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model-based intelligent
marine navigation
Zeguo Zhang1,2,3†, Liang Cao1,2,3† and Jianchuan Yin1,2,3*

1Naval Architecture and Shipping College, Guangdong Ocean University, Zhanjiang, China,
2Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching,
Zhanjiang, China, 3Guangdong Provincial Engineering Research Center for Ship Intelligence and
Safety, Zhanjiang, China
Large-scale weather forecasting is critical for ensuring maritime safety and

optimizing transoceanic voyages. However, sparse meteorological data,

incomplete forecasts, and unreliable communication hinder accurate, high-

resolution wind system predictions. This study addresses these challenges to

enhance dynamic voyage planning and intelligent ship navigation. We propose

IPCA-MHA-DSRU-Net, a novel deep learning model integrating incremental

principal component analysis (IPCA) with a spatial-temporal depthwise separable

U-Net. Key components include: (1) IPCA preprocessing to reduce dimensionality

and noise in 2D wind field data; (2) depthwise-separable convolution (DSC) blocks

to minimize parameters and computational costs; (3) multi-head attention (MHA)

and residual mechanisms to improve spatial-temporal feature extraction and

prediction accuracy. The framework is optimized for real-time onboard

deployment under communication constraints. The model achieves high

accuracy in high-resolution wind predictions, validated through reanalysis

datasets. Experiments demonstrated enhanced path planning efficiency and

robustness in dynamic oceanic conditions. The IPCA-MHA-DSRU-Net balances

computational efficiency and accuracy, making it viable for resource-limited ships.

This novel IPCA application provides a promising alternative for preprocessing

large-scale meteorological data.
KEYWORDS

extreme wind forecast, machine learning, marine navigation, incremental principal
component analysis, depthwise-separable convolution
1 Introduction

Marine transportation has been recognized as one of the indispensable transport models

for developing a global logistics network. In recent years, with the rapid development of global

trade and the vast expansion of the supply chain network, the demand for reliable and

efficient marine transport has increased sharply (Koukaki and Tei, 2020). Yet, potential
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challenges and risks arise for sea-going vessels when it comes to long-

distance path planning due to the instability and unpredictability of

the meteorological environment resulting in too much uncertainty

(Lau et al., 2024). This is especially so when encountering adverse sea

conditions, such as extreme wind and wave scenarios, that can

significantly impede ship navigation, thus, requiring timely speed

reduction and route deviation so as to ensure safety (Rawson et al.,

2021). Ocean state conditions can significantly impact the safety and

decision-making of marine vehicles. Although shipping route

recommendations could be obtained from weather routing

companies (Szlapczynski et al., 2023), real-time access to weather

forecasts is becoming more crucial for underway ships. Accurate and

timely weather forecasting can support the captain in designing and

determining the ship’s path in advance and further ensure the safety

of mariners and ships. More importantly, efficient and handy

onboard weather predictions can provide invaluable marine

environment references for intelligent navigation (He et al., 2022).

Accurate and fine-grid weather predictions are essential for the

seaworthiness and safety of sea-going ships, especially during long

transoceanic voyages, where vessels are exposed to the open ocean’s

full range of meteorological and oceanographic phenomena. These

voyages can last days or weeks, during which weather and sea states

can change rapidly and drastically, impacting both the physical safety

of the vessel and the efficiency of its journey. Fine-scale weather

predictions play a critical role in enhancing situational awareness for

shipping operations, enabling them to anticipate and mitigate risks

associated with severe sea conditions, such as strong winds, and

intense storms. For instance, accurate, high-resolution weather

forecasts enable route planning to avoid severe weather, which

reduces fuel consumption, lowers operational costs, and minimizes

emissions. Given the substantial size and fuel requirements of ocean-

going vessels, even minor deviations from optimal weather

conditions can result in significant additional fuel consumption,

which contributes to both increased costs and environmental

impact. Fine-grid predictions allow for precise navigational

adjustments that align with favorable weather patterns, helping

ships follow safer and more efficient routes. Moreover, a precise

forecast of extreme wind on a fine grid can give shipping operators

and crew sufficient warning to take preventive measures, such as

adjusting speed, changing course, or securing loose cargo. For crews,

these predictions mean better preparation and safety measures,

reducing the likelihood of accidents or fatalities. As a consequence,

providing accurate and efficient meteorological prediction is crucial

for achieving intelligent, safe, and green ship path planning (Zis

et al., 2020).

Classical ocean and meteorology forecasting relies on the

numerical weather prediction model (NWP). It uses the collected

meteorological parameters, geographical boundaries, and initial

conditions to predict weather variability based on a physical

conservation equation (Cheng et al., 2013; Hur, 2021). Nevertheless,

the inherent instability and stochasticity characteristics of earth system

evolution make it challenging to forecast global weather using

deterministic weather forecast models. In addition, with the

increasing complexity, higher uncertainty, and variability of earth

systems due to global climate changes, traditional numerical
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forecasting models tend to fail to capture abrupt and intricate

spatial-temporal disturbances and dependencies inherited in earth-

evolving systems (Ouyang et al., 2017; Wu et al., 2023). The

computational cost of a physical model-based numerical method is

very high. These intricate numerical models pose significant challenges

in development and maintenance, yet, are quite rigid for real-time

applications (Cai et al., 2020; Yan et al., 2023). Moreover, the spatial-

temporal resolution of a numerical model would have a significant

impact on prediction accuracy, such as the grid and temporal interval

resolution. Improving the grid resolution will achieve longer processing

times and higher computational requirements. Most weather forecast

and weather observation systems mainly provide sparse low-resolution

data samples. For instance, as illustrated in Figure 1, there is missing

wind forecasting or observational data in different large regions, and as

marine meteorology is vast and complex, the observational and

monitoring costs of the marine environment are much higher than

those of the continents. Only certain parts of the ocean region where

data samples are available can be validated.

Tremendous efforts have been implemented to explore ship path

planning and optimization based on ocean forecasts, such as dynamic

programming, A-star algorithm, and genetic algorithm (Chen et al.,

2021b; Khan et al., 2022). For example, a new stability-related, dynamic

route constraint was proposed for path optimization (Krata and

Szlapczynska, 2018). Du (2022) developed an improved 3D dynamic

programming algorithm for ship path planning, which takes the

meteorological conditions, constraints of engine power, and safety

into consideration. Yet, many previous ship path planning approaches

primarily focused on realizing the shortest navigation time. Those

optimization methods usually neglected the comprehensive energy

consumption and motion response factors, especially when

encountering severe sea states. Currently, the marine industry is

paying more and more attention to shipping energy efficiency, thus,

more comprehensive factors, including fuel consumption, the safety of

mariners and vessels, reduction of greenhouse gas emissions, and so on,

have to be taken into account to achieve greener route planning

(Moradi et al., 2022; Chen and Mao, 2024). For example, a multi-

objective route optimization methodology was proposed (Vettor and

Soares, 2016) by employing the genetic evolution algorithm while

realizing route and speed optimization simultaneously. Ma et al. (2021)

established a ship routing and speed multi-objective optimization

framework for minimizing greenhouse gas emissions by selecting

appropriate plans. A genetic algorithm is employed to derive the

optimal route based on a ship heading or on both heading and

propulsion power information. Yet, a low-resolution sea state dataset

was integrated into this study and their main focus was to achieve fuel

savings (Kytariolou and Themelis, 2022). Important weather and sea

state information is often absent for the ship sensors, thus, a hybrid

data fusion and machine learning model was proposed to evaluate the

relationship between fuel consumption rate and the voyage’s weather

situation. This study attempted to aggregate meteorological data and

sensor information for the purpose of enhancing the accuracy of

machine learning (ML) models, and they focused on quantifying

ship fuel consumption based on weather conditions, sailing speed,

and sea conditions (Du et al., 2022). A novel study established a hybrid

genetic algorithm to optimize ship path planning for safe transoceanic
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navigation with complicated sea conditions. They mainly focused on

the voyage time and fuel consumption as the optimization criteria, yet

overlooked the issue of the ship’s own structure’s resistance to wind

and waves and the workload of personnel during high wind and wave

weather (Zhou et al., 2023). An improved A* algorithm was proposed

for ship collision avoidance path planning by integrating the multi-

target point artificial potential field method (MPAPF). They analyzed

the static environment and ship navigating situation, thus, the dynamic

weather information may be lost (Huang et al., 2024). The Non-

Dominated Sorting Genetic Algorithm III (NSGA-III) model was

employed to realize ship weather routing tasks by integrating ship

heading angle and speed. The main aim was to optimize operational

costs and CO2 emissions (Ma et al., 2024). A constrained policy

optimization (CPO) perspective was proposed for a multi-objective

path planning model to investigate Pareto-optimal paths, and the

results demonstrated that adapting the potential policy factors into the

ship path planning model could achieve an advantageous result in

complex environments (Zhu et al., 2025a). In order to reduce fuel

consumption during a ship voyage, a route planning model that is able

to identify energy-efficient routes in complicated sea conditions was

proposed by combining ocean currents into the traditional level set

method. They proved that ocean environmental factors, such as ocean

currents, were very useful for energy-efficient ship voyage planning

(Zhu et al., 2025b).

The above studies focused on ship path planning from different

perspectives. Nevertheless, most of these approaches employed

meteorological forecasts with very low spatial-temporal
Frontiers in Marine Science 03
resolution. It has been emphasized that low spatial and temporal

resolution weather forecasting data usually result in inaccuracy in

shipping path optimization (Wu et al., 2023). In addition, high-

resolution ocean weather prediction plays a major role in ensuring

the safe navigation of intelligent autonomous marine vehicles

(Chen et al., 2021a; Qiao et al., 2023).

Deep learning methods have been demonstrated to show

promise in mitigating the gaps in numerical weather forecasting

models and marine environment monitoring systems (Kochkov

et al., 2024; Zhao et al., 2024). A deep learning-based weather

prediction model has exhibited great potential in uncovering

underlying climatic patterns from historical records, enabling the

acquisition of high-resolution forecasting data, which provides a

new perspective for improving the reliability of highly efficient and

intelligent ship path planning. Many researchers have been

attempting to explore different kinds of ML methods for

obtaining accurate natural wind estimations (Wang et al., 2021).

However, the intricate non-linear spatiotemporal properties of

large-scale spatial-temporal weather systems represent great

challenges for traditional machine learning which attempts to

extract sequential evolutionary trends from past records

(Khodayar and Wang, 2018).

For the purpose of alleviating the above-mentioned limitations

and research gaps, an incremental principal component analysis

(IPCA) based on a spatial-temporal depthwise separable U-Net

model by aggregating an attention and residual learning scheme, the

IPCA-MHA-DSRU-Net, was developed for fine-grid large-scale
FIGURE 1

Global sea surface wind from National Satellite Ocean Application Service (http://www.nsoas.org.cn/eng/column/141.html).
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extreme wind speed field system predictions. Specifically, the

depthwise-separable convolution (DSC) blocks first introduced

into this proposed method can provide an effective way to

improve forecasting efficiency and performance while reducing

their computational and memory requirements. The depthwise

separable blocks greatly reduce the number of parameters and

computation requirements compared to traditional convolutions.

They can allow for better feature extraction and aggregation by

separating the spatial and channel-wise information in the input

data (Zhou et al., 2024; Xu et al., 2024). Incremental principal

component analysis (IPCA) is also employed for 2D wind field

preprocessing, which can effectively filter the feature space of data

samples by reducing dimensionality and redundant noise effects.
Frontiers in Marine Science 04
IPCA is an adaptive version of principal component analysis (PCA)

designed for large or streaming datasets. Instead of processing the

entire dataset at once, IPCA updates the principal components

incrementally as new data arrives, making it memory-efficient and

suitable for real-time or large-scale applications. Moreover, a

sequential sliding-data window scheme (Yin et al., 2023), obeying

a strictly chronological order, was mixed into the tensor-

preparation phase, which would enable the accurate preservation

of wind temporal-dependent variabilities within consecutive spatial

patterns. The framework of the developed wind system forecast

model is displayed in Figure 2.

As can be seen in Figure 2, the wind system forecast model

demonstrates the structure and workflow of the IPCA-based
FIGURE 2

The diagram of the proposed wind forecast model.
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spatial-temporal depthwise separable U-Net model. U-Net is a

convolutional neural network (CNN) architecture designed for

computer vision tasks. It features a symmetric U-shaped structure

with an encoder-decoder pathway: the encoder captures contextual

information by downsampling the input, while the decoder

reconstructs precise localization by upsampling. Skip connections

between corresponding encoder and decoder layers help preserve

spatial details, making U-Net highly effective for tasks like 2D image

processing and object detection. This developed forecasting model

utilizes modular IPCA preprocessing to effectively reduce the

dimensionality of the input data while preserving key spatial-

temporal patterns, which are essential for forecasting wind

systems. By incorporating depthwise separable convolutions, the

model achieves computational efficiency, allowing the processing of

large-scale spatial-temporal datasets with reduced complexity. The

attention mechanism selectively focuses on the most critical regions

in the input data, enhancing the model’s ability to capture

significant features that influence wind predictions. Meanwhile,

the residual learning scheme aids in preserving finer details and

mitigates the vanishing gradient problem, allowing deeper layers to

learn more nuanced patterns in the data.

First, the reanalysis dataset, which assimilates real observations

with numerical simulation, is employed as the input, and then the

input data sample is preprocessed by the employed IPCA method to

filter noise and retain principle components of wind variability. Next,

the processed wind dataset is fed into the proposed forecasting hybrid

U-Net model. The last step is to aggregate the forecasting output from

the hybrid U-Net model and analyze the forecasting performance.

The figure provides a step-by-step visual representation of the data

flow, making it easier to understand the contributions of each

component in achieving accurate and efficient wind forecasting.

This comprehensive architecture, with its innovative use of IPCA,

depthwise separable convolutions, attention, and residual

connections, demonstrates a balanced approach to handling

complex spatial-temporal wind data for forecasting applications.

Our study developed a novel deep learning model for onboard

weather prediction during large-scale ocean voyages. It provided us

with a fully complete large-scale sea surface wind field forecasting

with very high resolution and accuracy, which is very important and

valuable for voyage scheduling to avoid severe sea states and ensure

the safety of seafarers and ship transoceanic navigation. In addition,

the transferability of the proposed model is also verified by utilizing

two different geospatial regions with various weather characteristics.

By mapping weather observational gaps into a fine-grid and complete

spatial perspective, the proposed approach, implemented on a single

laptop, aims to enhance the timeliness and accuracy of onboard ship

routing, thereby enhancing ship navigation safety. The main aim and

focus of this study is to provide ships undertaking transoceanic ship

voyages with a highly accurate and high-resolution sea state

forecasting model onboard while taking the factors of ship

structure safety and seafarer workload into consideration. Finally,

the model provides instantaneous extreme wind system pattern

mapping, helping achieve adaptive and intelligent path planning

for marine vehicles, especially for sea-going navigations in large-

scale oceans.
Frontiers in Marine Science 05
The main contributions of this study can be summarized

as follows:
1. A novel intelligent neural-learning model was developed by

aggregating a depthwise-separable convolution-based U-

Net framework with attention and residual learning blocks.

2. Incremental principal component analysis was first

introduced to preprocess a fine-grid wind dataset, filter

Empirical Orthogonal Function (EOF) models, and retain

principal wind evolution information.

3. The DSC-based methodology was developed to achieve

fine-grid spatial-temporal extreme wind field forecasting on

a large scale.

4. The fine-grid wind prediction model can enhance the

navigation safety of sea-going vessels.

5. A sequential sliding-data window is adopted for the

aggregation of input-target tensor pairs to better preserve

the temporal wind evolution information.

6. A sensitivity trial was implemented to explore wind

forecasting model parameter adjustment and optimization.

7. The transferability of the intelligent neural learning model

was validated by employing two geographic regions with

different wind patterns.
The remainder of this article is arranged as follows. Section 2

introduces the developed spatial-temporal wind prediction

approach. The targeted experimental case is presented in Section

3 with the quantitative forecasting analysis, and Section 4 validates

the model transferability. Finally, Section 5 summarizes the work

and outlines future directions.
2 Methodology

The novel hybrid wind systems forecasting model, IPCA-MHA-

DSRU-Net, integrates IPCA with a spatial-temporal depthwise

separable U-Net architecture, enhanced by attention and residual

learning mechanisms. This model aims to achieve fine-grid, large-

scale wind system predictions, improving voyage planning and

navigation safety. The use of DSC blocks significantly reduces model

parameters and computational complexity. By leveraging the strengths

of modular IPCA preprocessing, residual learning, multi-head

attention, and the depthwise separable CNN-based U-Net

architecture, this hybrid framework is optimized to predict complex,

spatial-temporal variations in extreme wind signals. Detailed

explanations for each component of the proposed model are as follows.
2.1 Incremental principal component
analysis

The basic theory of PCA is to generate a set of independent

composite indicators by recombining the raw variables, thereby

reducing the dimensionality of the original data samples while

retaining most of the original/principal information features.
frontiersin.org
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Specifically, PCA performs data transformation on the original data

and projects it onto a new coordinate system, resulting in the

projected data having the largest variance. The main merits of PCA

include reducing data dimensionality, decreasing computational

complexity and model complexity, reducing the impact of noise,

improving the signal-to-noise ratio of data, identifying the most

important features in data samples through dimensionality reduction,

and removing some redundant features, thereby reducing the risk of

overfitting and improving the model’s generalization ability (Xu et al.,

2023a; Xiao et al., 2023; Zhang et al., 2024b).

Provided that the targeted data-sample size is m x n, the data

sample matrix is represented in the Equation 1 as follows:

P =

p11   p12  ⋯   p1n

p21   p22  ⋯   p2n

⋯  ⋯  ⋯  ⋯

pm1   pm2  ⋯   pmn

2666664

3777775 (1)

subtract the average value of each column in the Equation 2:

P =

p11 − b1   p12 − b1  ⋯   p1n − b1

p21 − b1   p22 − b1  ⋯   p2n − b1

⋯  ⋯  ⋯  ⋯

pm1 − b1   pm2 − b1  ⋯   pmn − b1

2666664

3777775 (2)

where bi is the average of each column in the Equation 3:

bi =
1
mo

m

i=1
pji (3)

The covariance CM is an m × m matrix, and the CMij of the

covariance matrix indicates the covariance value of the targeted

variables pi and pj. Next, the eigenvalues of the covariance CM are

derived and the computed eigenvalues are filtered in descending

order. The eigenvectors related to the first k eigenvalues are

employed to aggregate a new feature matrix. Finally, after the

dimensionality reduction operation, the projection of P on the

new eigenvector matrix is computed to represent the eigenvectors.

IPCA decomposes a large-scale sample into multiple small-

batch datasets through gradual iterations and performs principal

component analysis on each small-batch dataset. This avoids the

memory and computing resource consumption caused by

processing the entire dataset at once. After conducting principal

component analysis on each small-batch dataset, the obtained

principal components are merged so as to obtain the principal

components of the entire dataset. Compared to traditional PCA

algorithms, IPCA has lower computational complexity and can

obtain principal components with greater efficiency. It can also

perform incremental updates when new data arrives without

recalculating the principal components of the entire dataset, thus

achieving real-time data processing. IPCA employs singular value

decomposition to perform linear dimensionality reduction on target

data samples, retaining only the most important singular vectors,

and then processing/projecting the data samples into a lower

dimensional feature space. It finds principal components by

calculating singular value decomposition, processing only one
Frontiers in Marine Science 06
batch of samples in one iteration to reduce memory consumption

(Greenacre et al., 2022; Weng et al., 2003). The principal

component is calculated by the Equations 4 and 5:

fPCi(n) = PCi(n − 1) + ai(n)u(n)u
T (n)PCi(n − 1) (4)

PCi(n) = orthonormalizefPCi(n)  with   respect   to   PCi(n),

  j = 1, 2,…, i − 1
(5)

where the PCi(n) denotes the projection of the ith dominant

eigenvector for the derived sample covariance matrix CM = E{u(n)

uT(n)}. The ai indicates a stochastic approximation gain. The un is a

m-dimensional vector.

The full wind speed field can be reconstructed by the linear

combination of the leading principal components (PCs) and their

corresponding EOFs after filtering redundant features and noise

signals. The EOF analysis is a statistical technique used to identify

dominant patterns or structures in spatial-temporal datasets, such

as climate or geophysical data. It decomposes the data into EOFs

that capture the maximum variance, with associated time

coefficients describing their temporal evolution. A given wind

field Windt, at time step t can be calculated as follows in the

Equation 6:

Windm,t = o
k

n=1
PCn,tEOFm,n (6)

where m denotes the grid index of the wind field, t indicates the

time index, and k is the total number of retained PCs.

IPCA is an adaptation of PCA that allows for processing data in

an incremental manner, rather than requiring the entire dataset to

be available in memory at once. Thus, instead of computing the

covariance matrix from the entire dataset at once, the algorithm

updates the principal components incrementally as new data

arrives. The key idea is that there is no requirement to store the

whole dataset, but data is processed in small batches (minibatches)

and the principal components are updated as new data is fed into

the model.

The application of IPCA in 2D extreme wind field

preprocessing offers a strategic approach to handle data

dimensionality and mitigate noise interference. It is very crucial

for improving prediction accuracy in wind field forecasting models.

Here is a detailed explanation of IPCA’s principles, and how they

rationalize its application in this context. Since wind field data are

typically represented as large 2D grids, with each cell corresponding

to specific wind metrics (e.g., speed and direction) at that spatial

point. Processing such high-dimensional input directly in deep

learning models would lead to high computational costs and

increase the risk of overfitting, especially with limited training

data. The IPCA reduces the spatial dimensions, retaining only

essential components that reflect the primary spatial patterns in

wind fields, making the data manageable without significant

information loss. By focusing on principal components, the IPCA

naturally discards lower-variance components, which are likely to

be noise. This selective filtering of information means that the data
frontiersin.org
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entering the forecasting model is “cleaner,” which supports better

model training and more accurate predictions. In addition, as a ship

navigates through different ocean regions, wind patterns will vary

significantly. The IPCA’s incremental nature allows it to adapt to

these changes by updating principal components with incoming

data. This ongoing adaptation ensures that the data fed into the

forecasting model always reflects current environmental conditions,

enhancing prediction accuracy, which allows forecasting models to

focus on essential features without the burden of excessive,

redundant information. This burden reduction lowers

computational demands, allowing models to train faster and

reducing the risk of overfitting. Additionally, because the model is

working with a cleaner, lower-dimensional dataset, prediction

accuracy tends to improve.

In summary, the choice of IPCA in 2D wind field preprocessing

is rational due to its ability to reduce dimensionality, handle real-

time data, and filter out noise, all while requiring limited resources.

This pre-processing step enhances the predictive model’s accuracy

and efficiency by supplying a refined, lower-dimensional input that

captures the most relevant spatial patterns in the wind field data. As

a result, IPCA-based preprocessing is a practical and effective

solution to prepare 2D wind data for deep learning models in a

constrained, dynamic environment like that on a ship.
2.2 Depthwise separable convolution

In general, the basic U-Net framework is prone to overfitting

and is computationally heavy with traditional convolution

operations. In this study, we introduced the DSC block to reduce

the basic U-Net model size and trainable parameters (Chollet,

2017). The DSC block separates a complete convolution operation

into two steps: pointwise convolution (PTC) and depthwise

convolution (DC). The operation of PTC is similar to classical

convolution, and its convolution kernel has a size of 1 × 1. Unlike

the classical convolution computing process, a kernel of DSC is

responsible for one channel. Therefore, the entire model parameters

are greatly reduced. Each input channel was applied by a single

convolutional kernel in the depthwise convolution and outputs the

respective feature maps.

In a standard 2D convolutional operation, a kernel spans all

input channels (or depth) and slides over the spatial dimensions

(height and width) of the input, creating output channels by

combining information from all input channels. However, in

depthwise convolution, each input channel has its own

independent kernel. Specifically, instead of applying a single

kernel across all input channels, the depthwise convolution

applies one filter per implementation independently. This process

captures spatial information within each channel but does not

combine information across different channels, which limits its

expressive power. Thus, the next step, pointwise convolution, is

introduced to address this issue. The pointwise convolution can

adjust the number of output channels and helps to combine the

channel-wise information produced by the depthwise convolution.
Frontiers in Marine Science 07
By performing these two operations sequentially, the depthwise-

separable convolution emulates the effect of a standard convolution

while significantly reducing the computational cost.

Considering the input feature map I is (DI, DI, M), the target-

output O is (DO, DO, N); and the standard convolutional operation

kernel K indicates (DK, DK, M, N), of which M and N represent the

number of inputs and target channels, correspondingly. D denotes

the size of convolved high-dimensional feature maps. Specifically,

the kernel K is divided into two convolutional modulations: the

depthwise (DK, DK, 1, N) and pointwise convolution (1, 1, M, N). In

addition, the classical 1 x 1 convolutional kernel is employed in the

pointwise convolution modulation, and the channel features

derived by depthwise convolution operation are then projected

onto the deeper and higher channel space. The pointwise

convolution was applied after the depthwise operation, using N

convolutional kernels with 1 x 1 x M size for the purpose of

representing the M DK x DK feature maps. The weighted

combination operation is then performed in the depth direction

in order to generate the N DK, DK x 1 feature maps O (DO, DO, N).

The two convolutional modulations are illustrated in Figure 3.

The formula of standard convolution is expressed in the

Equation 7:

Ok,l,n = o
i,j,m

Ki : j,m,n   :     Ik+i−1,l+j−1,m (7)

and the formula of depthwise separable convolution is shown in

in the Equation 8:

Ô k,l,m =o
i,j
K̂ i,j,m   :     Ik+i−1,l+j−1,m (8)
2.3 Multi-head attention

The attention strategy in deep learning is widely used in image,

natural language processing, speech recognition, and so on. The

core task of the attention mechanism is to optimally extract critical

information from mass data samples quickly and accurately.

Compared with the standard convolution mechanism, the

attention strategy is characterized by fewer parameters, high

accuracy, and lower computational cost. The basic scaled dot-

production attention block consists of multi-head attention

modulation. It has been demonstrated that multi-head attention

is able to better catch and preserve underlying high-dimensional

features (Xu et al., 2023b, 2024). In particular, the attention

mechanism has been proven to be helpful for spatial-temporal

wind speed forecasting (Yu et al., 2023), and more non-linear

dynamics could potentially be reproduced, especially for the

dynamic fluid field (Niu et al., 2021; Che et al., 2022) based on

the multi-head strategy. The attention can be understood as a key-

value query, which maps queries and key values to the target output.

The essence of the attention is the processing of weighted

summation for values based on keys and queries, together with

the weight redistribution.
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The multi-head attention strategy exhibits lower complexity

compared to the scaled dot-product attention, allowing the

forecasting model to deeply map different high-dimensional

representations while avoiding the loss of small targets. In this

study, the query matrices were linearly projected three times on the

sequential wind-speed tensors. Then, the projected weight matrices

were concatenated to generate the refinement forecasting outputs.

In wind field forecasting, multi-head attention enhances the

model’s ability to interpret the spatial and temporal relationships

within the wind data. By simultaneously attending to multiple areas

of the input grid, the model captures subtle, location-specific

patterns (e.g., shifts in wind intensity across regions and changes

over time) that a standard convolutional layer may miss. Moreover,

traditional convolutional layers have a fixed receptive field and

struggle with long-range dependencies, particularly in spatial-

temporal data. Multi-head attention addresses this limitation by
Frontiers in Marine Science 08
dynamically focusing on relevant areas across both spatial and

temporal dimensions. In the U-Net model, this allows the encoder-

decoder structure to more effectively aggregate spatial-temporal

information, which is crucial for fine-grid forecasting of fluctuating

wind conditions. More importantly, for real-time applications on

ships, balancing latency with model accuracy is essential. Multi-

head attention, while enhancing predictive accuracy through

improved feature attention, may introduce latency due to the

processing load. Efficient implementation techniques, such as

attention approximation methods (e.g., sparse or low-rank

approximations), can be considered to reduce the burden of

multi-head attention.

H and W are the height and width of the 2D input matrix and

the C indicates the feature number for the input-sequential tensors.

Providing that the sequential series represent Wind = ½x1,…, xN � ∈
RHxWxC, the dot-product will aggregate and derive the K and the Q
FIGURE 3

The Schematic illustration of depthwise separable CNN.
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together with the V query terms using three projected matrices Wk

∈ RDxxDk , Wq ∈ RDxxDq , and Wv ∈ RDxxDv in the Equation 9:

K = WinsWk ∈ RHxWxDk

Q = WindWq ∈ RHxWxDk

V = WindWv ∈ RHxWxDk

(9)

In the attention-based data-processing stage, a specific

normalization term x(qTi kj)   ∈ R1 will be introduced to calculate

the similarity between the ith query qTi ∈ RDk and the jth key kj ∈
RDk . Then at a designated position i, the attention weight is derived

by the Equation 10

ϑ(Q,K ,V) = x(
QKTffiffiffiffiffi

dk
p )V (10)

Larger dk derived from the input sequential tensors with higher

dimensions will then lead to the softmax-normalization trapped

into local optima with extremely small gradients. The scaled term
1ffiffiffiffi
dk

p , laterally aggregated into the weighted summation, will

alleviate this traditional vanishing gradient issue.

The ith row weights can be derived as the Equation 11

ϑ(Q,K ,V)i =
oN

j=1e
qTi kjvjffiffiffiffiffi

dk
p

oN
j=1e

qTi kj
(11)

sequentially, it can be simplified as

ϑ(Q,K ,V)i =
Y (qi)

ToN
j=1r(kj)v

T
jffiffiffiffiffi

dk
p

Y (qi)
ToN

j=1r(kj)
(12)

The Equation 12 can, then, be illustrated when different types of

normalization functions f() were aggregated

ϑ(Q,K ,V)i =
oN

j=1f(qi, ki)vi

oN
j=1f(qi, ki)

(13)

f(qi, kj) function will calculate the correlated similarities

between qi and kj.
A constraint term can be illustrated as the ker(x, y) R2xF → R+,

which would ensure that the specific attention blocks are non-

negative. The Equation 13 can be expressed as

ϑ(Q,K ,V) = o
N
j=1ς(qi)

Tς(ki)vi

oN
j=1ς(qi)

Tς(ki)
(14)

The associative property of the matrix multiplication was used

to rewrite Equation 14

ϑ(Q,K ,V) = V 0 =
ς(qi)

ToN
j=1ς(ki)v

T
i

ς(qi)
ToN

j=1ς(ki)
(15)

Equation 15 can, subsequently, be simplified when the

numerator is in the vector form as the Equation 16:

(ς(Q)ς(K)T )V = ς(Q)(ς(K)TV) (16)
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2.4 Spatial-temporal forecasting network

The underlying spatial-temporal features inherited in the

sequential wind speed systems with low-level nonlinearities are

mapped by the encoder module of the U-Net backbone, and high-

level semantic representations will then be extracted into the

decoder modulation (Ronneberger et al., 2015). Yet, the ordinary

skip-connection operations would usually lead to insufficient

exploration of potential semantic and contextual features,

especially for fine-grid 2D wind speed system mapping tasks.

Thus, in this study, two additional multi-head attention blocks

together with deep residual learning (Manucharyan et al., 2021) are

introduced together with depthwise separable convolutional

modulation to mitigate these issues. The residual learning block

mitigates the vanishing gradient problems that would usually occur

in very deep networks. It enables the constructed wind mapping

network to be deep enough. In addition, in the context of wind field

forecasting, residual learning allows the model to refine spatial-

temporal representations by focusing on differences in wind

patterns across time and space. This focus is especially important

for forecasting applications where subtle changes in wind

conditions need to be captured accurately. Residual learning

supports the model’s ability to detect and propagate important

spatial-temporal features throughout the network, improving

forecasting accuracy. The IPCA-based dimensionality reduction

further enhances residual learning by streamlining the data. With

IPCA pre-compressing high-dimensional inputs, residual layers can

focus on fine-tuning only the most critical components of the

compressed data, which reduces both computation and memory

usage without compromising model performance. Finally, residual

learning enables the model to adapt to rapidly changing wind

conditions by emphasizing residuals, or deviations, in the wind

field data. This adaptability is particularly valuable in marine

environments where weather and wind conditions can shift

quickly. With residual learning, the model becomes better

equipped to capture these subtle changes, leading to more

accurate and timely forecasts.

The diagram of the wind system mapping based U-Net model

combination is illustrated in Figure 4.

The residual block was only integrated into two layers of the

Decoder part, which would alleviate the total computational

burden. Specifically, one block was incorporated into the last

layer of the decoder, and the other one was located in the first

layer of decoder modulation. The attention block in between the

Bottleneck layer and 2D depthwise separable CNN layers can query

and reproduce more embedded spatial wind system features with

refinement operations. The second one further augments original

feature maps aggregated by skip-connections, deeper refinement,

and feature augmentation realized by the attention operations can

improve the final forecasting performance (Vaswani et al., 2017).

These newly introduced modifications, including DSC modulation,

attention blocks, and residual learning strategy, for the raw U-Net-

backbone, can enhance the reproduction performance of

underlying fine-grid 2D wind spatial variabilities. In addition,
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dropout layers were retained in the forecasting operations due to the

dropout being a potential Bayesian approximation that could

mitigate the predictive uncertainty for deep learning regression

tasks (Gal and Ghahramani, 2016).

The core architecture of this hybrid model is a depthwise

separable CNN-based U-Net-like structure, as illustrated in

Figure 4. The model adopts a U-Net-like architecture, which is

characterized by an encoder-decoder structure with skip

connections. This design is particularly effective for capturing

multi-scale features, making it suitable for spatiotemporal data

such as wind fields, and the 2D DSC layers employed in the U-

Net framework can process spatial data (e.g., wind speed maps)

across time steps, enabling it to learn spatial patterns and temporal

dynamics simultaneously. One of the major innovation points of

this proposed model is that the depthwise separable convolutions

are employed as the main CNN block, as shown in Figure 3, which

could reduce computational complexity and the number of

trainable parameters. This convolution operation separates spatial

filtering (depthwise convolution) from channel-wise feature

combinations (pointwise convolution), making the model more

efficient. This depthwise separable CNN block enhances the model’s
Frontiers in Marine Science 10
ability to extract localized spatial features from extreme wind data

samples, which is critical for capturing fine-grained patterns in

wind fields. The other innovation of this model is that multi-head

attention is integrated into the proposed network to capture long-

range dependencies and interactions across both spatial and

temporal dimensions. This mechanism allows the model to focus

on the most relevant regions of the input data at different scales. By

computing attention scores across multiple heads, the model can

dynamically weight the importance of different spatial and temporal

features, improving its ability to model complex wind dynamics. In

addition, the residual connections are also incorporated to facilitate

gradient flow during training, mitigating issues such as vanishing

gradients and enabling the training of deeper networks. These

connections allow the model to reuse features from earlier layers,

enhancing its ability to learn hierarchical representations of wind

field data. As can be seen in Figures 2, 4, a reanalysis of the extreme

wind field dataset, which combines the real observation and

numerical model simulations using the data assimilation method,

was aggregated from the ERA5 model, and we then implemented z-

score normalization in the raw extreme wind dataset and

transformed the dataset into a standard form with a mean of 0
FIGURE 4

The wind system forecasting network.
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and a standard deviation of 1. Then, the IPCA approach was

employed for 2D wind field decomposition, which can effectively

filter the feature space of data samples by reducing dimensionality

and redundant noise effects. The autocorrelation analysis, as

outlined in section 3.1, is employed to obtain a comprehensive

perspective on the temporal dependency of the overall extreme

wind speed field sequential lagging. The sequential wind field time

lag is determined as 12 time steps, and the target wind field is a one-

time step. We then split the dataset into 70% training and 30%

testing parts. Afterward, several batch-size wind map data samples

with the aggregated wind tensors were fed into the developed

forecasting network for parameter training and optimization, and

the rest 30% testing data sample was used to test the model

performance compared to the reanalysis target.

A novel architecture was designed specifically for spatiotemporal

significant extreme wind signal prediction in a large-scale perspective,

which leverages the strengths of U-Net framework for precise feature

extraction. The IPCA approach was employed for 2D wind field

decomposition, which can effectively filter the feature space of data

samples by reducing dimensionality and redundant noise effects. The

depthwise separable convolution block was incorporated to reduce

computational complexity and improve model efficiency without

sacrificing performance. In addition, the multi-head attention

mechanism was introduced to enhance the model’s ability to capture

complex spatiotemporal dependencies in wind data. Finally, the

residual learning block was also aggregated into the new framework

to address potential vanishing gradient issues in deep networks,

ensuring stable training and improved feature representation.
3 Experimental results and discussion

3.1 Case study

This study utilized a Linux platform as the simulation

environment based on the Tensorflow framework by employing a

single NVIDIA-A100 GPU. The forecasting experiment covers the

Asia-Pacific region within a longitude of 96.5-160°E and a latitude

of 6-69.5°N, and 2 years of hourly wind data samples spanning from

2016 to 2017 with fine-grid 256 x 256 spatial resolution were

selected. One year of hourly samples from 2016 were utilized to

train the forecasting model, and the independent validation dataset

covers 3 months of data samples from January to March in 2017

(UTC). The weather forecast ERA5 data was provided by the

European Centre for Medium-Range Weather Forecasts

(ECMWF), while the weather observation data was provided by

the National Satellite Ocean Application Service (IMOS). The

spatial resolution of the hourly weather forecast was 0.25° × 0.25°.

The reanalysis data had global horizontal coverage. The temporal

coverage was from 1940 to the present. The dataset size utilized in

this research was approximately 9Gb, covering a time period from

2016 to 2017 with 256x256 spatial resolution (the pixel size is

256x256 for each hourly wind field snapshot).
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3.2 Wind field decomposition

The dominant variability of spatial-temporal wind speed

patterns could be decomposed into a certain number of principal

EOF models, and the derived EOF time series is able to represent

wind spatial variation patterns associated with its corresponding

temporal PC time series. Based on the IPCA data-preprocessing

approach, the reconstruction of the wind speed pattern, after

cleaning redundant wind features and noise signal, is calculated

by multiplying the decomposed PCs with retained EOFs models

(Zhang et al., 2022):

Windrecon = fPCiEOFi (17)

As can be seen from Figure 5, far more than 1,000 principal

wind variability components were decomposed from the original

raw wind data samples in Panel (a), which explained most of the

wind evolutional variance, yet, a certain portion of noise signals and

irrelevant features have already been coupled and embedded within

the original data samples due to the stochasticity and non-linearity

of the evolved earth system. Panel (b) clearly illustrates that the first

25 PC models would be capable of explaining almost 70% of the

total wind evolutional variance. In order to save computational

resources, reduce time consumption, and further clean up the

additional redundant noise signals with potentially irrelevant

features, the first 25 EOFs (as displayed in Figure 6) were selected

as the primary evolutional variability model of wind speed patterns.

Finally, the cleaned input wind data samples were reconstructed by

employing the 25 principal EOF models with their corresponding

PC time series based on Equation 17.
3.3 The sliding-data window method

The autocorrelation analysis was employed to obtain a

comprehensive perspective on the temporal dependency of the

overall wind field sequential-lagging, which can usually explore

the relatively optimal historical time lags, coupled with the most

inter-correlated sequential information, for the aggregated wind

samples by showing time-series correlation maps of both regionally

averaged and randomly selected grid-cell based wind series. In

Figure 7, the bounds of the derived 95% confidential interval are

represented as the shadow blue band.

Given a time series for correlation analysis with its delayed

values, the formula of correlation can be calculated based on the

following Equations 18, 19 and 20:

corr(X,Y) =
cov(X,Y)
sXsY

(18)

corr(X,Y) =
E½(X − mX)(Y − mY )�

sXsY
(19)
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corr(X,Y) =
E½X,Y � − E½X�E½Y �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½X2� − E½X�2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½Y2� − E½Y �2
q (20)

for wind time-series G in time t step, X = Gt+1 and Y = Gt.

The partial autocorrelation function (PACF) also employs the

same correlation formula to derive the autocorrelation in between

time lags, yet the PACF disregards the indirect correlations between

Gt+1 and Gt. The Equation 21 is as follows given k≥ 2:

PACF(k) = corr(Gt−k − Pt,k(Gt+k),Wt − Pt,k(Gt)) (21)

where Pt,k (x) indicates the subjective operator of the

orthogonal projection for x onto the linear subspace of Hilbert

spanned by Gt+1,…,Gt+k.

As shown in Figure 7, the PACF within the shadow blue band

occurred at lag step 12 and lag step 7, correspondingly. Note that

the correlation values distributed within the shadow blue band

indicate these time lags were not significant. Thus, in this study, the
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wind time series ranging from historical time-lag t-1 to t-7 was

finally filtered to aggregate the input-tensor depth. In this study, the

wind pattern time series consists of 256 x 256 (Width × Height)

grids. Based on the optimal correlated time lags, the sequential

sliding data window with a fixed window size of 7 was set. Each pair

of the training and validation sample contains seven wind field

snapshots with strict chronological order as SSWt = (Windt-10, …,

Windt-2,Windt-1), combining one or more output-wind speed maps

with a specific given leading time-steps. Specifically, the prepared

modeling data sample was normalized into the value range [-1,1] to

speed up convergence efficiency. In addition, the scale consistency

will be eliminated between data samples by implementing

normalization pre-processing. The learning rate of the selected

Adam optimizer in the wind-forecasting model was set to 1e-4,

the batch size was set as 200, and the loss function employed Huber

loss, which was minimized by using the gradient descent approach.

An early-stopping criterion that the training iteration will be
FIGURE 5

The variance explained based on the decomposed spatial wind patterns. Panels (a, c) indicate the complete explained wind evolutional variance,
panels (b, d) represent 70% explained wind variance.
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terminated if the loss metric has stopped improving after

consecutive 12-iterations was further employed. The Huber loss

Equation 22 is as follows:

Lς(O, ϑ(X)) =
1
2 (O − ϑ(X))2

ς 0 − ϑ(X)j j 12 ς2

(
(22)

where O is the reanalysis model and ϑ denotes the deep neural

learning model. In this study, the ς was tested and set as 1.0. The

Huber loss is usually less sensitive to outliers, since it can approach

an L2 loss if the ς approximate to 0, and approaches L1 when the ς is

positive infinity. The flowchart of the established wind pattern

forecasting network is presented in Figure 8, so as to provide an

clear model operation process.
3.4 Model sensitivity analysis

The rationale concerning how to determine the model

hyperparameter settings is very important to evaluate its

robustness and uncertainty. In this study, we tested a range of

hyperparameters, consisting of the batch size, activation function,
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learning rates, and loss function, to assess the model’s robustness

based on forecasting performance.

The statistics forecasting skills for wind pattern prediction are

illustrated in the Appendix (Supplementary Table S1–S4), employing

the varied hyperparameters. Note that we implemented forecasting

experiments using different parameter settings, yet, for the

optimization algorithm, the reasonable parameter range settings are

also determined by preliminary experiments and domain knowledge

(Parri and Teeparthi, 2024). Also, it has been emphasized that

optimizing hyperparameters of machine learning models is a

laborious process (Zhang et al., 2024a). Moreover, one can better

monitor the comprehensive model performance and robustness by

applying model sensitivity experiments in which varied model

parameter settings are explored, which can provide us with a

deeper insight into a better understanding of which

hyperparameters might have a potential impact on the predictive

capability. More importantly, it has been illustrated that a sensitivity

trial can provide a basis for model parameter adjustment and

optimization, and further enable quantification of the potential

model uncertainties (Asheghi et al., 2020). The uncertainty of the

specific model settings can be quantified by exploring the underlying
FIGURE 6

The first 25 decomposed EOF models of raw wind pattern.
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impact of these hyperparameters on predictive performance. Thus,

potential model uncertainties together with its robustness derived

from varied parameter settings could furnish us with a valuable

reference concerning optimization and adjustment of the developed

framework, and better show the confidence interval of the model

settings (Abbaszadeh et al., 2022).
3.5 Wind system prediction

In order to evaluate the prediction errors, several methods

including recurrent neural network (RNN), Long-short term

memory network (LSTM), CNN-LSTM, Encoder-decoder, ResU-

Net, and MHA-ResU-Net were used for a comparison with the

proposed approach. For the prediction experiments, the mean

absolute error (MAE) derived using Equation 23 and the root

mean square error (RMSE) derived using Equation 24 were

employed as model-evaluation metrics to reveal the performance.

MAE =  
1
no

n

i=1
Xprediction,i − Yobservation,i

�� �� (23)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n
i=1(Xprediction,i − Yobservation,i)

2

r
(24)
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where the Yobservation,i denotes the reanalysis 2D wind map and

the Xprediction,i indicates the predicted snapshot.

The forecasting metrics are illustrated in Figure 9. The lowest

forecasting errors were obtained by the proposed prediction model

amongst all individual experiments, which verified that the

proposed deep neural learning model outperforms the rest of the

models, especially in fine-grid spatial-temporal 2D wind system

mapping. The derived area-mean RMSEs for 1-hour-ahead and 12-

hour-ahead predictions were less than 0.15 m/s and 0.53 m/

s, respectively.

The spatial-resolved wind gust speed predictions were derived

and are shown in Figure 10, to further explore the model

performance in a fine-grid spatial perspective. Pre indicates model

forecasting, ob represents the reanalysis samples. As displayed in

Figure 10, the proposed neural-learning method can preserve the

spatial-temporal sequential wind system variabilities, which shows

that the spatial-temporal wind evolution patterns were well

reproduced for each single wind field snapshot. In addition,

extreme wind signals were also well captured continually within

the sequential wind evolving trend. Longer leading-step predictions

with corresponding deviation maps are shown in Figure 11.

In order to explore the effectiveness of deep-learning-based

weather prediction for ship path planning, two types of weather

predictions were employed to evaluate an empirical shipping route.
FIGURE 7

The Autocorrelation analysis of wind component pattern variability with field-mean time series panels (a, b), the random selected grid-point time
series panels (c, d).
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It has been proven that if the raw numerical model forecasting data

with sparse-grid resolution and with 24-h intervals are utilized to

schedule the voyage path, the extreme wind field could not be

identified by the ship route optimization software (Yuan et al., 2022;

Wu et al., 2023). On the contrary, the developed spatial-temporal

deep learning model is able to provide continuous weather

forecasting with a very high spatial resolution of 0.25° × 0.25° and

an hourly time scale, which will help the path optimization software

to identify dangerous navigation regions with accurate area

boundaries where severe sea states exist, as displayed in Figure 12.

More importantly, the proposed model is able to offer continuous

weather forecasting updates, even on a single laptop. This means
Frontiers in Marine Science 15
that the proposed framework combined with reanalysis data

samples is very convenient and practical for adaptive path

planning of marine vehicles, especially for sea-going navigation in

large-scale oceans.

Moreover, a shipping path application was evaluated based on

the deep learning-based wind forecast for the sake of better

illustrating its effectiveness for efficient and intelligent route

planning. Generally speaking, the major part of the experimental

shipping route would directly pass through the high sea-state

region, if the sparse weather forecasting and weather observation

system could not recognize the severe sea state. However, the

adaptive ship route based on the proposed continuous fine-grid
FIGURE 8

The flowchart of the established wind pattern forecasting network.
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wind forecasting model would accurately avoid adverse weather

conditions as much as possible, since the variability of the sea state

would be perceived based on weather routing software (Vettor and

Soares, 2016; Wu et al., 2023). In addition, it can be seen in

Figure 12 that the fine-grid sea-state region detection can help to

adjust the experimental path planning accurately using 1-day

weather forecasting, and from a sea-going navigation practical

perspective, a longer prediction time-span that exceeds 1 day

would provide a timely reference for future voyage adjustment.

Moreover, with the efficient and intelligent identification of severe

weather conditions, autonomous marine vehicles would be able to

achieve active obstacle avoidance and intelligent route adjustment,

which will lay a solid foundation for intelligent ocean environment

perception and the development of smart ships.
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4 Model transferability

Deep learning model transferability is a strategy that involves

transferring knowledge obtained from the source domain to solve the

tasks in a related target domain (Pan and Yang, 2009; Hu et al., 2016).

This study provides a machine learning approach that can be

employed to transfer the weather forecasting model knowledge

gained for available trained jobs from one specific geospatial region

to another region’s field and time span. It provides an opportunity to

transfer information between different datasets and different

geospatial regions. Model transferability, including the model

hyperparameters and model weights relocation, demonstrates

whether a newly developed machine learning method can be

transferred directly to an unknown region to realize specific
FIGURE 9

Wind pattern forecasting error analysis.
FIGURE 10

Snapshots of spatial-resolved wind speed patterns forecasting.
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weather forecasting-based ship path planning tasks. A square area

covering the North Atlantic Ocean within 6.25 - 70°N, -53.75 - 10°E

was selected as the modeling region to realize the same model-

hyperparameter transferability-based wind field forecasting directly.

It is illustrated in Figure 13 that the developed neural-learning

approach reproduced the spatial-temporal sequential wind system

variabilities again. This indicates that the spatial-temporal wind
Frontiers in Marine Science 17
distribution patterns located in different geospatial regions were

well preserved for each single field snapshot. The extreme wind

signals were also continually captured within the sequential wind-

evolving trend. The corresponding longer leading-step forecasting

with its deviation fields is displayed in Figure 14.

A new shipping path was evaluated using the deep learning-based

wind forecast for the sake of better illustrating its effectiveness on the
FIGURE 11

Longer surface extreme wind forecasting.
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route plan in the North Atlantic Ocean. It can be seen that the major

part of the experimental shipping route directly passes through the high

sea state region in Figure 15. However, the adaptive ship route based on

the proposed continuous fine-grid wind forecasting model was able to

avoid adverse weather conditions as accurately as possible. This can not
Frontiers in Marine Science 18
only ensure the safety of marine vehicles and navigators but also

provide voyage planning with timely or real-time path adjustment. The

smart shipping industry will greatly benefit from the efficient and

intelligent detection of severe large-scale sea states using the proposed

wind forecasting model.
FIGURE 12

Ship path planning based on the wind field forecasting, the white dash-line indicates adaptive path and white line is experimental route.
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5 Discussion and conclusion

5.1 Discussion of the model’s potential
applications and limitations

A depthwise separable U-Net with spatial-temporal attention

layers typically has a lower parameter count than standard

convolutional U-Nets. Yet, the model is still complex and requires

significant computing power for real-time inference. Wind field

forecasting involves large volumes of spatial-temporal data, often

requiring high-resolution inputs over a continuous time frame.

Real-time processing is necessary for effective forecasting, meaning

the model must handle frequent data updates without lag. IPCA

facilitates dimensionality reduction, which helps manage data size,

but there is still a need for fast data preprocessing pipelines to feed

into the model without creating bottlenecks. The IPCA-based

model necessitates sufficient memory to handle large input

matrices (spatial-temporal wind data), intermediate activations,

and model weights. The memory requirement can be reduced by

applying IPCA to pre-process and compress the input data, but this

is still contingent on having enough capacity to maintain

intermediate data during real-time inference.

Most ships are limited in terms of the onboard processing

power available, typically having less powerful central processing

units (CPUs) and possibly limited or no GPUs. While some larger

vessels may have limited GPU capacity, deploying such a GPU-

based model requires specialized hardware, such as embedded

systems with tensor-processing units (TPUs) or compact GPUs.

Alternatively, high-performance CPUs capable of supporting

multithreading and parallel processing may also be viable, though

potentially slower. In addition, other constraints are critical on

ships where energy resources are shared among navigation,
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communication, and other systems. Depthwise separable U-Nets

help in reducing computation costs by focusing only on the most

relevant filters in the spatial-temporal data. Additionally, IPCA can

reduce the data dimensions, resulting in lower power consumption.

Nevertheless, the system should be designed to operate within the

ship’s power constraints, often requiring energy-efficient

processors. IPCA provides an advantage by enabling incremental

updates, essential for real-time processing on ships, where data is

generated continuously and model re-training is impractical. IPCA

reduces data dimensions iteratively, which is efficient, but still

requires sufficient processing power to perform real-time updates.

A balance is necessary between the model’s forecasting accuracy

and the latency in delivering these forecasts. The depthwise

separable U-Net offers computational efficiency, but the real-time

application might still necessitate simplifying the model further or

accepting coarser forecasting to ensure timely output.

In summary, implementing an IPCA-based spatial-temporal

depthwise separable U-Net model on ships requires hardware

capable of efficient parallel processing, compact design, and low

power consumption. Compact GPUs or embedded TPUs are ideal

but may not always be feasible, especially on smaller vessels. CPU-

based implementations are possible but might face latency issues.

Reducing model complexity and utilizing IPCA for dimensionality

reduction can mitigate some hardware limitations, but ongoing

trade-offs between computational power, accuracy, and latency will

be required to make this model operational on actual ships. For

stakeholders, understanding these constraints is crucial for

planning resource allocation, assessing deployment feasibility, and

selecting suitable hardware for maritime forecasting applications.

Concerning the model’s limitations, in marine environments, wind

patterns are highly variable and can be influenced by various factors

such as shipmovements and surrounding weather systems. The IPCA’s
FIGURE 13

Snapshots of spatial-resolved wind speed patterns forecasting as Figure 10, but for the North Atlantic Ocean region.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1495822
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhang et al. 10.3389/fmars.2025.1495822
incremental learning approach may not fully capture this complexity,

as it assumes incremental changes to the learned principal components,

which may not adapt quickly enough to abrupt shifts or highly

dynamic wind fields. Furthermore, incremental updates in IPCA rely

on frequent model retraining with new data. This approach risks

underperforming if updates are too infrequent or if older components

fail to capture emerging patterns. This can lead to model drift, where
Frontiers in Marine Science 20
the U-Net model’s depthwise separable convolutions become

misaligned with the shifting data distributions. Moreover, onboard

computing systems may be limited in memory and processing power,

restricting the model’s ability to perform complex IPCA

transformations alongside the spatial-temporal depthwise separable

U-Net operations. This constraint could necessitate simplifying the

model at the cost of predictive accuracy.
FIGURE 14

The same as Figure 11, but for the North Atlantic Ocean.
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While depthwise separable convolutions reduce computation by

splitting spatial and channel-wise filtering, combining them with

IPCA can lead to a loss in detail, particularly in fine-grid scenarios

where capturing spatial intricacies is critical. Depthwise operations,

while efficient, may not fully exploit the principal components’ spatial

relationships, leading to potential oversimplification. Depthwise

separable convolutions, when paired with IPCA, might over-rely on
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a limited number of components, as selecting too many can offset

efficiency gains. Choosing an appropriate number of components

becomes crucial but challenging in achieving a balance between

spatial detail and computational feasibility. In addition, ships’

routes, speeds, and maneuvers might introduce unique challenges

in wind field predictions. These unpredictable movements can make

it difficult for an IPCA-based U-Net model to maintain consistent
FIGURE 15

The same as Figure 12, but for ship path planning at the North Atlantic Ocean.
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predictive accuracy, as rapid course or speed changes could invalidate

previously learned components or spatial patterns. Addressing these

limitations would involve strategies such as incorporating more

adaptive or hierarchical components within the IPCA process,

leveraging advanced real-time data filtering, or incorporating more

sophisticated recurrent mechanisms within the U-Net architecture in

the future steps to handle temporal dynamics better.
5.2 Conclusions

In order to provide instantaneous extreme wind system pattern

mapping tasks, and provide adaptive and intelligent path planning for

marine vehicles, especially for sea-going navigations in large-scale

oceans, a spatial-temporal 2D depthwise separable convolutional

based neural-learning model was developed by integrating the multi-

head feature-concentrated attention scheme. Specifically, incremental

principal component analysis was first employed to filter the feature

space of 2D wind data samples by reducing dimensionality and

redundant features. The proposed wind forecasting network was

employed to capture and preserve the intermittence and non-

linearity of spatial-temporal wind system evolutions between the

future wind pattern distributions and the historical wind time-series

snapshots. The historical wind time lags with a strict chronological

order were determined by further introducing a sequential sliding-data

window approach and the established spatial-temporal feature

mapping methodology was then able to capture the underlying

temporal dependencies and variabilities from the consecutive wind

maps. In addition, the transferability of the proposed model was

verified by employing two geospatial regions with different weather

characteristics. By mapping weather observational gaps into a fine-grid

and complete spatial format, the proposed approach, implemented in a

single laptop, aimed to improve the timeliness and accuracy of onboard

ship routing, thereby enhancing ship navigation safety. Based on the

efficient and intelligent identification of severe weather conditions,

autonomous marine vehicles will be able to achieve active obstacle

avoidance and intelligent route adjustment, which will lay a solid

foundation for intelligent ocean environment perception for the

development of smart shipping.

The experimental findings in this study demonstrate that the

developed deep learning-based methodology can accurately and

effectively detect severe wind fields. Yet, some limitations remain. For

example, other meteorological factors such as atmosphere pressure and

wave height conditions were not fully taken into account. Furthermore,

issues such as fuel consumption were not considered, which could

impact intelligent weather routing-based predictions and ship

navigation safety, thus, future research is required to better consider

ship navigation performance and its efficiency index and realize a more

reliable smart ship path planning task.
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