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Marine invasive Decapoda species have caused huge losses to biodiversity and

world fisheries. Early awareness of non-indigenous species (NIS) is critical to

prompt response and mitigate impacts. Citizen support has emerged as a

valuable tool for the early detection of NIS worldwide. However, the great

biodiversity of Decapoda species in global oceans poses challenges for the

public to the recognize marine Decapoda species, especially for the uncommon

or unfamiliar specimens, which sometimes might be NIS. However, despite the

remarkable performance of deep learning (DL) techniques in automated image

analysis, there remains a scarcity of professional tools tailored specifically for the

image classification of diverse decapods. To tackle this challenge, a web

application for automated image classification of marine Decapoda species,

termed DecapodAI, was developed by training a fine-tuned Contrastive

Language–Image Pretraining model with the images from the World Register

of Marine Species. For the test dataset, DecapodAI achieved average accuracies

of 0.717 for family, 0.719 for genus, and 0.773 for species. Online service is

provided at http://www.csbio.sjtu.edu.cn/bioinf/DecapodAI/. It is expected to

promote public participation by alleviating the burden of manually analyzing

images and has promising application prospects in exploring and monitoring the

biodiversity of decapods in global oceans, including early awareness of NIS.
KEYWORDS

Decapoda, biodiversity, non-indigenous species, invasive species, deep learning,
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Introduction
Marine Decapoda species, which are widely found from the

coastal zone to the abyssal zone, play vital roles in ecosystems and in

world fisheries (Marquez and Idaszkin, 2021; Joyce et al., 2022;

Truchet et al., 2023). In 2020, the total capture production of

marine Brachyura crabs was estimated to be 290,000 tons (live

weight) (FAO, 2022). However, while Decapoda species are

essential for ecosystems and fisheries, certain invasive species

could negatively impact the ecosystem, leading to the loss of

native biodiversity and economy. For instance, the Europe-native

green crab (Carcinus maenas) has been introduced to the Pacific

and Atlantic coasts of Canada (Jamieson et al., 1998). This invasion

has led to significant ecological and economic impacts, including

the displacement of the American lobster (Homarus americanus),

resulting in commercial losses of $44 to $114 million per year.

Furthermore, juvenile C. maenas crabs outcompete juvenile

Dungeness crabs (Metacarcinus magister), resulting in the

population decline of the latter and losses of over $6 million per

year in the British Columbia decapod fishery (Colautti et al., 2006;

Griffin et al., 2023). The expansion of C. maenas is also particularly

destructive to the native ecosystems, with Canadian bivalve

populations exhibiting 5- to 10-fold decrease in the presence of C.

maenas (Tan and Beal, 2015; Ens et al., 2022). In Atlantic Canada,

C. maenas has caused 50% to 100% declines in biomass of Eelgrass

meadows that many estuarine organisms rely on for food and

shelter (Matheson et al., 2016; Ens et al., 2022). Early awareness

of non-indigenous species (NIS) is crucial to mitigating these losses

in biodiversity and economy. Citizen support has emerged as a

valuable tool for early detection, playing an impactful role in

monitoring NIS worldwide (Giovos et al., 2019; Johnson et al.,

2020). To determine whether certain Decapoda specimens are

indigenous or not, the first step is to recognize them. However,

the order Decapoda encompasses an immense diversity of

crustaceans, with approximately 10,000 species having been

described, including crabs, shrimps, and crayfishes (Hobbs, 2001;

Creed, 2009). The great biodiversity of Decapoda species poses

challenges for the citizens. Without considerable domain

knowledge, local citizens may struggle to recognize new NIS. This

is especially true when the specimen is uncommon or unfamiliar to

them. It takes time for the citizens to identify the specimen, such as

by comparing the morphological features of the specimen against

the atlas to find out the most similar species. Meanwhile, it is costly

to educate the citizens to classify the highly diverse Decapoda

species in global oceans. Moreover, even for professionals, the

domain knowledge should be kept updated along with exploding

knowledge on biodiversity, such as discoveries of novel species.

Furthermore, there are huge classification tasks in monitoring the

marine Decapoda community, such as in assessing the impacts

from pollution, overexploitation, and other anthropogenic

pressures. The classification of Decapoda specimens by human is

labor-intensive and time-consuming. Hence, an efficient automated

tool for assisting professional taxonomic identification of Decapoda

specimens is urgently needed to tackle these challenges.
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Deep learning (DL) techniques have demonstrated remarkable

performance in automated image analysis of specific Decapoda

species, such as shrimp classification in food production lines (Liu

et al., 2019) and gender classification of the Chinese mitten crab

(Eriocheir sinensis) (Chen et al., 2023). However, despite the

availability of numerous DL open-source packages and AutoML

platforms, there remains a scarcity of professional tools tailored

specifically for the image classification of diverse decapods.

Importantly, users often have to undertake dataset preparation,

model training, parameter optimization, model deployment, and

even the entire process themselves to implement the automated

image classification. Therefore, in this study, we aim to develop an

automated image classifier and propose a user-friendly web

application, named DecapodAI, which leverages multi-modal DL

techniques to facilitate image classification of marine Decapoda

species on a global scale.
Method

Theoretically, every decapod species has the potential to become

a NIS if it is introduced outside of its natural habitats. Thus, to

identify NIS, a dataset collecting images of diverse decapods found

within the global oceans is required, which is crucial for creating a

robust automated image classifier to enhance the performance of

the DL models. Firstly, to construct the dataset, the images of

Decapoda species, as well as their taxonomic annotation, were

collected from the World Register of Marine Species (WoRMS,

https://marinespecies.org/), as WoRMS aims at providing an

authoritative and comprehensive list of names of global marine

species. After manually screening out noise images (such as maps),

a total of 1,541 images, which cover 553 species belonging to 317

genera from 102 families, remained for model training and

performance evaluation. Each image was labeled with taxonomic

annotation at the family, genus, and species levels, respectively. The

resource links for these images and their taxonomic annotations are

included in Appendix S1.

Secondly, the DL model based on CLIP (Contrastive Language–

Image Pretraining) was selected as the backbone network, which

proposed a progressive learning and achieved in-depth advances in

training (Dong et al., 2022). For instance, CLIP achieved

competitive accuracy without requiring as many training

examples as traditional models, such as the original ResNet-50

(Radford et al., 2021). Despite the successful application of DL

methods to the image classification of marine species, such as

EchoAI using EffiecientNetV2 for marine echinoderms (Zhou

et al., 2023) and FishAI utilizing Vision Transformer for marine

fish (Yang et al., 2024), the accuracy for species with limited labeled

images should be improved. Specifically, for certain decapod species

recorded in WoRMS, fewer than 10 taxonomically labeled images

are available. To address this issue and enhance performance for

these underrepresented species, the multi-modal deep network

CLIP_L14 was employed. Details about CLIP_L14 could be found

in the following website: https://huggingface.co/openai/clip-vit-

large-patch14. This approach leverages both text and visual
frontiersin.org
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information, achieving superior accuracy in few-shot learning

scenarios. The introduction of fine-tuning CLIP is illustrated in

Figure 1. CLIP uses contrastive learning to pre-train on large-scale

image–text pairs like images and their descriptions to learn cross-

modal semantic representations. The image encoder that extracts

image features and the text encoder that extracts text features are

jointly trained through contrastive loss, making related images and

texts closer in the vector space and irrelevant ones farther away.

Combined with fine-tuning techniques, the weights of the early

layers of the encoder are frozen, and the model parameters are

updated using a small learning rate and task loss function on a

dataset for a specific task. The main hyperparameters during model

training are shown in Appendix S2.

The CLIP model utilizes text encoding to generate text vector

[T1, T2, T3…TN] and image encoding to produce image vector [I1,

I2, I3…IN]. Combined with fine-tuning techniques, contrastive loss

of matrix is mainly used to train the model. In the testing phase, the

most probable labels are chosen for test images.

Thirdly, the CLIP network was trained with 1,060 images at the

family, genus, and species levels, respectively, using a batch size of

16, and crafted into the image classifier, termed DecapodAI-Core.

DecapodAI was derived from “Decapoda” and “AI.” For each input

image, DecapodAI-Core returned recognition results in taxonomic

names according to probabilities from the highest to the lowest.

Subsequently, the accuracy conventionally measures the proportion

of images for which the classification inference matches the

expected label. To evaluate the performance of DecapodAI-Core,

the average accuracies of the top 1 inference (the ones with the
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highest probability) were calculated for the test dataset at the family,

genus, and species levels, respectively. The detailed accuracy metrics

for the test dataset across all families are included in Appendix S3.

Similarly, the average accuracies for the inference results with the

top 2, 3, 4, and 5 highest probabilities were calculated as previously

described (Zhou et al., 2023). Finally, online service is provided

openly available at the web application, DecapodAI (http://

www.csbio.sjtu.edu.cn/bioinf/DecapodAI/). Once the image is

successfully uploaded, it usually takes about seconds for the

program to process. The results could be accessed by clicking the

hyperlinks when the job is finished, and the results are available for

download. While uploading the image, email address could be

provided optionally, and the link for the results would also be

sent to the email provided. To demonstrate the classification

performance of DecapodAI, four images were downloaded from

the Global Biodiversity Information Facility (GBIF, https://

www.gbif.org) and were used as input images. The resource links

for these four images are included in Appendix S4.
Results

The DecapodAI model, trained on the dataset using a fine-

tuned CLIP, demonstrates its performance at the family, genus, and

species levels through the convergence of the loss function during

training, as illustrated in Figure 2.

DecapodAI achieved average top 1 classification accuracies on

the test dataset of 0.717 at the family level, 0.719 at the genus level,
FIGURE 1

Introduction of the fine-tuning CLIP model, including the training and testing module.
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and 0.773 at the species level, as shown in Figure 3. Accuracy

improved from top 1 to top 5: at the family level, it increased from

0.717 to 0.902; at the genus level, it increased from 0.719 to 0.914;

and at the species level, it increased from 0.773 to 0.939. These

variations in accuracy across different taxonomic levels could be

attributed to the diversity of text descriptions and dataset quality. In

comparison, EfficientNetV2 achieved lower top 1 classification

accuracies on the same test dataset: 0.597 at the family level,

0.561 at the genus level, and 0.576 at the species level. These

results are notably lower than those obtained with fine-tuned CLIP.

The accuracy for each family is detailed in Appendix S3, which

demonstrates that the DecapodAI model using CLIP outperforms

the EfficientNetV2 model, particularly on datasets with a small

number of images. As for the invasive species C. maenas in the test

dataset, the accuracy reached 1.00. In demonstration of DecapodAI,

the images from GBIF were used as input. The top 5 inference

results at the species level for each image are shown in Figure 4,

along with the probability. Among them, the image of the well-

known invasive crab, C. maenas, was correctly classified by

DecapodAI. Furthermore, DecapodAI also classified the image of

Percnon gibbesi well (Figure 4). P. gibbesi is a native crab species

from Eastern Pacific and Tropical Atlantic Ocean (Guillén et al.,
Frontiers in Marine Science 04
2016). Because of its ability to adapt to Mediterranean waters,

including its feeding habits, P. gibbesi has spread rapidly and has

been proposed to be included in the list of the 100 “Worst Invasives”

in the Mediterranean (Puccio et al., 2006; Streftaris and

Zenetos, 2006).

In addition, the image of the Asian tiger shrimp Penaeus

monodon, a NIS in the western north Atlantic and Gulf of

Mexico (Fuller et al., 2014), was misidentified as Brachycarpus

biunguiculatus at the top 1 inference level (Figure 4). However,

DecapodAI correctly classified it at the top 2 level (Figure 4). For

another instance, DecapodAI correctly classified the image of Indo-

Pacific hippolytid species Saron marmoratus at the top 2 level

(Figure 4). This species is among the ornamental pet shrimps in

marine aquarium and has been recorded in the Mediterranean Sea

from specimens photographed along the Israeli coastline (Rothman

et al., 2013).
Discussion

The marine NIS are alarmingly impacting and reshaping the

biodiversity in oceans globally. There are numerous documentations
FIGURE 2

The training loss over epochs at three levels.
FIGURE 3

The average accuracy of DecapodAI with CLIP and EfficientNetV2 (EN2) at three taxonomic levels: family, genus, and species.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1496831
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhou et al. 10.3389/fmars.2025.1496831
on invasive Decapoda species, such as the tiger shrimp P.monodon in

almost all the Colombian Caribbean Sea (Aguirre-Pabón et al., 2023)

and the blue crab Callinectes sapidus in the Mediterranean Sea

(Compa et al., 2023). These invasive Decapoda species not only

harm indigenous species but also cause substantial disruptions in

biodiversity, posing threats to fisheries. Recognizing the importance

of early awareness and timely monitoring of NIS for biodiversity

conservation, we have developed DecapodAI, a publicly accessible

and easy-to-use web application that bridges these gaps by providing

automated image classification for Decapoda species on a global scale.

This tool allows users around the world to upload images of the

specimens of interest and conduct automated classification without

any prior knowledge of taxonomy, machine learning, or

programming. For instance, a fisherman or scuba diver could use

DecapodAI for the identification of the unfamiliar Decapoda

specimens found in bycatches or in photographs. The outputs of

classification candidates for the input images offered by DecapodAI

could also give clues for further survey, such as taxonomic

identification by experts or primer design in environmental DNA

(eDNA) analysis based on polymerase chain reaction, which is highly

sensitive in detecting NIS. Moreover, the public can take advantage of

DecapodAI to raise their knowledge of biodiversity and perception

of conservation.

It has to be pointed out that the current version of DecapodAI

was developed based on only 1,541 images of 553 species. On

average, there are less than three images per species. The baseline

version of DecapodAI may not match the accuracy of human

experts in fine-grained classification. The performance could be

improved in the future as WoRMS updates its image database with

more species and images. In addition, staying updated with
Frontiers in Marine Science 05
advances in DL techniques could also enhance the performance

of DecapodAI.

In summary, an image classifier based on fine-tuning CLIP with

image and text information, DecapodAI, was developed for robustly

automated classification of Decapoda species at a global scale. This

easy-to-use web application can effectively provide community

taxonomic references at three different resolutions (family, genus,

and species) for marine decapods of interest. DecapodAI can help

alleviate the burden of manually analyzing imagery data and

enhance the monitoring efforts, including early awareness of NIS.

It is expected to promote public participation and contribute to

marine biodiversity conservation practices and has promising

application prospects in exploring and monitoring the

biodiversity of decapods in global oceans.
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