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Pile culture is a breeding method commonly used for oyster seedlings in the

intertidal zone of southern China. Artificial visual interpretation serves as the

primary monitoring approach for oyster seedling cultivation in marine areas.

Manual visual interpretation is often time-consuming, inefficient, and does not

provide spatially continuous information about the structure. Consequently,

obtaining data on oyster pile columns and oyster seedling culture areas

presents certain limitations. This study focuses on Shajing Town, Qinzhou City,

Guangxi Zhuang Autonomous Region, China, as its research area. It utilizes

multi-spectral image data from unmanned aerial vehicles (UAVs), light detection

and ranging (LiDAR) point cloud technology, and deep learning algorithms to

extract representative oyster pile columns in Maowei Sea within Beibu Gulf. By

employing band features and texture indices extracted from UAV’s multi-spectral

images as data sources and combining them with a classification and prediction

model based on deep learning convolutional neural networks (CNN), we

successfully extract the desired oyster pile columns. The results demonstrate

that: 1) By comparing three machine learning models and integrating the LiDAR

point cloud oyster pile column height model (OPCHM) into the S3 scenario, the

convolutional neural network (CNN) attains an impressive overall classification

accuracy (OA) of 96.54% and a Kappa coefficient of 0.9593, significantly

enhancing and optimizing the CNN’s predictive accuracy for classification

tasks; 2) In comparison with conventional machine learning algorithms, deep

learning exhibits remarkable feature extraction capability.
KEYWORDS

deep learning, Light Detection and Ranging (lidar), multispectral data, oyster pile
columns, unmanned aerial vehicle (UAV), Beibu Gulf
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1 Introduction

As a globally distributed group, oysters are found in tropical,

subtropical, and temperate marine regions. In 2022, oyster

aquaculture dominated the global shellfish aquaculture production

with an overall yield of approximately 600,000 tons (Food and

Agriculture Organization of the United Nations, 2022). Over the

past decade or so, China has witnessed a remarkable increase of

56.1% in its oyster production along with a surge in annual output

value from $1.88 billion to $5.255 billion. Furthermore, China’s

international market share has grown by 32.3%, establishing oysters

as the leading category within Chinese mariculture production

(Zhang et al, 2020). Common methods employed for oyster

cultivation encompass raft culture, rope culture, trellis culture, and

pile post culture techniques. The use of artificial attachment bases

known as oyster pile columns is integral to pile column culture for

collecting young oyster seedlings. The average spacing between these

pile columns measures around 2 meters each and consists of

approximately 20 leaning oyster columns that form a conical

structure collectively. Tidal flats rank among the most dynamic

coastal environments globally (Clark et al, 2024), and the adjacent

mangrove ecosystems enrich these areas with essential nutrients that

benefit oysters. Research conducted by Clara Mackenzie et al

(Mackenzie et al, 2024). reveals that oysters cultivated in the

intertidal zone exhibit enhanced resistance to summer mortality

stress, resulting in prolonged survival and reduced mortality rates

compared to those reared in deep water. Consequently, investigating

the spatial distribution of oyster pile columns in aquaculture and

accurately extracting these columns is of paramount importance for

estimating oyster economic output and enhancing regulatory

efficiency. Investigating the spatial distribution of oyster pile

cultures and accurately extracting data on individual pile columns

holds immense significance for estimating economic yields and

enhancing supervision efficiency.

Traditional monitoring of oyster pile columns relies mainly on

manual visual interpretation (Zhang et al, 2021). With the

advancement of remote sensing technology, remote sensing

imagery has been widely utilized in aquaculture. Compared to

traditional sample plot surveys, remote sensing technology offers

high efficiency, accuracy and non-destructiveness, making it an

important technical tool for monitoring oyster culture. Currently,

remote sensing technology is applied in monitoring marine raft

culture areas (Cao et al, 2016; Liu et al, 2020; Zhang et al, 2022, as

well as intertidal oyster reefs and oyster rack culture areas (Windle

et al, 2019, Windle et al, 2022; Román et al, 2023), Numerous

domestic and foreign scholars have conducted studies on the

inversion of oyster culture areas using different satellite sensors and

remote sensing technology. Cao et al (Cao et al, 2016), for instance,

employed high-resolution optical images from passive remote sensing

WorldView-2 satellite to extract floating rafts used in aquaculture.

Fan et al (Fan et al, 2014). utilized high-resolution SAR satellite

remote sensing data to extract information on floating-rafts, and

combined it with field investigations for mutual verification of the

extracted breeding information. High spatial resolution remote

sensing plays a crucial role in extracting structural parameter

information of floating-raft culture due to its abundant details and
Frontiers in Marine Science 02
superior spatial resolution. Although passive optical remote sensing

image data exhibits certain advantages in capturing horizontal

floating-raft structure information, the extraction of oyster pile

columns within the complex intertidal zone environment can be

influenced by surrounding phenology and weather conditions,

resulting in issues such as “different spectra for the same object”

and “foreign objects appearing similar” (Tan et al, 2023)

The active synthetic aperture radar remote sensing data can be

utilized for inverting the structural parameters of floating-raft

cultured oysters, which are characterized by their ability to operate

under all-day and all-weather conditions. Chu et al (Chu et al, 2008).

employed active remote sensing Synthetic Aperture Radar (SAR)

satellites to monitor floating-raft culture. The Sentinel-1 satellite

served as a high-resolution active SAR satellite, while the Sentinel-2

satellite functioned as a high-resolution passive multi-spectral

imaging satellite. Numerous scholars have demonstrated through

research that fusing data from both Sentinel-1 and Sentinel-2

satellites can significantly enhance the accuracy of estimating

aquaculture floating rafts (Wang et al, 2023). Although the

aforementioned methods enable monitoring of ground object

features over large areas, oyster pile columns pose distinct

challenges compared to floating-rafts and oyster reefs due to their

small size, limited spatial resolution of satellite remote sensing that

hampers accurate extraction, and a similar habitat appearance (i.e.,

oyster pile columns exhibit color resemblance with adjacent

mudflats), which may potentially confound classification techniques.

Although satellite images with high spatial resolution have the

capability to identify and classify intertidal oyster racks (Grizzle

et al, 2018; Regniers et al, 2016), limitations such as fixed acquisition

times, cloud cover, haze effects, and coarse image resolution hinder

their ability to accurately and efficiently monitor oyster pile

columns (Yang et al, 2018). In this context, Unmanned Aerial

Vehicles (UAVs) offer significant advantages, particularly in terms

of high timeliness and flexibility in data acquisition, as well as their

ability to record images with spatial resolution reaching the

centimeter level (Jiang S. et al, 2021). This capability compensates

for the insufficient spatial resolution of satellite remote sensing

(Hong et al, 2008). UAV remote sensing is becoming an important

tool for marine fishery monitoring due to its flexibility, efficiency,

and low cost, enabling the generation of systematic data with high

spatial and temporal resolution (Yang et al, 2018). Low-altitude

remote sensing data obtained by UAVs are also increasingly utilized

for image refinement and classification. For instance, Yang et al

(Yang et al, 2018). used drone images for efficient classification and

quantitative evaluation of oyster racks. Alejandro Roman et al.

conducted a case study in the Bay of Bourgneuf (France), evaluating

potential high-resolution UAV multispectral data using a novel

GIS-based analysis method, successfully exploring the spatial

information structure of oyster culture (Román et al, 2023).

Furthermore, Stephanie M. Dohner et al (Dohner et al, 2020).

combined biological data with aerial UAV-derived positive digital

elevation models to accurately and rapidly map the coastline in a

characterization study of the worm reef (Sabellaria vulgaris) in

Delaware Bay, United States. Notably, optical remote sensing

systems typically capture only two-dimensional information,

excluding highly correlated stratigraphic vertical structures.
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Unlike marine floating-raft culture, oyster pile columns exhibit a

more three-dimensional conical structure. Airborne Lidar enables

the acquisition of detailed and spatially explicit three-dimensional

information (Cao et al, 2019). Lian et al (Lian et al, 2022).

successfully classified tree species by integrating UAV multi-

spectral classification data with laser point cloud data, while

Michael C. Espriella et al (Espriella et al, 2022). monitored

structural changes in oyster reefs using LiDAR-UAV data. The

utilization of LiDAR point cloud technology carried by UAVs

presents a novel solution for precise 3D spatial data acquisition in

monitoring oyster pile columns within the intertidal zone.

In addition to selecting hyperspectral and high spatial resolution

remote sensing data sources, the choice of an appropriate classification

model is crucial. Currently, common methods for ground object

classification using UAV hyperspectral and multispectral images

include traditional supervised and unsupervised classification (Jiang

Y. F. et al, 2021), object-oriented image classification (Sun et al, 2010),

traditional machine learning classification (Huang et al, 2024), and

deep learning classification (Sharan et al, 2021). Hou et al (Hou et al,

2022). utilized the decision tree algorithm to extract and analyze

hyperspectral remote sensing images of marine floating-raft culture.

Chen et al (Chen et al, 2022). employed novel datasets to explore the

recognition and generalization ability of their model in identifying

complex features in marine pasture areas. These findings highlight the

potential of machine learning algorithms in achieving improved

results compared to traditional statistical methods for image

multivariate feature classification based on a machine learning

algorithm (Liu et al, 2016). However, most existing methods are

limited to specific conditions or scenario, resulting in suboptimal

interpretation accuracy due to target feature diversity in high-

resolution remote sensing images as well as interactions between

features in complex scenario like intertidal zones. In recent years,

Convolutional Neural Networks (CNN), a prominent representative

of deep learning methods, have garnered considerable attention.

Compared to traditional machine learning approaches, deep

learning boasts intricate network architectures and superior feature

learning capabilities, demonstrating its proficiency in extracting deep

features from raw images (Xu et al, 2022). Diab et al (Diab et al, 2022).

discovered through their research that deep learning has achieved

remarkable performance in data classification and segmentation using

3D data points, particularly in the form of point clouds, with CNNs

exhibiting the utmost efficacy across various remote sensing

applications. Furthermore, Everton Castelao Tetila et al (Tetila et al,

2020). conducted a comparison of five deep learning frameworks for

image classification against other conventional extraction techniques,

including SIFT, SURF, the Bag-of-Visual Words method, the semi-

supervised OPFSEMImst method, and supervised methods like SVM,

k-NN, and random forest. Following training, deep learning achieved

an impressive accuracy rate of 93.82%, significantly outperforming

other machine learning algorithms. Further exploration is needed

regarding the applicability of deep learning algorithms for monitoring

oyster seedling breeding facilities within intertidal zones.

The Maowei Sea in Qinzhou, Guangxi, stands out as a

significant oyster production region in China. The oysters

cultivated there, scientifically known as “Hong Kong oysters”
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(Crassostrea hongkongensis), are the primary species grown along

the coastal areas of South China, including the provinces of

Guangdong and Guangxi, as well as in Vietnam. These warm-

water, nearshore-dwelling bivalves hold immense economic value

(Li et al, 2020). Hong Kong oysters exhibit a relatively broad salinity

tolerance, with a greater adaptation to low-salinity environments

compared to high-salinity ones (Liu et al, 2024). Research

conducted by Shijun Xiao et al (Xiao et al, 2018). reveals that

Hong Kong oysters typically flourish within a salinity range of 5 to

30 parts per thousand (ppt), with an optimal salinity range of

approximately 10 to 25 ppt. Maowei Sea serves as a semi-enclosed

inland sea that receives inflows primarily from Qinjiang River and

Maoling River, creating a unique water environment where saline

and freshwater converge harmoniously - a perfect habitat for oyster

reproduction and growth—making it a natural breeding ground.

The Maowei Sea is the largest natural oyster seedling picking area in

China, with an annual output of approximately 100 billion

seedlings. However, there is currently a lack of research on the

effectiveness of UAVs in retrieving spatial information regarding

oyster seedling culture distribution. Furthermore, remote sensing

technology has not been utilized for classifying oyster pile column

cultures. To address these gaps, this study focuses on typical pile

columns in the Maowei Sea and employs low altitude remote

sensing technology using UAVs to capture multi-spectral images

and obtain laser point cloud data of the oyster sprout pile column

culture area. By combining band characteristics, texture indices, and

height models of the oyster pile columns with a CNN classification

prediction model, accurate classification of oyster pile columns can

be achieved. This study has four main research objectives:
1. To explore the potential of using UAV ortho-projective

images and laser point clouds for the classification of oyster

pile columns;

2. To analyze the influence of various variables on the

construction of a Convolutional Neural Network (CNN)

classification prediction model for the classification of

oyster pile columns;

3. To investigate the potential of retrieving spatial

information on the distribution of oyster seedling culture

in the intertidal zone, providing a reliable scientific basis for

rational planning of intertidal aquaculture, controlling the

deterioration of the aquaculture environment, and

preventing aquaculture diseases.
2 Materials and methods

2.1 Study area

The research area is situated in Shajing Town, Qinzhou City,

Guangxi Zhuang Autonomous Region, China (Figure 1). Its

geographical coordinates fall within the oyster seedling cultivation

zone of Shajing Oyster (108°34’50’’E-108°35’30’’E, 21°51’10’’N-21°

51’40’’N), which is located in a subtropical region. This region
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exhibits typical characteristics of a subtropical monsoon climate

with an average annual temperature of approximately 22°C (Tian

et al, 2019). It experiences intense solar radiation and features

mangroves flanking both sides of the tidal flat. These natural

geographical factors create favorable conditions for oyster

seedling attachment and growth by providing gentle sea tides,

suitable sea temperature and salinity levels, as well as conducive

soil and sediment properties. The surrounding environment near

the oyster pile pillars is complex, encompassing various ground

objects such as mangroves, mudflats, rocks, water etc., with

increasing difficulty closer to the Bund area. Consequently, we

have chosen to conduct field sample investigations during low tide

periods when there is optimal solar illumination angle.
2.2 UAV data acquisition

In this study, data acquisition was conducted on November 18,

2023 using a DJI M300 RTK drone equipped with an ordinary

camera and an HS400P laser sensor. The hardware system

integrated a LiDAR scanner, Global Navigation Satellite System

(GNSS), and Inertial Measurement Unit (IMU). To mitigate

potential deviations caused by tidal flat surface changes, weather

conditions, and lighting variations during the radiometric

calibration aerial survey, the UAV flew at an average height of 80
Frontiers in Marine Science 04
m between 15:00 to 16:00 when local tide levels were low, weather

was clear, and sunlight incident angle was optimal. Both course

overlap rate and side overlap rate were set at 80%. Simultaneous

acquisition of multi-spectral data from the UAV and LiDAR point

cloud data were achieved. By utilizing Novatel Intertial Explorer

along with IMU and GNSS data to process the original oyster pile

column echo information, three-dimensional LiDAR point cloud

information within the study area could be obtained. Figure 2

illustrates the drone aerial map of the oyster seedling culture area.
2.3 UAV data preprocessing

This study utilizes the Oyster Pile Column Height Model

(OPCHM) to represent the height of oyster pile columns. The

OPCHM data for these columns is derived from laser point cloud

data. Prior to extracting the OPCHM using Lidar360, it is essential

to obtain the Digital Surface Model (DSM) and Digital Elevation

Model (DEM) of the study area. The OPCHM is then computed by

subtracting the DEM from the DSM. Traditional atmospheric

correction techniques are primarily suited for high-altitude

satellite remote sensing data. However, in this study, the DJI

M300 RTK drone operates at an altitude of 80 meters. Given the

thin atmosphere at such low altitudes, the impact on sensor data is

negligible, obviating the need for atmospheric correction. The M300
FIGURE 1

(A) The study area is located in the coastal area of Guangxi, China; (B) Beibu Gulf in Guangxi; (C) The study area is located in Maowei Sea which is
belong to the coastal area of Guangxi; (D) Multi-spectral intertidal imagery of oyster pile columns acquired by UAV.
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RTK is equipped with an RTK positioning system that provides

centimeter-level accuracy (1 cm horizontally and 1.5 cm vertically),

ensuring precise recording of flight trajectories and sensor attitudes.

The data collected by the UAV originally had a resolution of

0.02 m/pixel. To align with hardware performance capabilities, the

data was resampled, resulting in a reduced resolution of 0.04 m/

pixel. This study centered on pixel-level classification of 2D

multispectral image feature maps. Initially, texture features were

computed, and OPCHM data, derived from LiDAR point clouds,

was obtained. Further feature values were generated through

calculations involving spectral bands. For this purpose, we

utilized ENVI, a professional software developed by Harris

Geospatial for spectral image analysis and geospatial remote

sensing. Version 5.3 of ENVI introduced significant updates,

including enhanced support for a wider range of sensors and data

formats, along with a more user-friendly interface. Using ENVI 5.3,

we cropped the research area and labeled three distinct regions of

interest (ROIs): oyster pile columns, tidal flats, and water, as

samples. These samples were then imported into ArcGIS 10.7 for

raster-to-point conversion, yielding a total of 476,031 selected pixels

as sample points. The “Extract Multi Values to Points” tool in

ArcGIS 10.7 was employed to assign various feature variable

parameters to the attribute tables of these sample points, thereby

creating a comprehensive dataset of feature variables that could

reconstruct the characteristics of oyster piles. The dataset was

randomly split into 70% for model training and 30% for testing.

A CNN-based classification prediction model was used to iteratively

optimize network parameters. Ultimately, all 6,842,238 pixels in the

multispectral imagery of the study area were classified, and the
Frontiers in Marine Science 05
model with the highest overall training accuracy was applied to

generate a classification map of oyster seed aquaculture areas.
2.4 Technology roadmap

This study developed a dataset comprising four distinct feature

variable scenarios to classify oyster reef aquaculture areas. By extracting

single-band features, band combination features, texture indices, and

the Oyster Pile Column Height Model (OPCHM) from remote sensing

images, we constructed this comprehensive dataset. We then analyzed

the significance of these feature variables and identified the optimal

scenario based on classification performance. To classify this optimal

feature variable scenario, we employed a CNNmodel and compared its

prediction accuracy and classification performance to three

conventional machine learning models: Decision Tree (DT), Support

Vector Machine (SVM), and Random Forest (RF). This comparison

allowed us to determine the most effective classification model diagram

is illustrated in Figure 3.
2.5 Feature variable extraction

This study investigates the classification prediction accuracy

under different variable scenarios by utilizing various variables for

classification prediction. A classification prediction model for oyster

pile columns is constructed using ENVI 5.3 and ArcGIS 10.7

software platforms, incorporating ten feature variables including

three single band variables, three new combined band variables
FIGURE 2

(A) UAV multispectral data and laser point cloud aerial survey. (B) Damaged portion of oyster pile column. (C) Mean height of oyster pile column
measured on field tidal flats. (D) Measured diameter of oyster pile column and mean spacing distance between oyster pile column.
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obtained through band calculation, three texture features extracted

using the gray level covariance matrix (GLCM) method (Iqbal et al,

2021), and OPCHM data (Table 1), where the OPCHM was

obtained by subtracting the DEM from the DSM of the laser

point cloud. Specifically, scene S1 includes multispectral three

single-band variables as well as the three combined band

variables; scenario S2 and S3 add the three new combined-band

variables respectively to scene S1 along with the texture features and

OPCHM data; while scene S4 incorporates all ten variables as

feature values for classification prediction. By comparing the

classification prediction accuracies of these four-variable scenarios

(S1-S4), optimal parameters for oyster pile column classification

model are determined, along with an evaluation of the effects of

single and fused features on oyster pile column classification. The

results are presented in Table 2.
2.6 Maximum information coefficient

The Maximal Information Coefficient (MIC) was employed in this

study. MIC partitioned the scatter plot of a variable pair (x, y) and

utilized dynamic programming to calculate and search for the

maximum mutual information value achieved under different

segmentation methods. Subsequently, the maximum mutual

information value was standardized to obtain MIC. With a range of

[0, 1], MIC exhibits symmetry, universality, and fairness (Reshef et al,

2011). It discretizes the relationship between two variables in a two-

dimensional space and represents it through a scatter plot. Specifically,

the current two-dimensional space is divided into intervals along both

x and y directions, followed by an examination of how current scatter

points fall within each square to compute joint probability.

MIC calculation equation shows as follows (Li et al, 2019):

MIC½x; y� = max
Xj j Yj j<B

I½X; Y�
log2 (min ( Xj j, Yj j)) (1)
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In the framework of supervised learning, the task of classification is

to predict class labels that consist of unseen observations of a set of

measured attributes or features based on the experience gathered

through the learning process (Brankovic et al, 2017). In this study,

the difficulty of finding joint probability in mutual information is

solved. MIC is suitable for feature variable screening in data sets with

large sample size, and output the importance ranking results of variable

features, which can be used for the importance analysis of the feature

variables of oyster pile columns. Matlab realizes multi-classification

prediction model based on MIC-BPNC maximum trust coefficient

feature selection algorithm combined with BP neural network to

identify the importance of feature variables.
2.7 The selection of classification models

The Convolutional Neural Network (CNN) can be decomposed

into an input layer, convolutional layers, fully connected layers, and

an output layer. The multi-layer network architecture progressively

integrates low-level image features through convolution operations to

form high-level features. It extracts high-level semantic information

from local details, facilitating a multi-layer transmission and gradual

fusion process that connects feature extraction with classification

recognition. Consequently, this enables the accomplishment of image

recognition and classification tasks. The CNN network structure

diagram is illustrated in Figure 4.

Decision Tree (DT): The Decision Tree, a simple yet potent

machine learning model, traces its origins back to 1966 when Earl

Hunt and colleagues (Hunt et al, 1966) first proposed it. The Hunt

algorithm serves as the bedrock for numerous decision tree algorithms,

and in the 1980s, Quinlan introduced the ID3 algorithm. A Decision

Tree recursively partitions the dataset into subsets until a

predetermined stopping condition is satisfied. It is versatile, being

applicable to both classification and regression tasks.

Support Vector Machine (SVM): Proposed by Vapnik et al (Cortes

and Vapnik, 1995). in 1995, the Support Vector Machine (SVM) is
TABLE 1 Construction of feature dataset for classification model of oyster pile column culture areas.

Features Attribute Equation Reference

B1 Red grayscale B1

(Collin et al., 2019)B2 Green grayscale B2

B3 Blue grayscale B3

B4

Difference index

(B1-B2)

(Wang et al., 2010)B5 (B2-B3)

B6 (B3-B1)

Variance

Texture measures generated from the first principal
component of PCA

oN−1
i,j=0iPi,j

(Ou et al, 2023)Dissinilarty oN−1
i,j=0iPi,j(1 − mi)

Mean oN−1
i,j=0iPi,j i i − j i

CHM(OPCHM) Laser point cloud data DSM-DEM (Gaulton and Malthus, 2010)
j: the gray value of the jth column of the ith row of the gray covariance matrix; Pi,j : the probability that the gray value is (i,j); N : the number of rows and columns of the image.
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grounded in statistical learning theory. Its objective is to identify a

hyperplane that maximizes the margin between different classes. SVM

excels inmanagingsmall sample sizes,non-linear, andhigh-dimensional

pattern recognition problems. It also accommodates a certain level of

misclassification to enhance generalization performance.

Random Forest (RF): Random Forest is an ensemble learning

technique that stems from the random decision forests concept

introduced by Tin Kam Ho (Ho, 1995) in 1995. This algorithm

attains the final prediction by constructing multiple decision trees

and averaging or voting on their outputs. Random Forest is extensively

used in classification and regression problems and demonstrates robust

performance in handling high-dimensional data and missing values.
Frontiers in Marine Science 07
2.8 Accuracy assessment

The confusion matrix is a widely utilized tool for assessing the

performance of both traditional machine learning models and deep

learning models, as it effectively illustrates the comparison between

the model’s predicted classifications across various categories and

the corresponding actual labels. To quantitatively assess the model’s

performance, this study employs four metrics: Overall Accuracy

(OA), User’s Accuracy for Evaluation (UA), Producer’s Accuracy

(PA), and Kappa coefficient. The specific calculation equations are

presented in Table 3. These evaluation criteria range from 0 to 1,

with higher values indicating greater consistency in classification.
3 Results

3.1 Spatial distribution of oyster
pile columns

The three-dimensional structure and spatial distribution of

oyster pile columns can be observed through the LiDAR point

cloud data obtained by UAV (Figure 5). Figure 5A1 represents the
FIGURE 3

Flowchart of classification technology for oyster pile column farming areas based on unmanned aerial vehicle laser point cloud and deep
learning algorithm.
TABLE 2 Scenarios with different variables.

Scenarios Variable selection

S1
Single band variable(B1, B2, B3)

Band combination variable(B4, B5, B6)

S2 S1+ OPCHM

S3 S1+ Texture features

S4 S1+ Texture features+OPCHM
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orthorectified image collected by UAV. In the red area, the shore

side is designated as a mangrove protection area, while in the

middle part of this region, a natural tidal trench forms during low

tide. The study area exhibits higher terrain on both sides with lower

elevation in its central portion. For this research, a section with

relatively dense oyster pile columns was selected as the focal area

(Figure 5A2). Subsequently, specific portions of LiDAR point cloud

data were analyzed (Figure 5B), revealing profiles under RGB

(Figure 5C1) and elevation (Figure 5C2) display for this particular

region. It is evident that oyster pile columns are predominantly

distributed between tidal gullies and mangroves; partial profiles of

oyster pile column point cloud data are depicted in Figure 5D and

Figure 5E respectively. Notably, these profiles demonstrate that the

maximum height of an oyster pile column reaches 1.2m; however, at

lower-middle elevations within this area exists a tidal trench formed

by receding water during ebb tide conditions where some oyster

piles near it remain partially submerged over extended periods

potentially leading to their collapse due to high flow velocities.

The LiDAR point cloud data acquired by the UAV (Figure 5)

enables the observation of the three-dimensional structure and

spatial distribution of oyster pile columns. Figure 5A1 presents an

orthophoto image collected by the UAV, where the red area along

the shore represents a mangrove reserve. In this area, a natural tidal

trench forms during low tide, while the topography exhibits two
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high sides and a low middle section. For this study, a portion with

relatively dense oyster piles was selected as the study area

(Figure 5A2). Analyzing part of the LiDAR point cloud data in

Figure 5B reveals that most oyster pile columns are distributed

between the tidal ditch and mangrove forests. Additionally,

Figure 5D, E display profiles of local oyster pile column point

cloud data and individual oyster pile column points respectively,

indicating that their maximum elevation reaches 1.2 m. However, it

should be noted that within this region there exists a lower elevation

tidal channel formed during ebb tide periods which causes some

oyster pile columns to remain partially submerged for extended

durations under high current speeds; consequently, increasing their

susceptibility to collapse.
3.2 Analysis of the importance of variables

In this study, all 10 variables were incorporated into the MIC-

BPNC model to assess the importance of classification features in

oyster pile columns. The results are depicted in Figure 6. Regarding

the inversion model for classifying oyster pile columns, the

contribution ranking reveals that texture features such as

Variance and Dissimilarity hold primary significance, followed by

single band B2 and band combination variable B4. Additionally,

variable OPCHM is ranked fifth. Considering the findings

presented in Table 2 these outcomes suggest that incorporating

texture features alongside band feature variables and OPCHM

significantly influences the classification process.
3.3 Evaluation of classification accuracy
based on multi-feature variable scenarios

According to the results obtained from the CNN algorithm,

Figure 7 presents the accuracy verification results of the confusion

matrix model evaluated by test samples after comparing four

variable scenarios (Table 2). The overall accuracy (OA) and

Kappa Coefficient (KC) values are shown in Figure 8. Among the

four feature variable scenarios investigated in this study, multi-
TABLE 3 Confusion matrix of overall accuracy, user accuracy, producer
accuracy and kappa coefficient of the classification model for oyster pile
column culture areas.

Confusion matrix Equation

OA (Overall Accuracy) OA =o
n

i=1

xii
N

UA (User Accuracy) UA =
xii
xi+

PA (Producer Accuracy) PA =
xii
x+i

Kappa Kappa =
Non

i=1xii −on
i=1(xi+x+i)

N2 −on
i=1(xi+x+i)
Xii : the number of samples in row i and column i. Xi+: the sum of category i in the
classification result. X+i : the sum of true sample data in category i. n: the number of categories.
N : the total number of samples.
FIGURE 4

Diagram of CNN network structure.
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feature fusion variable scenario S4 exhibited the highest overall

accuracy (OA=96.54%, KC=95.93%), surpassing S1’s OA and KC

by 6.24% and 7.44% respectively. In Figure 8, scene S2

demonstrated similar OA and KC values with a negligible
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difference of only 0.09 between them. Consequently, it can be

concluded that there is a positive correlation between overall

accuracy and Kappa coefficient for all feature scenario examined,

with their ranking being as follows: S4 > S3 > S2 > S1.
FIGURE 6

Importance ranking of all feature variables in the MIC model.
FIGURE 5

(A1) UAV-acquired orthophoto. (A2) Cropped orthophoto of the study area. (B) UAV-acquired LiDAR point cloud data. (C1) Laser point cloud RGB
profile. (C2) Laser point cloud elevation profile. (D) Localized oyster pile column point cloud data features. (E) Individual oyster pile column point
cloud profile image.
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The user accuracy and producer accuracy of the classification

results were determined using the confusion matrix (Table 4). In

Figure 7A, although the model trained solely on single band and

band combination variables achieved an overall accuracy of 90.3%

as characteristic values, Table 4 reveals that the user accuracy for the

oyster pile column was only 76%. By incorporating three texture

features based on S1, however, S2 exhibited an improved overall

accuracy of 94.34%, with a corresponding producer accuracy and

user accuracy of 95.5% and 90.5% respectively for the oyster pile

column (Figure 7C). Furthermore, when OPCHM features were

added to single band and single band combination variable features

in Figure 7C, the overall accuracy also reached 95.28%,

accompanied by a producer accuracy and user accuracy of 91.6%

and 89.9% respectively for the oyster pile column.

In this study, all ten feature values were incorporated into the

model as depicted in Figure 7D. In the S4 scene, OPCHM features

were added based on S3, resulting in improved accuracy of

extracting three distinct ground object features due to the

inclusion of elevation data at various points. The classification

accuracy and Kappa coefficient for oyster pile column reached
FIGURE 7

Confusion matrices of different scenario (A) S1 variable scenario;(B) S2 variable scenario;(C) S3 variable scenario; (D) S4 variable scenario.
FIGURE 8

Overall accuracy and Kappa coefficients of models for scenario S1-S4.
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their highest levels at 96.54% and 95.93 respectively, while producer

accuracy and user accuracy both achieved 96.7% and 94%, as

presented in Table 4, further validating our conclusions.
3.4 Visualization classification results of
scenario with diverse characteristics

Based on the classification results of the multi-spectral

orthophoto image acquired from UAV (Figure 9), we visualized

the classification outcomes for four different scenes (Figure 10).

Upon examining the locally enlarged map of classification results

(Figure 11), it is evident that while oyster pile columns were

accurately classified in scene S1, a portion of tidal flat was
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misclassified as oyster pile columns and tidal flats due to complex

geomorphologic features present in the intertidal zone, such as

numerous sunken gullies and similar multispectral colors shared by

oyster pile columns and tidal flats. In scene S2, OPCHM features

were incorporated based on S1 scene, effectively mitigating

misclassification issues. Furthermore, considering the verification

results of CNN model presented in Table 4, overall accuracy

improved by 4.04%. To enhance the model’s ability to classify

image details, three texture features were added in S3 scene building

upon S1 scene. As depicted in Figure 11, the S3 scene exhibits

superior classification efficacy in distinguishing between water and

tidal flats, effectively demarcating their boundary. In conjunction

with the confusion matrix presented in Figure 7, the incorporation

of three texture features based on scene S1 significantly enhances

the accuracy of oyster column classification. However, there

remains an issue where shadows cast by oyster pile columns are

misclassified as tidal areas. To address this concern, we introduce

OPCHM features to the S4 scenario. Comparative analysis among

all four scenario reveals that the S4 scene adeptly captures three

distinct classification characteristics while enabling clearer and

more intuitive observation of oyster pile column distribution.

Moreover, it yields an overall accuracy of 96.54% (as shown in

Table 4). The inclusion of OPCHM derived from LiDAR data

effectively resolves classification confusion arising from different

features. Although OPCHM aids in retrieving spatial information

regarding oyster seedling culture distribution within intertidal

zones, complete classification of oyster pile columns is yet to be

achieved. Consequently, further investigation into the potential

application of UAV multi-spectral data combined with deep

learning algorithms for extracting oyster pile columns will

be pursued.
3.5 Accuracy evaluation of different
classification models

The overall accuracy, Kappa coefficient, user accuracy, and

producer accuracy of the classification results were computed

using the confusion matrices generated for different models (see

Table 4). A comparative analysis was conducted between the

convolutional neural network (CNN) and three machine learning

algorithms. The findings revealed that the CNN outperformed the

other models in terms of overall accuracy, followed by RF, SVM,
FIGURE 9

UAV multispectral images of the oyster pile column culture area.
TABLE 4 The verification results of the classification accuracy of the CNN model for the S1-S4 variable scenarios.

S1 S2 S3 S4

PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%)

Oyster Pile Column 88.1 76 95.5 90.5 91.6 89.9 96.7 94

Water 97 95.8 97 97 98 96.9 98.5 97.1

Tidal flat 86.8 93.4 94 98.4 93.1 94.7 95.1 97.4

OA (%) 90.3 94.34 95.28 96.54

KC (%) 88.49 94.43 91.27 95.93
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and DT in descending order. Specifically, the CNN deep learning

model exhibited the highest classification accuracy for the three

features: oyster pile columns, water, and tidal flats, highlighting its

superior classification capabilities. Notably, the classification

accuracy for water was the highest, with producer accuracy and

user accuracy reaching 98.5% and 97.1%, respectively.
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3.6 Visualization classification results of
different models

Based on the model results, along with the visual representation

in Figure 10, it is evident that the inclusion of the OPCHM feature

yields inversion results that surpass the CNN classification
FIGURE 10

The three-classification result graphs of scenarios S1-S4.
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outcomes for scenarios S1-S3. When considering the S4 feature

scenario, the CNN deep learning model exhibits superior

classification inversion capabilities for the three types of ground

objects compared to the other models. Figure 12 illustrates that the

classification inversion results of the three machine learning

algorithms are all impacted to varying degrees by “salt and

pepper noise,” with the decision tree algorithm being the most

significantly affected. Despite successfully classifying the three types

of ground objects, the machine learning algorithms struggle with

poor classification performance at the boundaries between these

objects, often misclassifying the shadow areas around the pile

columns as part of the main column body. This issue is
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exacerbated in dense aquaculture pile column areas where

shadows are more concentrated, leading to suboptimal

classification results. When compared to the machine learning

algorithms, the CNN deep learning algorithm, as illustrated in

Table 5 and Figure 13, not only boasts high classification

accuracy but also excels in preserving the texture and spatial

distribution of the pile columns. Furthermore, it effectively

mitigates the impact of “salt and pepper noise.” In particular,

when it comes to processing and classifying edge areas where the

colors of different ground object categories are similar and prone to

confusion, the CNN algorithm outperforms the three machine

learning models.
FIGURE 11

Localized zoomed-in view of classification results, zoomed-in area 1 and zoomed-in area 2.
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4 Discussion

4.1 Selection of oyster pile column
classification algorithm

In recent years, a growing number of machine learning

algorithms have been employed in the classification of fishery

aquaculture facilities, yielding promising results. This study

leveraged multi-spectral data captured by unmanned aerial
Frontiers in Marine Science 14
vehicles (UAVs) and evaluated four algorithm models: the CNN

deep learning model and three traditional machine learning models.

These models were applied to classify ground objects in a typical

pile column aquaculture area of Maowei Sea. Upon comparing the

outcomes of the four models, it was evident that the CNN deep

learning model excelled in ground object classification inversion,

achieving an overall accuracy of 96.54% and a Kappa coefficient of

95.93%. This performance surpassed that of Guillaume Brunierd

et al.’s (Brunier et al, 2022) study, which utilized UAVs combined
FIGURE 12

The three-classification result graphs of different models.
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with the RF machine learning algorithm for intertidal flat ground

object classification (overall accuracy 93.12%; Kappa 91.6%). It also

outperformed the raft classification model established by Tingting

Hou et al (Hou et al, 2022). in Fengwei Town, Fujian Province,

using decision trees (overall accuracy 95.5%; Kappa 90%), as well as

the SVM model employed during the research process (overall

accuracy 90.81%; Kappa 0.83%). Although the decision tree

algorithm demonstrated superior accuracy and classification

results compared to the SVM in the extraction of raft aquaculture

facilities after water-land classification and subsequent binary

classification of water and aquaculture facilities, Table 5 reveals
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that in the context of three-class ground object classification within

the complex intertidal zone background, the decision tree

algorithm’s accuracy lagged behind that of the SVM and the

other two algorithms. The superior performance of the CNN over

the other three machine learning algorithms affirms that deep

learning models offer higher accuracy and better classification

effectiveness than traditional machine learning models in this

classification task.

However, the classification prediction accuracy of the deep

learning model employed in this study is marginally lower than

the peak model classification accuracy reported by Alejandro
TABLE 5 Validation results for classification performance of various model.

CNN RF SVM DT

PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%)

Oyster Pile Column 96.7 94 90.8 89.7 96.1 85.4 84.5 84.5

Water 98.5 97.1 95.7 93.8 92.1 93.6 87.1 91.5

Tidal flat 95.1 97.4 91.7 93.5 89.8 93.7 91.3 87.9

OA (%) 96.54 92.76 91.81 88.34

KC (%) 95.93 92.24 91.46 89.02
FIGURE 13

Confusion matrices of different models: (A) CNN classification prediction model; (B) RF classification prediction model; (C) SVM classification
prediction model; (D) DT classification prediction model.
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Roman et al (Román et al, 2023), which utilized decision trees

(overall accuracy = 97.99%; Kappa = 95%). This discrepancy can be

primarily attributed to the resolution of the UAV imagery and the

complexity of the ground object features. Roman et al.’s research

meticulously investigated the impact of varying flight heights on the

accuracy of ground object extraction. At a flight height of 12 meters,

the reflected orthophoto boasted a resolution of 0.0083 m/pix,

yielding the highest extraction accuracy. In contrast, this study

opted for a flight height of 80 meters, resulting in an orthophoto

resolution of 0.02 meters/pixel, which was subsequently resampled

to 0.04 m/pix for the research. Although this approach is adequate

for covering a large area, it falls short of the high-resolution images

obtained from Alejandro Roman’s (Román et al, 2023) low-altitude

flights in terms of model classification accuracy. Furthermore,

Roman’s research utilized the MicaSense RedEdge-MX multi-

spectral dual sensor, capable of capturing up to ten spectral bands

of light information, providing a richer spectral feature set

compared to the three-band data source used in our study. This

spectral diversity is pivotal for enhancing classification accuracy. In

future large-scale ground object classification studies, considering

the adoption of a hyperspectral sensor as an additional dataset for

the model could potentially improve training accuracy. Regarding

point cloud data, Roman et al. successfully generated three-

dimensional point clouds of oyster tables using SFM (Structure

from Motion) technology, a technique commonly employed for

intertidal zone ground object classification (Windle et al, 2022;

Bertin et al, 2022; Hitzegrad et al, 2022). However, the more

intricate three-dimensional structure of oyster pile columns

presents higher complexity and challenges in three-dimensional

modeling and ground object classification. To capture the detailed

geometric features of oyster pile columns more accurately and

streamline the data processing procedure, this study employed a

drone equipped with a LiDAR (Light Detection and Ranging)

sensor to directly obtain high-resolution three-dimensional

structural information. Compared to the SfM technique, LiDAR

provides more precise point cloud data, particularly suitable for the

three-dimensional reconstruction of complex terrains and dense

objects, thereby offering a more reliable foundation for subsequent

object classification and analysis. Notably, the overall accuracy of

the CNN deep learning classification model in this study reached

96.54% in the S4 scenario (Table 4), significantly surpassing the

92.37% achieved by the optimized hyperparameter CNN model

constructed by S. Pan et al (Pan et al, 2020).

This study further confirms that deep learning exhibits superior

feature learning capabilities and achieves better classification

outcomes when compared to conventional machine learning

algorithms. Justin T. Ridge et al (Ridge et al, 2020). successfully

developed and trained a convolutional neural network (CNN) to

rapidly and accurately classify and quantify intertidal oyster reef

areas using high-resolution UAS images. Nevertheless, it should be

noted that the volume of the artificially constructed oyster pile

columns in this study is significantly smaller than that of most

natural oyster reefs, necessitating the incorporation of additional

training data and more valuable feature parameters during the

model training process. The CNN outperformed the random forest,

SVMmodel, and decision tree algorithm by 3.78%, 4.73%, and 8.2%
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respectively, in terms of overall accuracy within the same feature

scenario. As illustrated in Figure 12, which compares the

classification results of the CNN with those of the three

traditional machine learning algorithms, the CNN classification

prediction model demonstrates higher accuracy and more

pronounced classification performance in the identification of

oyster pile columns. This finding opens up new avenues for

utilizing model algorithms to analyze the spatial distribution and

structure of oyster pile columns.
4.2 Selection of model feature parameters

In this study, four different input variable scenarios were

established to evaluate the classification accuracy of the S1-S4

scenario model individually (Figure 7). It was observed that when

only three single-band variables and single-band combination

variables were used as input, the model’s performance in the S1

scenario was suboptimal (the user accuracy for oyster pile column

samples was merely 76%, while the producer accuracy reached

88.1%). However, in scenario S4, significant improvements in

classification prediction were achieved by incorporating texture

index and liDAR OPCHM variables separately, resulting in an

increase of 18% and 8.6% respectively for both user accuracy and

producer accuracy in oyster pile column classification. This may be

attributed to the confusion in classification techniques arising from

the similarity between original single band and band combination

variables with ground features in this study, as well as the low

correlation coefficient. Michael C. Espriella et al (Espriella et al,

2020). employed ten distinct segmentation features for classifying

mudflat, marsh, and coral reef habitats; however, their classification

was limited to a broad habitat area and did not encompass specific

ground object features. Instead, texture features were utilized which

can better capture the texture, shape, spatial structure, and other

characteristics of surface ground objects. The variable OPCHM

directly reflects the height of oyster pile columns compared to

other indirect parameters; these two variable pieces of information

significantly contribute to enhancing model accuracy. Ou et al (Ou

et al, 2023). and Cao et al (Cao et al, 2021)employed UAV

hyperspectral data in conjunction with LiDAR point cloud height

data to accurately classify mangrove species, thereby validating the

high accuracy of extracting LiDAR OPCHM information for

classification purposes. Furthermore, the analysis of all

characteristic variables’ importance in the MIC model further

supports this assertion. In comparison to Michael C. Espriella

et al.’s study, our research not only successfully classified individual

oyster pile columns within the study area but also achieved an overall

classification accuracy of 96.54%, surpassing Michael C. Espriella

et al.’s (Espriella et al, 2020) overall accuracy rate of 79%.

In this study, the MIC model was utilized to rank the

significance of all feature variables, and the ranking results are

illustrated in Figure 6. It can be observed from Figure 6 that image

texture features have a positive impact on enhancing the accuracy of

the model. Texture information reveals the horizontal structure of

the image, reflects spatial variation and gray spatial correlation,

thereby improving the accuracy of predicting oyster pile column
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classification models. Apart from texture features, both B4 band and

B1 band exhibit a strong correlation with model classification and

prediction. Due to the intricate geomorphic environment and the

similar features present in intertidal zones, numerous scholars

frequently opt for hyperspectral images, which offer more

extensive band information, in comparable scenarios. For

example, Wendy Diruitd et al (Diruit et al, 2022). employed

hyperspectral unmanned aerial vehicle (UAV) images to classify

and identify various types of large algae in intertidal zones using

maximum likelihood classification (MLC) and spectral angle

mapping (SAM), attaining an overall accuracy of 95.1%. Despite

the fact that the multispectral images utilized in this study do not

possess the same wealth of spectral information as hyperspectral

images, a superior classification accuracy was achieved by

integrating deep learning algorithms with a multitude of feature

variables, including OPCHM. Subhash Chand et al., through multi-

spectral low altitude remote sensing of wild oyster reefs,

demonstrated that visible light bands play a crucial role in

detecting such reefs in intertidal zones by achieving an 85%

classification accuracy using SVM (Chand and Bollard, 2021).

Based on Figure 7 and Table 4, we employ image visible band

variables as well as band combination variables as feature values for

CNN classification prediction models resulting in an overall

accuracy rate of 90.3%. In the task of classifying features within

intertidal zones, the incorporation of three-dimensional

information plays a crucial role in enhancing classification

accuracy. Andree De Cockd et al (De Cock et al, 2023). gathered

multispectral unmanned aerial vehicle (UAV) images and utilized

the automated photogrammetry software Agisoft Metashape to

generate 3D point clouds. Subsequently, they employed the

Spectral Angle Mapping (SAM) method in QGIS to classify the

intertidal zone features, achieving an overall accuracy of 77%.

Nevertheless, LiDAR technology offers a distinct advantage as it

can directly generate 3D point clouds without the need for image

overlap and feature point matching, which are necessary in

photogrammetry. Furthermore, point cloud data obtained

through LiDAR is typically denser and capable of capturing more

intricate details. LiDAR has been effectively employed for mapping

oyster reef habitats in intertidal zones (Hogan and Reidenbach,

2019); Lyukasz Janowski et al (Janowski et al, 2022), also proved its

capability to distinguish various landforms; although OPCHM

variable features hold slightly less importance compared to

certain texture variables and visible light band variables; however,

this study demonstrates that incorporating OPCHM can

significantly enhance the ability of models to differentiate

complex surrounding structures while improving their

classification prediction accuracy.

The incorporation of texture feature variables enhances the

overall spatial distribution of oyster pile columns in the model.

While the use of LiDAR point cloud data for extracting forest

structure parameters (Sheng et al, 2024; Zhang et al, 2023; Lu et al,

2019) and pavement building structures (Biçici, 2023; Dey et al,

2021; Wang et al, 2023) has been a research hotspot, there is a lack

of studies related to culture. In this study, by adding texture features

and laser point cloud OPCHM features, we were able to

significantly improve classification accuracy and effectiveness
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between oyster pile column water and tidal flat in the inversion

result map. Despite an image resolution of 0.4m/pix, a vast area

totaling 6,842,238 pixels with huge amounts of data volume was

used; however, our CNN classification and prediction model

remained stable while providing good feature representation and

classification decision-making abilities that yielded high-precision

results. This approach shows great potential for broad application

prospects in classifying and predicting oyster pile columns.
4.3 The uncertainty of model evaluation
results and future research directions

Mapping the distribution of intertidal oysters is of paramount

importance for the scientific management and sustainable

development of coastal regions. The extensive cultivation of

oyster seed in intertidal oyster pile columns has fueled economic

growth; however, there is compelling evidence indicating that

such aquaculture practices may pose potential negative impacts

on coastal ecosystems, particularly with regard to habitat

modification and water quality. To fully comprehend these

impacts, especially in habitats with optimal salinity conditions

conducive to oyster growth, it is imperative to conduct further

research grounded in the monitoring and management of large-

scale marine aquaculture facilities. In this study, we propose a deep

learning model that combines UAV and laser point cloud

technology to classify and extract columns of oyster piles. During

the model training stage, ENVI was utilized to label a large dataset,

and a CNN classification prediction model was employed for data

classification and inversion with an overall accuracy of 96.54%.

Figure 7C incorporates OPCHM variable features based on the S3

scenario, significantly improving accuracy while minimizing

misclassification in training models as eigenvalues. Moreover, this

method enables us to understand how oyster aquaculture interacts

with surrounding ecosystems, providing regulators with actionable

information for intelligent regulation of aquaculture practices. The

high spatial resolution dataset could serve as an important source

for restoring and enhancing the overall health of oyster aquaculture

habitats and understanding spatial dynamics within intertidal

marine environments. In future studies, we aim to enhance the

classification accuracy of oyster pile columns by addressing the

following aspects. Firstly, we will refine the existing classification

prediction model by appropriately augmenting the number and

scale of convolutional layers, optimizing model parameters, and

other related techniques to elevate its accuracy. Secondly, we will

investigate the optimal altitude at which drones can effectively

extract information from oyster pile pillars. Thirdly, due to

current data limitations, our research area was confined to a

small region in Maowei Sea that encompasses oyster pile column

breeding areas. Subsequently, our objective is to expand our

investigation into additional regions and develop a more precise

and practical monitoring framework. Lastly, building on this

foundation, we will undertake further research to ascertain the

quantity of oyster reef columns and the extent of intertidal

aquaculture coverage. Additionally, we will estimate the oyster

biomass and assess the oyster carbon sink capacity.
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5 Conclusion

The research area is situated in the oyster seedling culture region of

Shajing oyster in Maowei Sea, Beibu Gulf, Guangxi, China. Utilizing

multi-spectral positive imagery and LiDAR point cloud data acquired

through low altitude remote sensing using unmanned aerial vehicles

(UAVs), a CNN pile column classification prediction model was

established by employing various feature scenario as training

parameters. Furthermore, the classification results of typical oyster

pile columns in Maowei Sea of Beibu Gulf were analyzed before and

after incorporating LiDAR OPCHM data into the CNN classification

prediction model to explore the optimal method for extracting oyster

pile columns. The key findings are summarized as follows:

The multi-feature combination exhibits a significantly high

classification accuracy, thereby harnessing the diverse characteristics

of pile columns to enhance the classification accuracy of oyster pile

columns. In this study, an overall classification accuracy of 96.54% was

achieved, accompanied by a Kappa coefficient of 95.93%. Furthermore,

users and producers attained respective accuracies of 94% and 96.7% in

classifying oyster pile columns.

The inclusion of LiDAR OPCHM data in the CNN deep

learning algorithm, both with single band variables and band

combination variables, resulted in a 14.7% improvement in user

accuracy for oyster pile column classification. This finding

demonstrates the significant positive impact of LiDAR OPCHM

data on the classification performance of oyster pile columns, while

also reducing the possibility of misclassifying intertidal features

with similar spectral characteristics

The texture index of the oyster pile column ranks first in

importance within the MIC-BPNC model, followed by the

combination variable associated with the red band and

subsequently, the red band itself. Additionally, the laser point

cloud height variable holds significance. By considering changes

observed before and after incorporating the laser point cloud height

variable, we validate both texture features and laser point cloud

variables as influential factors for classification inversion results.

By comparing themodel accuracy evaluation and classification effect

of three commonly used machine learning algorithms in the S4 scenario

with the addition of OPCHM features, CNN has better classification

prediction performance than RF, SVM, and DT. The ranking of model

performance from high to low is CNN > RF > SVM > DT.
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