, drones, and autonomous

vessels can enable faster and more efficient oil

spill monitoring.

• Advanced feature engineering and hybrid AI approaches—

Incorporating physics-based modeling, explainable AI, and

hybrid architectures (e.g., CNN-ViT, GANs) can improve
tiers in Marine Science 09
segmentation accuracy and the differentiation of oil spills

from look-alikes.

• Establishment of standardized datasets and evaluation

metrics—Creating publicly available, high-quality

annotated datasets and standardized benchmarking

protocols will facilitate the reproducibility and

comparability of AI-based oil spill detection models.
2.2 AI-based spectral marine floating litter,
plastics, and debris pollution analysis

Recent research has leveraged machine learning and advanced

image processing techniques to enhance the detection and

classification of marine litter, addressing the limitations of

traditional manual monitoring methods. Various models,

including support vector machines (SVM), random forest

classifiers, and deep learning algorithms, have been applied to

high-resolution imaging technologies l ike reflectance

spectrometers and digital cameras to analyze floating, beach, and

underwater debris. These AI-driven approaches enable automated,

scalable, and real-time marine pollution monitoring using images

captured from aerial vehicles, satellites, autonomous underwater
FIGURE 2

Connected graphs for literature of recent AI-based spectral marine oil pollution analysis (2016–2023). The edges represent citations between
research articles, the nodes represent the research article, and its size represents the number of citations (a large node size indicates more citations
and vice- versa) (graphics from ResearchRabbit.ai).
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vehicles, and laboratory setups. Deep learning models, in particular,

have demonstrated superior accuracy in distinguishing different

types of litter, including plastics, ropes, and buoys, even in

challenging environments. The integration of these technologies

represents a significant advancement in marine litter detection,

facilitating large-scale environmental assessments and improving

efforts to mitigate ocean pollution. A cumulative literature review in

Table 2 and its connected graph in Figure 3 represent citations

between research articles. The following subsections compare recent

research on marine litter pollution analysis models with different

data acquisition strategies such as autonomous underwater vehicles,

aerial vehicles, satellites, and from a laboratory.

2.2.1 Remote sensing with autonomous
underwater vehicle
2.2.1.1 State-of-the-art CNNs and machine learning
ensembled models

Recent advancements in marine debris detection have utilized

various CNN-based architectures, each offering unique strengths.

Valdenegro-Toro (2016) developed a forward-looking Sonar (FLS)

CNN using data for binary and multi-class classification, achieving

reasonable accuracy (0.80 and 0.70, respectively) but struggling with

deformed plastic detection due to limited training data. Marin et al.

(2021) improved the performance by integrating U-Net feature

extractors with classifiers like SVM and random forest, where fine-

tuned Inception-ResNetV2 achieved the highest F1-score (0.92).

Fulton et al. (2019) compared U-Net with YOLO and Faster R-

CNN, finding that YOLOv2 provided real-time efficiency, while U-

Net yielded superior accuracy for diverse litter types. Xue et al.

(2021) further enhanced detection with a hybrid ResNet50-

YOLOv3 model, achieving a high Kappa coefficient (0.966) and

outperforming Faster R-CNN and SSD in detecting various debris

sizes. Specialized models like AquaVision by Panwar et al. (2020)

and Mask R-CNN by Politikos et al. (2021) leveraged advanced

feature extraction techniques, improving detection in challenging

underwater environments. These studies demonstrate the evolution

of CNN-based marine debris detection, emphasizing the benefits of

ensemble models and transfer learning in improving accuracy and

real-time performance.

2.2.2 Remote sensing with aerial vehicle
2.2.2.1 Advancements in ensembled models

Martin et al. (2018) developed an ensembled random forest

classifier using orthomosaic litter images from UAV-based surveys

along the Saudi Arabian Red Sea coastline. The model, trained with

a Histogram of Oriented Gradients (HoG) (Dalal and Triggs, 2005)

features, has utilized two binary classifiers to separate litter from

background elements and a multi-class classifier to distinguish

debris types. While the system detected drink containers (0.44),

bottle caps (0.5), and plastic bags (0.037) with varying accuracy, it

generated significant false positives, highlighting the impact of

image resolution on performance. Comparisons with other

classifiers by Fallati et al. (2019), Gonçalves et al. (2020b); Garcia-

Garin et al. (2021), and Tran et al. (2022) demonstrated the

potential of HoG–random forest models for marine litter
Frontiers in Marine Science 10
detection with suggestions for improved accuracy through lower

UAV flight altitudes.

2.2.2.2 Advancements in CNNs versus manual inspections

Building on Martin et al. (2018), an enhanced model by Martin

et al. (2021a, 2021b) used Faster R-CNN with UAV images from 44

beaches in Saudi Arabia, achieving an F1-score of 0.4556, with

improved accuracy using DJI Phantom 4 Pro (82%) over Phantom 3

Adv (62%). The PlasticFinder (PlasticFinder, 2017) model by Fallati

et al. (2019) trained a CNN on UAV images from the Maldives,

outperforming Martin et al. (2018) with an F1-score of 0.63.

Furthermore, Gonçalves et al. (2020b) improved marine litter

detection with random forest classification on Portuguese beaches

(F1-score: 0.75), though it misidentified plants as litter. Gonçalves

et al. (2020a) compared random forest (F1-score: 0.70) and

DenseNet CNN (F1-score: 0.60), showing random forest’s better

accuracy in pixel-based classification. Pinto et al. (2021) developed a

neural network using UAV orthoimages from Portugal, achieving

F1-scores of 0.49 (multi-class) and 0.73 (binary) by leveraging

multiple color spaces. Finally, Tran et al. (2022) introduced

YOLOv2 CNN for UAV-based litter detection in Taiwan,

outperforming previous models with F1-scores of 0.95 (training)

and 0.72 (testing), demonstrating the effectiveness of pre-processing

techniques in improving marine debris classification.

Several studies have explored AI and deep learning models for

detecting marine litter, leveraging datasets from UAVs, satellites,

and experimental setups. Kylili et al. (2019) used VGG-16 with

Ridge and Lasso regression, achieving 86% accuracy in identifying

floating plastics. An improved version by Kylili et al. (2021) trained

YOLOv5x and YOLOACT++ on marine litter images,

demonstrating better real-time detection (YOLOv5x) and object

segmentation (YOLOACT++) with an accuracy of 0.924 for video

snapshots. Jakovljevic et al. (2020) applied ResUNet50 for floating

pollutant detection in lakes and rivers, achieving an F1-score of 0.88

in multi-class classification. Garcia-Garin et al. (2021) developed a

CNN for UAV and aircraft-acquired images, outperforming

previous works with an F1-score of 0.86. Comparisons of

machine learning methods showed random forest classifiers

outperforming SVMs, as demonstrated by Iordache et al. (2022)

and Sannigrahi et al. (2022). Iordache et al. (2022) trained a random

forest model on multispectral images, achieving an F1-score of 0.93.

Hengstmann and Fischer (2020) applied k-means clustering on

UAV images for freshwater litter detection, confirming plastics as

the dominant pollutant. These studies highlight the effectiveness of

AI-driven approaches for marine litter detection, emphasizing the

importance of high-quality imagery and dataset augmentation to

enhance classification performance.

CNNs, particularly YOLO architectures, have demonstrated

superior performance in marine litter detection compared to

traditional machine learning classifiers like random forest and

SVM. Andriolo et al. (2022) compared different models for UAV-

based litter mapping on Portuguese and Spanish coasts, where

random forest outperformed CNN for pixel-based beached litter

(F1-score: 0.75 vs. 0.60), but CNN achieved the highest F1-score

(0.86) for floating litter classification. YOLOv5 has been widely used
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es
Performance

analysis
Others

Accuracy: binary
classifier—0.80, multi-
class classifier—0.70

Sliding window approach to classify
background and debris classes

nd
st

Average accuracy: linear
SVM—0.81

SVM outperformed LDA and RF;
the average accuracy of LDA and RF

—0.81

rests F1-score = 0.13
Three random forest classifiers were
ensembled, 2 for binary and 1 for

multi-class classification

r F1-score = 0.63
It is a multilayer CNN and uses

orthomosaic images, pre-processing
with Agisoft PhotoScan software

OLO,
SSD

mAP: Faster R-CNN –

0.83, YOLOv2 – 0.82

Labeling: LabelImg; backbone U-Net
architecture: Faster R-CNN with

InceptionV2, SSD
with MobileNetV2

Accuracy = 0.86
Ridge and Lasso regression

regularizes to improve this VGG-16

ring
76% of plastics were

detected and
cigarette buds

Supervised Minimum Distance
classifier was trained

orest F1-score = 0.75

Orthophotos; geomorphic analysis
with color descriptor; pre-

processing: Agisoft
Metashape software

st F1-score = 0.70 F1-score: DenseNet CNN = 0.60

F1-score: binary
classifier—0.60, multi-

class—0.88

Other trained models: ResUNext50,
XceptionUNet, InceptionUResNetV2
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Source Sensors Dataset (size) Pollutants/classes Pre-processing AI techniq

Valdenegro-Toro, 2016 Forward-looking Sonar
RGB images
(total: 2,000)

Plastic debris
Sliding window,

cropping, augmentation
CNN

Acuña-Ruz et al., 2018
HyLogger3 reflectance

spectrometer,
RGC camera

Reflectance spectrum,
RGB images

AMD, styrofoam, plastic
buoys, ropes, bottles,
containers, fragmented

plastics, sand, shells, rocks

Image correction, AMD
reflectance estimation

SVM, LDA, a
random fore

Martin et al., 2018 UAV RGB images (total: 243)

Drink bottles, drums, bottle
caps, plastic bags, oil
containers, detergent

containers, ropes, footwear,
boxes–crates–baskets, others

HoG image
feature extraction

HoG–random f

Fallati et al., 2019 UAV RGB images
AMD, vegetation, sea, sand,

and others

Image alignment, 3D
point cloud construction,

building digital
terrain model

PlasticFinde

Fulton et al., 2019 JAMSTEC-J-EDI
RGB images (training:
5,720, testing: 820)

Plastics, ROVs, biota Image labeling
YOLOv2, Tiny-Y
Faster R-CNN,

Kylili et al., 2019 ImageNet
RGB images
(total: 12,000)

Bottles, buckets, straws Augmentation VGG-16

Hengstmann and
Fischer, 2020

UAV RGB images
Litter samples—red, blue,
green, yellow, transparent

Orthoimage
pre-processing

k-means cluste

Gonçalves et al., 2020b UAS RGB images
Beach plastic litter, wood

debris, vegetation, dry sand,
wet sand

SfM-MVS processing
generated 3D
point cloud

HoG–Random

Gonçalves et al., 2020a UAS RGB (6 images)
Plastic fragments, fishing
strings, foamed buoys,

boxes, wood

Orthoimage pre-
processing,

color assignments
Random for

Jakovljevic et al., 2020 UAV RGB images PET, nylon ropes, OPS

SfM, SIFT image feature
extraction, 3D sparse
unscaled point cloud,
densification, building
digital terrain model,
orthophoto generation.

ResUNet50
u

o

F

e
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chn s
Performance

analysis
Others

gres del Accuracy = 0.50

The split regression model had a
lesser error rate of 0.16, and the
linear regression model had a 0.29

error rate

uaV mAP = 0.81
RetinaNet had ResNet50 and FPN

as a backbone

OLO
Minimum object size
detected: 0.15 m

Labeling: VGG Image Annotator;
other trained model: Fast R-CNN

CN F1-score = 0.86 CNN is a binary model

OLO Average accuracy = 0.92
YOLOv5x performed better than

YOLOACT++

cept
etV

F1-score = 0.92

Feature extractors: VGG16,
InceptionV3, ResNet50, Inception-

ResNetV2, DenseNet121,
MobileNetV2; other trained models:
Random Forest, k-NN, Naïve Bayes,

Logistic Regression

er R Mean F-score = 0.455
1,608 litter objects were found,
trained as a binary classifier and

multi-class classifier

al N
F1-score = 0.73
(binary classifier)

Average F1-score for all classes
= 0.49

sk R mAP = 0.62
Labeling: LabelImg; backbone

architecture: MobileNetV1 and RPN
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N
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ion-
2-SVM

-CNN

etwork

-CNN
Source Sensors Dataset (size) Pollutants/classes Pre-processing AI te

Papachristopoulou
et al., 2020

Vessel mounted camera RGB images

Plastic drink bottles, straws,
lolly sticks, pack yokes,
plastic bags, plastic food
containers, glass, ceramics,

metals, rubber, paper,
cardboard,

clothes, unidentified

Stitching
photomosaic images

Linear r

Panwar et al., 2020
AquaTrash,

TACO, TrashNet
RGB images

Plastic, glass, paper,
cardboard, metal, trash

debris, litter on land, metal
Labeling A

deVries et al., 2021 UAV
RGB images
(total: 4,000)

Hard plastics, nets,
ropes, sea

Augmentation, labeling

Garcia-Garin et al., 2021 UAV RGB images (total: 796)
Floating marine macro litter

(fmml), no-fmml
Augmentation

Kylili et al., 2021 Image library
RGB (1,650 images,
train: 1,320, test: 330)

Bottles, bags, straws,
food wrappings

Labeling Y

Marin et al., 2021 JAMSTEC-J-EDI
RGB images
(total: 2,395)

Plastic, glass, metal, rubber,
other trash, no trash

Labeling
I

Res

Martin et al., 2021a 2 UAVs RGB (750 images)

Containers, bottle caps,
drink bottles, drink drums,
film (plastic bags), footwear,
glass, metal, other liquid
containers, ropes, tetra

packs, anthropogenic wood

Labeling Fas

Pinto et al., 2021 UAV RGB images
Litter, no-litter, fishing
ropes, octopus pots,

plastic bottles

Orthoimage pre-
processing,

color assignments
Neu

Politikos et al., 2021
Towed

underwater camera
RGB images (total: 635)

Plastic bags, oversized
objects, plastic bottles, cans,
caps, cups, fishing nets,
plastic sheets, tyres,

metal, textile

Augmentation, labeling Ma
e

q

Y

n
N

t

r

https://doi.org/10.3389/fmars.2025.1486615
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


TABLE 2 Continued

ues
Performance

analysis
Others

mAP = 0.87

Accuracy = 0.93 (plastics), 0.80
(unspecified); manual counting had
963 litter items (0.22 error rate), but
YOLOv5 predicted 1006 litter items

(0.4 error rate)

Overall Kappa
coefficient = 0.966

Labeling: LabelImg; feature
extractor: ResNet50; other trained
models: ResNet50-SSD, ResNet50-

Faster R-CNN

F1-score = 0.86 (pixel-
based floating

litter classification)

Pre-processing: Agisoft Metashape
software; other trained models:

Random Forest, SVM, k-NN, NN;
random forest F1-scores of local
beached litter classification: pixel-
based—0.75, object-based—0.72

Overall F1-score = 0.64 Labeling: VIAME software

Recall = 0.71
(artificial litter)

Recall = 0.97 for natural litter

est Overall F1-score = 0.93
Created data artificially; 30 spectral

metrics were used as input

est Overall F1-score = 0.86
Other trained model: SVM;

incorporated a kNDVI for modeling

mAP = 0.89 Estimates quantity of debris

F1-score = 0.72
Created data artificially; image de-
blurring methods in pre-processing

could improve performance

N F1-score = 0.94
Labeling: VGG Image Annotator;
backbone architecture: ResNet101
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Source Sensors Dataset (size) Pollutants/classes Pre-processing AI techniq

Song et al., 2021 Mobile phone camera RGB (110 images
Plastics, styrofoam, metal,

rubber, glass, fishing
gear, unspecified

Image zooming, Labeling YOLOv5

Xue et al., 2021 JAMSTEC-J-EDI
RGB images
(total: 10,000)

Plastic, cloth, fishing net-
rope, glass, rubber, natural

debris, metal
Labeling YOLOv3

Andriolo et al., 2022 UAV RGB images
Local beached and

floating litter

SfM-MVS, digital surface
model, orthophoto

beach map
CNN

Armitage et al., 2022 Vessel-mounted camera Images (total: 10,431)
Plastic shopping bags,

bottles, buoys
Augmentation, labeling YOLOv5s

Hidaka et al., 2022 Digital cameras
RGB images
(total: 3,500)

Artificial (plastics, ropes,
buoys), living, background,
sea, natural (driftwood), sky,

sand beach, non-living

Labeling HRNet

Iordache et al., 2022 Multispectral camera Images, spectral metrics

Plastics, cement, painted
surface, oxidated metal,

processed wood, grass, tree,
soil, water

MAPEO image
processing software

Random for

Sannigrahi et al., 2022 Sentinel-2 SAR data Plastic bags, bottles, nets SNAP software Random for

Teng et al., 2022
ImageNet,

Debris Tracker
RGB images

Plastic bottles, buckets, bags,
straws, food wrappings,

fishing nets, aluminium cans,
cigarette buds

RoI, image
centroid counting

YOLOv5

Tran et al., 2022 UAV RGB images

Plastic bottles on the beach,
partially buried bottles,
overlapped or clustered
bottles, deformed bottles

Background removal,
segmentation,
noise removal

YOLOv2

Han et al., 2023 Digital camera
RGB images
(total: 3,000)

Microplastics: fiber,
fragment, rod, pellet

Raman spectroscopy—to
eliminate plant and
aquatic residue;

augmentation, labeling

Mask R-CN
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detect marine litter in various environments. deVries et al. (2021)

trained YOLOv5 and Faster R-CNN on UAV images near the Great

Pacific Garbage Patch, with YOLOv5 detecting floating

macroplastics as small as 0.15 µm, outperforming Faster R-CNN.

Similarly, Armitage et al. (2022) used YOLOv5s on vessel-mounted

camera videos, achieving an F1-score of 0.64, with better plastic bag

detection than YOLOv5m. Teng et al. (2022) trained YOLOv5 on

diverse litter images, including plastic bottles, fishing nets, and

cigarette butts, achieving a mean average precision (mAP) of 0.89

using centroid tracking for litter quantification. These studies

highlight YOLO-based CNNs as real-time marine litter detection

tools, emphasizing the importance of high-quality data and

model training.

2.2.3 Remote sensing with satellite and stationary
or laboratory

Machine learning models, particularly random forest, SVM, and

deep learning-based CNNs, have been widely applied for marine litter

detection. Sannigrahi et al. (2022) trained random forest and SVM on
Frontiers in Marine Science 14
Sentinel-2 data, where random forest achieved an F1-score of 0.86 for

plastics. In contrast, Acuña-Ruz et al. (2018) found that SVM-linear

(accuracy: 0.84) outperformed random forest in AMD classification

using spectral data from Chilean beaches. The regression models of

Papachristopoulou et al. (2020) predicted beach litter distribution,

with the split regression model showing better performance. Deep

learning approaches, such as YOLOv5 by Song et al. (2021), achieved

a mAP of 0.87 in predicting beach litter in Korea, outperforming

manual inspection. HRNet (Guo et al., 2018; Wang et al., 2021) by

Hidaka et al. (2022) effectively detected artificial and natural debris in

Japan, with recall values of 0.71 and 0.97, respectively. A Mask R-

CNN byHan et al. (2023) with ResNet101 backbone classified marine

microplastics in Hawaii, achieving an F1-score of 0.94, surpassing U-

Net (0.93). These studies highlight the shift from traditional classifiers

to deep learning, demonstrating CNNs’ superior accuracy and

adaptability in detecting marine litter across various environments.

The significant research gaps identified from these 29 research

articles in recent AI-based spectral marine litter pollution analysis

are as follows:
FIGURE 3

Connected graphs for literature of recent AI-based spectral marine litter pollution analysis (2016–2023). The edges represent citations between
research articles, the nodes represent research article, and its size represents the number of citations (a large node size has more citations and vice-
versa) (graphics from ResearchRabbit.ai).
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Fron
• Limited multi-sensor and multi-modal data fusion—Most

studies rely on single-sensor data (UAV, satellite, or spectral

imaging), lacking an integrated approach that combines

spectral, spatial, and temporal data for enhanced

detection accuracy.

• Challenges in small and overlapping litter detection—While

CNN-based models like YOLO and Mask R-CNN show

promise, they struggle with small, fragmented, or

overlapping litter items, particularly microplastics, requiring

improved segmentation and feature extraction techniques.

• Lack of standardized and large-scale datasets—Most models

are trained on region-specific, small datasets, limiting their

generalizability. A globally standardized, diverse dataset

covering different environmental conditions is needed for

more robust AI training.

• Limited real-time and autonomous monitoring capabilities—

Despite advancements, few models operate in real time or

integrate with autonomous systems (e.g., drones, robotic

platforms) for continuous large-scale monitoring of

marine litter.

• Underexplored spectral signature analysis for litter

classification—While some studies use spectral data, many

do not fully leverage hyperspectral imaging or advanced

spectral decomposition techniques to distinguish between

litter materials more effectively.
Future research can address the gaps identified in recent

research and significantly advance the effectiveness and reliability

of marine litter detection and analysis technologies by

implementing the improvements listed below:
• Multi-sensor and multi-modal data integration—

Combining UAV, satellite, spectral, and in- situ imaging

data can improve detection accuracy by leveraging

complementary information across different sensors

and wavelengths.

• Enhanced deep learning models for small and overlapping

litter—Developing advanced AI models with improved

segmentation, feature extraction, and super-resolution

techniques can enhance microplastics and overlapping

litter detection.

• Creation of large, standardized, and diverse datasets—

Establ ishing global , high-qual i ty datasets with

standardized labeling and diverse environmental

conditions will improve model generalizability and

facilitate study benchmarking.

• Real-time and autonomous monitoring systems—

Integrating AI models with real-time UAV and robotic

platforms can enable continuous, large-scale marine litter

monitoring with minimal human intervention.

• Advanced spectral analysis for material classification—

Using hyperspectral and multispectral imaging with

machine-learning-based spectral unmixing can enhance

the differentiation of marine litter types, including

plastics, metals, and organic debris.
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3 Discussion

Recent research highlights significant advancements in AI-

based marine pollution detection and identifies key challenges

requiring further investigation. A primary limitation is the

restricted access to high-quality, real-time remote sensing satellite

data due to cloud cover, weather conditions, and temporal gaps,

which affect AI model performance (Prakash et al., 2021; Ryazanov

et al., 2021; Andriolo et al., 2022). To address this, future research

should integrate aerial vehicles, offshore sensors, and synthetic

datasets to enhance data availability and model training (Wang

et al., 2022). The effectiveness of AI models is also hindered by

limited and non-diverse training datasets, particularly for detecting

deformed or submerged marine litter, necessitating the expansion

of multispectral and hyperspectral imaging applications (Prakash

et al., 2021). Moreover, developing real-time AI-based monitoring

systems using UAVs and offshore spectral sensors can improve the

tracking of marine litter and oil spills (Veettil et al., 2022; Rodrigues

et al., 2023). Advances in domain adaptation techniques and multi-

environment AI models are needed to enhance generalizability

across diverse marine conditions (Prakash et al., 2021).

Additionally, by combining automated AI analysis with human

verification, hybrid approaches could enhance detection accuracy

and minimize false positives (Yang et al., 2022a). Finally, integrating

AI with real-time data processing on edge devices, policy-driven

pollution management strategies, and multidisciplinary

collaborations are crucial to improve marine pollution monitoring

and response (Helinski et al., 2021; Ma et al., 2023; Vasconcelos

et al., 2023). Addressing these challenges will significantly advance

AI-driven marine pollution analysis and contribute to more

effective environmental protection efforts.
4 Conclusion

The development and performance of AI models to predict marine

pollution are highly influenced by several critical factors: the quality and

quantity of training data, which includes images, videos, and spectral

data; the pre-processing techniques and feature extraction methods

employed; and the architecture of themachine learningmodels. Current

state-of-the-art AI models, such as custom-YOLOv5, have

demonstrated superior prediction rates, mainly with spectral sensor

data, to detect marine oil spills and litter pollution (Prakash et al., 2021).

Despite these advances, there is significant potential for further

improvement. Enhanced results could be achieved by implementing

ensembled (Goodfellow et al., 2016; Dietterich, 2020) models and using

more extensive, augmented datasets (Prakash et al., 2021). Contrastive

learning involves trainingmodels with positive (pollution) and negative

(clean water) examples, which can enhance training sets and improve

future deep learning models for marine pollution detection.

Moreover, data augmentation and transfer learning from pre-

trained models can significantly boost the efficiency and accuracy of

these AI systems. These strategies will be pivotal in advancing the

field of AI-driven spectral analysis for real-time offshore monitoring

of marine oil spills and floating litter (Prakash et al., 2021).
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By leveraging these advanced techniques, future AI models can

become more robust and reliable in predicting and managing

marine pollution.
Author’s note

The corresponding author conducted this review from 2020 –

2023 while working as a Researcher at DFKI GmbH and a Doctoral

Student at ICBM, Carl von Ossietzky University of Oldenburg.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding author.
Author contributions

NP: Conceptualization, Data curation, Formal Analysis,

Investigation, Methodology, Project administration, Resources,

Software, Validation, Visualization, Writing – original draft,

Writing – review & editing. OZ: Conceptualization, Funding

acquisition, Supervision, Writing – review & editing.
Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. DFKI acknowledges the
Frontiers in Marine Science 16
MWK’s financial support through “Niedersachsen Vorab”

(ZN3480) and MarTERA 2019 (ERA-NET COFUND).
Acknowledgments

Thanks to Charles Lennart Müller and Annemarie Popp (Media

team, DFKI, Bremen) for the graphical abstract.
Conflict of interest

Authors NP and OZ were employed by DFKI GmbH.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fmars.2025.1486615/

full#supplementary-material
References
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