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The Piver’s Island Coastal
Observatory – a decade of
weekly+ observations reveal the
press and pulse of a changing
temperate coastal marine system
Zackary I. Johnson1,2*, Dana E. Hunt1,2*

and the PICO Consortium
1Marine Science and Conservation, Duke University Marine Lab, Beaufort, NC, United States, 2Biology
Department, Duke University, Durham, NC, United States
Historically, oceanographic time-series have focused on long-term

measurements of large open ocean gyres; yet, the coastal oceans, with their

high productivity, tidal impacts, human feedbacks, and land-sea coupling,

represent critical regions for predicting ocean dynamics and biogeochemistry

under global change. The Piver’s Island Coastal Observatory (PICO) time-series,

located in the second largest estuarine system on the US East Coast (Albemarle-

Pamlico Sound), comprises more than a decade of weekly (or more frequent)

measurements of core physical, chemical, and biological oceanographic

variables. PICO provides insight into a coastal, mesotrophic ecosystem in an

ecologically-diverse and biochemically-active region impacted by global

change. Here, we report on a decade of observations focusing on pulse and

press ecosystem changes. We observe strong mean annual cycles in

environmental variables including temperature (10.1-28.9°C), pH (7.89-8.12),

dissolved inorganic carbon (DIC: 1965 – 2088 µM), chlorophyll (2.54-5.77 mg

Chl m-3), upon which are layered episodic disturbances (e.g., tropical cyclones)

that dramatically and persistently (>1 month) impact this ecosystem. Among

other variables, long term trends in pH (-0.004 ± 0.001 y-1; p<0.01), DIC (-9.8 ±

1.5 µM y -1; p<0.01) and chlorophyll (-0.17 ± 0.02 µg L-1 y-1; p<0.01) are

exceeding those observed in the open ocean, suggesting an ecosystem in flux.

These analyses provide a benchmark for future studies of the impact of changing

climate and oceanographic climatology; further research will use this long-term

research to developed targeted sampling and experimental manipulations to

better understand ecosystem structure and function.
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Introduction

Despite the coasta l ocean ’s importance to global

biogeochemistry and ecology; impact on fisheries, recreation,

commerce and other human uses; and role as home for ~40% of

the human population, coastal marine ecosystems are highly under-

sampled, limiting our understanding of their temporal dynamics

and sensitivity to environmental change. While proximity to land

facilitates measurements, many nearshore environments exhibit

high spatial and temporal variability, necessitating dense sampling

(Hofmann et al., 2011; Zhao et al., 2022). Time-series, or repeated

observations at the same location, allow us to characterize annual

cycles in ecological and biogeochemical processes (Powell and

Steele, 1995), and when sustained, capture interannual variability,

pulse disturbances, as well as longer-term trends such as the

impacts of changing climate (Keller et al., 2014).

However, most long-term marine time series are located in the

open-ocean. For example, the continuous plankton recorder (1931)

has tracked plankton abundance and diversity in the North Atlantic

and shown, among other patterns, large scale shifts in species

assemblages https://www.cprsurvey.org/. While hydrostation S

(1954), now the Bermuda Atlantic Time-series Study (BATS:

from 1988), has demonstrated strong annual patterns in

hydrography, nutrients, particle flux, pigments and primary

production, bacterioplankton abundance and production of the

ecosystem (Steinberg et al., 2001) as well as the importance of

episodic events like tropical cyclones (Bates et al., 1998). These

sustained, high-precision measurements have captured the impacts

of global change, including ocean acidification (Dore et al., 2003;

Bates and Johnson, 2023). However, compared to their open-ocean

counterparts, coastal time series are generally of more recent origin,

but can be sampled more frequently; e.g., the San Pedro Ocean

Time-series (Caron et al., 2017), Martha’s Vineyard Coastal

Observatory (Hunter-Cevera et al., 2016) and Australia’s

Integrated Marine Observing System (Brown et al., 2018).

Further, in the last decade, advances in in situ instrumentation

coupled with remote sensing enable monitoring of specific variables

at high temporal resolution (Muller-Karger et al., 2018; Tilbrook

et al., 2019). High-resolution measurements combined with open-

ocean and near-coast time-series provide critical ongoing and

historical benchmark data for global ocean assessment; however,

there are critical gaps in our knowledge about the variability and

pace of sustained change within and between coastal sites.

The Albemarle-Pamlico Estuarine (APE) System is the largest

lagoonal estuary in the US and the second largest estuary on the US

East Coast. The circulation of this shallow water system (~5 mmean

depth) is driven by tidal and wind driven currents. The system is

comprised of six river basins with a large, combined watershed

(81,528 km2), and variability in the rate and composition of

freshwater inputs (Harned and Davenport, 1990). Through

temperature and light, seasonality plays an important role in

environmental variability (Paerl et al., 2009), but episodic events

(e.g., tropical cyclones) profoundly alter the system with impacts

that can last over a year (Paerl et al., 2001). Allochthonous

(watershed) and autochthonous (internal) processes are both
Frontiers in Marine Science 02
important to the larger APE system (Hounshell et al., 2022); but

near its outflows, open ocean waters also influence estuarine

dynamics and environmental conditions. Adding further

variability to this coastal region, the convergence of the warm

South Atlantic Bight shelf and Gulf Stream waters with cooler

Mid-Atlantic Bight shelf waters and additional oceanographic

complexity (Seim et al., 2022; Gray et al., 2024) creates highly-

localized biogeochemical (Selden et al., 2021) and diversity hotspots

(Gronniger et al., 2023).

The Piver’s Island Coastal Observatory (PICO) is located at the

southern end of the Pamlico Sound (North Carolina, USA) at the

Beaufort Inlet and includes a broad suite of physical, chemical, and

biological measurements, like open ocean time-series campaigns

(e.g., HOT, BATS), to characterize microbially-mediated

biogeochemistry. Because of its hydrographic complexity and

temperate climate, PICO has a much wider parameter space than

most coastal or open ocean time-series; however, this estuary lacks a

major riverine freshwater source, and thus terrestrial influence is

mediated by local runoff from tidal creeks and stormwater systems

as well as influxes of groundwater, which cannot be easily

quantified. Further, like the broader region, substantial impacts

from reoccurring episodic disturbances such as tropical cyclones

and other storms provide unique natural ‘experiments’ to explore

the mechanisms structuring PICO’s chemistry and biology

(Fenwick et al., 2024). Here, limited in situ instrumentation (e.g.,

temperature) coupled with a more extensive, weekly, discrete

sampling generate an extensive dataset that helps to constrain the

mechanisms of variability. In this study, we use the first decade of

measurements to define the pulse and press of core biogeochemical

state variables in this high- variability, temperate coastal

marine system.
Methods

Sample collection and processing

All samples were taken as part of the Piver’s Island Coastal

Observatory (PICO) time-series, Beaufort, NC, USA at 34.7181°N

76.6707°W at a location with a mean low tide water column depth

of ~4.5 m, and a mean tidal range of 0.95 m. Water was sampled

weekly at 10:30 ± 30 min local time using a 5 L niskin bottle

centered at 1 m with a bottle length of 0.7 m. The methodology for

many variables is described by (Johnson et al., 2013) or (Ward et al.,

2017). Briefly, DIC was measured in triplicate on mercuric chloride

poisoned samples by acidification and subsequent quantification of

released CO2 using a CO2 detector (Li-Cor 7000) (Dickson et al.,

2007). pH was measured in triplicate spectrophotometrically with

m-cresol purple (Clayton and Byrne, 1993) at standard temperature

(25°C) and reported on the log total hydrogen ion scale (pHT,25°C).

Both DIC and pH samples were collected following recommended

procedures (Dickson et al., 2007) and measurements were

calibrated against Certified Reference Materials purchased from

Dr. A. G. Dickson of the Scripps Institution of Oceanography,

University of California, San Diego. Nutrients (NO2, NO3, PO4,
frontiersin.org
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SiOH4) were measured in duplicate on 0.22 µm filtered samples

stored at -80°C until later analysis using an Astoria-Pacific A2

autoanalyzer following the manufacturer’s recommended protocols

or processed by Scripps Institute of Oceanography STS/ODF

chemistry laboratory. Salinity was measured using a calibrated

handheld conductivity, temperature, and depth instrument (YSI

Castaway), on discrete samples using a refractometer calibrated

against standards or using a Portasal 8410A salinometer. Turbidity

was measured in duplicate on discrete samples using a calibrated

handheld turbidimeter (Orion AQ4500). Duplicate chlorophyll

pigment samples were extracted in MeOH and measured

fluorometrically as previously described (Johnson et al., 2010b).

Photosynthetic efficiency (Fv/Fm) was quantified with a FIRe

(fluorescence induction and relaxation) fluorometer on samples

kept in the dark for ≥15 min prior to assessment; data were

processed with a custom MATLAB script based on (Kolber et al.,

1998) and (Johnson, 2004) . Heterotrophic bacter ia ,

picocyanobacteria (non-orange fluorescing, picophytoplankton),

Synechococcus (orange fluorescing picocyanobacteria) and

eukaryotic phytoplankton were quantified using flow cytometry as

previously described (Johnson et al., 2010a), or with an using

Hoechst 34580 or Sybr Green I DNA stains using an Attune NxT

with 405 nm excitation and 440 ± 25, 512 ± 13, 603 ± 24, 710 ± 25

nm emission and 488 nm excitation and 530 ± 15, 574 ± 13, 695 ±

20, 780 ± 30 nm emission. Production and respiration quantified

using Winkler oxygen (Labasque et al., 2004) were measured using

the light/dark bottle technique with 24 h incubations at ambient

temperature in a sinusoidal incubator with ~1000 µmol quanta m-2

sec-1 peak PAR. In general , we maintained the same

instrumentation throughout the time series; however, in some

cases changing instrumentation was a necessity and often chosen

to increase accuracy (e.g. Portasal over a refractometer to measure

salinity). When measurements changed over the course of the time

series we, when available, used Certified Reference Materials to

determine that measurements were within expected tolerances and/

or included an inter-comparison by running the same samples

using both techniques.
Data handling and calculations

For long term trends, data from 2011- 2021 were subsampled

on a weekly frequency using nearest neighbor methods. Marine

CO2 system variables, including total alkalinity, were calculated

from measured pH and DIC using a MATLAB implementation of

CO2SYS (Van Heuven et al., 2011). Time-series data was analyzed

in MATLAB using custom scripts. Using resampled data, linear

trends were calculated by minimizing the residuals in y. Power

frequency was calculated using Fourier transform or the Climate

Data Toolbox (Greene et al., 2019) and subsampled using a

bandstop filter of 0.75-1.25× frequency peak. Time of emergence

was calculated after (Turk et al., 2019). Breakpoint analyses were

performed in R 4.3.2 by first segmenting the data: storm data

includes all samples collected within 180 days following “wet”

storms: Hurricanes Irene (2011), Florence (2018) and Dorian
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(2019), including daily sampling for days 6-41 and 2-20 following

initial predicted impacts for hurricanes Florence and Dorian,

respectively. The remainder of the data was categorized as non-

storm data, even though “non-wet” storms occurred during this

time frame. The non-storm data was first smoothed using a general

additive model using the R mgcv 1.9-0 package with the cyclic cubic

smoothing spline (Hastie, 2023). We used segmented linear

regression to fit the difference between the gam prediction and

observed data using the segmented 2.0-3 package (Muggeo, 2008)

with the slope of the linear regression following the breakpoint set

to zero (Asmala et al., 2021).
Results and discussion

Seasonality and trends

At PICO, we previously observed patterns of core

biogeochemical variables across short-term (i.e., diurnal, tidal)

and long-term repeatable cycles (i.e., seasonal/annual cycles) as

well as responses to episodic events (Johnson et al., 2013; Gronniger

et al., 2022). More than 10 years of weekly observations confirm the

strong seasonal cycles across a range of variables; here, we identify

how shifts in timing and long-term trends in environmental

variables reveal complex anthropogenic impacts on the coastal

ocean. In examining seasonal patterns, most measured

environmental variables have consistent timing of their annual

maxima (Figure 1, Table 1). While temperature and pH have

consistently timed peaks, chlorophyll, DIC, salinity, silicate and

turbidity are much more variable (Supplementary Figure 1),

suggesting interannual differences in these factors. Further,

compared to open ocean time series, PICO has much larger

annual ranges; for example, temperature exhibits ~2×, pH ~3×,

DIC ~3× and salinity ~10× the range observed at the Bermuda

Atlantic Time Series (BATS), which is located at a similar latitude in

the Atlantic Ocean (Bates and Johnson, 2023). These broader

observed ranges are driven in part by close coupling with the

terrestrial environment and enhanced biological activity, with

chlorophyll concentrations an order of magnitude higher than in

the open ocean (Johnson and Howd, 2000). PICO’s location at

mouth of an estuary adjacent to the broad (and shallow) mid-

Atlantic Bight shelf captures land-sea coupling, while retaining

marine characteristics (e.g., generally high salinity >30 PSU).

While enhanced ranges of physicochemical variables are common

in the coastal ocean [e.g (Hofmann et al., 2011; Poppeschi et al.,

2022)], here biological activity (gross productivity - ~0.5-2 mg O2 L
-

1 d-1) and photosynthetic biomass (e.g., chlorophyll – 2.5–5.8 µg L-

1) are generally higher and less seasonal than open-ocean sites,

likely due to more consistent availability of nutrients (e.g., NO3).

Moreover, we predict that variation in the timing and magnitude of

environmental factors will propagate to changes in the microbiome

(Ward et al., 2017; Bolaños et al., 2022; Poppeschi et al., 2022).

Layered on interannual and episodic variability, we observe

statistically-significant, long-term trends in several core

environmental variables (Figure 2). For example, carbonate
frontiersin.org
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system variables pH and DIC are both decreasing (Table 1) more

rapidly than in the open ocean (Dore et al., 2009; Bates and

Johnson, 2023). Although anthropogenically-driven increases in

atmospheric CO2 are predicted to propagate to the marine

environment, here DIC is decreasing, demonstrating the

dominance of local processes (e.g., primary production) in this

system. Concurrently, we observe larger-than-expected declines in

pH and total alkalinity (TA), which cannot be attributed to DIC,

suggesting changes in runoff chemistry due to human- impacts such

as accelerated weathering (Kaushal et al., 2017). These variables as

well as decreasing turbidity, chlorophyll and Secchi depth are

consistent with long-term, broader trends of decreased nutrient

concentrations and increased water clarity in the Albemarle-

Pamlico Estuary (Harned and Davenport, 1990) and in the US

Southeast region (Hall et al., 2020). However, we do observe minor

increases in NO3 and NH4 along with an apparent microbial shift

toward cyanobacteria (Synechocccus and picocyanobacteria) and

away from picoeukaryotes (Table 1), although we did not quantify

the abundance of larger eukaryotic phytoplankton. Similarly,

primary production and respiration rates (since 2015, via O2
Frontiers in Marine Science 04
production and consumption in incubations), are both decreasing

(Table 1), indicating general declines in biological activity.

Moreover, this system has chronic N:P <16 suggesting that it is

typically N-limited, but low concentrations of nutrients coupled

with high chlorophyll levels (for the marine environment)

throughout the year suggests that nutrients are either rapidly

recycled in the system or potentially that other factors control

chlorophyll biomass. Thus overall, the environmental signals in this

system indicate ecosystem complexity.

Next, we sought to quantify the time of emergence, or when

global change-driven shifts in environmental variables can be

discerned within background of high temporal (Hofmann et al.,

2011; Zhao et al., 2022). At PICO, we can estimate this time to

emergence using existing data; O2 respiration, chlorophyll and NO3

have the shortest times of emergence (15.5, 21.1 and 23.2 years,

respectively), supporting their longer-term trends (Table 1).

Carbonate system parameters, pH and total alkalinity (TA) also

have short times of emergence; and our estimate for pH (26.3 years)

is statistically indistinguishable from the 23 ± 13 years estimated

from North American coastal margins oceanographic
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FIGURE 1

Temporal patterns and trends (red lines) of temperature, salinity and nitrate at the Piver’s Island Coastal Observatory (PICO) study site based on
weekly measurements. Right, histogram of observations and frequency spectra demonstrating major differences in the distribution and timing of
variability among core biogeochemical variables. Upper picture: Sentinel-2 highlight optimized natural color image remote sensing image centered
on PICO site from 20240827. Center picture: false color image of dissolved organic matter concentration satellite product following a major storm
(after Jordon 2018/NASA). Bottom picture: false color image of chlorophyll concentration from Sentinel-2 Se2WaQ processing from 20240901.
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measurements (Turk et al., 2019). Further, we sought to identify

potential relationships between environmental variables using

correlations between environmental factors; many variables reveal

strong cross-correlations, but the lag period for the maximum

correlation varies substantially (Table 2). For example, the

seasonal variables day length and temperature are strongly

correlated (r=0.94) with a 5-week lag. However, cross-correlations

among the carbonate system variables are more complicated: TA is

strongly correlated with DIC (r=0.98; 0 lag), but DIC is only weakly

correlated with pH (r=0.33; 19-week lag). Further, these

correlations can mask more complex relationships that offer

insight into system drivers: for example, at short lags, TA is

negatively correlated with pH, but at zero lag TA and pH are

positively correlated (Supplementary Figure 2). Summarizing this

data, if the carbonate system were only driven by inorganic

processes (e.g., dissolution and speciation of CO2), the strongest

correlations would be expected at zero lag, but here variation in the

strength (and sign) with lag period demonstrate the presence of

multiple drivers. Long-term trends in pH (decreasing) and DIC

(decreasing) are inconsistent with expectations (and open ocean

time series observations) of decreasing pH and increasing DIC due

to anthropogenically-driven atmospheric invasion of CO2. Lagged

correlation plots also demonstrate an uncoupling of DIC and pH on

seasonal and episodic (zero lag) scales (Supplementary Figure S2).
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However, strong positive correlations of TA and DIC across lags

and both variables’ correlations with salinity suggests the influx of

freshwater sources with low DIC and TA. Interestingly, pH is not

correlated with salinity at zero lag likely due to the variability in

organic acid content of source waters. Taken together, seasonal

patterns and long-term trends follow expected climatological

forcing (e.g., temperature, chlorophyll) but others (e.g., carbonate

system) have unexpected trends or complex relationships that

require further sampling or experimentation to clarify. One

source of poor correlations could be discrete events such as

storms where factors other than long term drivers “break”

expected relationships between environmental factors.
Responses to acute disturbance

In addition to the press disturbances of climate change and

human ecosystem modification, discrete (or pulse) events have the

potential to alter coastal marine ecosystems. Here, some variables

display episodic peaks (e.g., NO3
-; Figure 1); however, the

infrequency of these events makes it difficult to predict their

source. We focus on the potential for storms to alter

environmental conditions, as PICO is one of three proposed US

hotspots for tropical cyclones with an estimated 2-year return time
TABLE 1 Seasonality and trends of core biogeochemical variables.

Variable Units Mean Annual rangea Week of peak Slope (per year) ToE (years)b

Chlorophyll µg L-1 2.54 - 5.77 36 ± 3.6 -0.167 ± 0.025** 21.1

Daylength h 9.74 - 14.45 27 n/a n/a

DIC µM 1965 - 2088 24 ± 3.3 -9.8 ± 1.5** 23.2

NH4 nM 62.7 – 662.2 40 ± 4.4 25.9 ± 09.8** 54.8

NO3 µM 0.11 - 0.36 50 ± 20.3 0.033 ± 0.004** 20.6

Waragonite 1.97 – 2.89 32 ± 3.2 -0.026 ± 0.007 40.7

pCO2 µatm 305 - 577 30 ± 1.8 2.81 ± 1.45 42.8

pH 7.89 - 8.12 4 ± 1.1 -0.004 ± 0.001** 26.3

Salinity 30.53 - 34.33 27 ± 2.8 -0.061 ± 0.038 93.1

Secchi Depth m 1.26 - 1.78 4 ± 18.8 -0.004 ± 0.006* 212.5

SiOH4 µM 2.11 - 7.18 38 ± 2.1 -0.08 ± 0.058 100.2

TA µM 2092.9 – 2258.8 27 ± 2.5 -11.88 ± 1.91** 24.9

Temperature °C 10.06 - 28.86 31 ± 1.8 0.111 ± 0.09 48.4

Turbidity NTU 4.08 - 6.53 32 ± 6.9 -0.066 ± 0.032* 68.8

Bacterioplankton cells mL-1 1.99 – 4.11 (×106) 30 ± 2.8 -4.97 ± 1.64 (×104) 41.5

Synechococcus cells mL-1 0.09 – 1.61 (×105) 32 ± 2.4 1.78 ± 0.95 (×103) 51.3

Picocyanobacteria cells mL-1 0.18 – 8.09 (×104) 32 ± 3.4 1.48 ± 0.68 (×103)* 58.6

Picophotoeuks cells mL-1 3.02 – 4.81 (×104) 30 ± 6.3 -1.24 ± 0.28 (×103)** 33.3

O2 respiration
c mg O2 L

-1 d-1 0.10 – 0.44 31 ± 3.1 -0.004 ± 0.006** 95.5

O2 production
c mg O2 L

-1 d-1 0.43 – 1.79 32 ± 2.4 -0.05 ± 0.02** 15.5
aMean Annual range: reports the mean of the lowest and highest values observed for each year across the time series; bToE: Time of Emergence; cdata from 2015; *p<0.05; **p<0.01.
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TABLE 2 Lagged cross correlation of core biogeochemical variables.

Chl DL DIC NH4 NO3 Wa pCO2 pH Sal SD SiOH4 TA Temp Turb Bac Syn P-c P-p O2R O2P

.56 0.30 -0.53 0.51 0.43 0.39 0.41 0.33 -0.34 -0.37

.39 -0.31 0.94 -0.26 0.55 0.71 -0.51 0.21 -0.22 -0.48

.49 0.98 -0.27 -0.23 0.29 -0.22 -0.22 0.17 -0.30 -0.32

.32 -0.39 0.24 0.28 0.21 0.25 0.2 0.14 0.23 0.33

.44 -0.53 0.14 0.12 -0.17 -0.15 0.21 -0.15 0.34 0.28

.35 0.84 0.64 -0.23 -0.37 0.55 -0.33 0.18 -0.27 -0.33

.37 -0.31 0.85 0.37 0.56 0.64 0.56 0.30 0.28 0.54

.39 0.33 -0.82 -0.41 -0.55 -0.62 -0.57 -0.32 -0.33 -0.57

.50 0.95 0.37 -0.23 -0.28 0.34 -0.22 -0.21 -0.16 -0.28

.39 0.23 0.32 -0.75 -0.27 0.26 -0.34 -0.27 -0.12 -0.37

-0.48 -0.39 0.39 -0.36 -0.34 0.49 0.29 -0.12 0.28

▪ 0.31 -0.24 0.25 0.29 -0.22 -0.15 -0.29 -0.31

9 0 ▪ 0.26 -0.54 0.73 0.51 0.23 0.25 0.50

0 -2 ▪ 0.26 -0.21 0.28 0.28 -0.13 0.34

6 -7 -25 7 ▪ 0.53 0.53 0.5 0.15 0.38

9 0 0 22 0 ▪ 0.44 0.22 0.24 0.44

19 -1 0 0 1 ▪ 0.47 0.31 0.46
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for hurricanes and tropical storms (Keim et al., 2007; Patrick et al.,

2022). In this system, storm events serve as a repeated disturbance

with potential short to medium term alteration of environmental

variables. In contrast with pioneering research into tropical cyclone

impacts on the adjacent Neuse River Estuary (Paerl et al., 2001),

PICO’s location at a break in the barrier island system (Beaufort

Inlet) with high tidal flushing reduces the persistence of direct

storm impacts and terrestrial runoff compared to the lagoonal

Neuse River Estuary (e.g., days- weeks rather than weeks-years)

(Paerl et al., 2001). As tropical cyclones have distinct characteristics

(e.g., antecedent conditions, rainfall, windspeed and duration), here,

we focus on “wet” storms (>20 cm of rain), which are most likely to

alter environmental factors (Asmala et al., 2021). Practically,

therefore we focused on Hurricanes Irene (2011), Florence (2018)
Frontiers in Marine Science 07
and Dorian (2019); for the latter two storms weekly sampling was

supplemented with several weeks of daily sampling to better resolve

the temporal impact of these storms on environmental factors.

However, this intensive sampling biases the dataset toward these

later two storms. All three wet tropical cyclones occurred during the

hurricane season’s peak in the mid-Atlantic (Late August- mid

September) and thus represent similar environmental conditions.

However, as the baseline data during this period includes tropical

cyclones that were not categorized as wet storms, our calculations

likely underestimate the extent and persistence of these events.

Our break-point calculations reveal the persistence of

environmental factors’ responses to “wet storm” disturbance, with

altered conditions persisting for silicate, DIC, and salinity for 42-55

days (Figure 3). Although the watershed immediately adjacent to
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FIGURE 2

Seasonal Patterns and Annual trends for the PICO time series from 2011-2021. Weekly resampled ‘raw’ data and decomposed trend, annual cycles
and residuals of pH (top) and chlorophyll a (bottom).
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PICO is small (595 km2), the estuary is hydrologically connected to

the Neuse River (Albemarle-Pamlico Sound system) through a

canal system and thus receives freshwater inputs from this much

large watershed over extended periods during high-flow conditions

(Kirby-Smith and Costlow, 1989). We posit that these longer-term

alterations in environmental parameters are mediated by continued

introduction of low salinity, low DIC and high nutrient riverine and

groundwaters. Although storms can introduce terrestrial nutrients,

among those we quantify, only silicate had a statistically significant

wet-storm signal, whereas NO3 and NH4 did not significantly

deviate from the baseline. Silicate is above the analytical detection

limit in our system (2011-2021 average concentration 4.8 µM),

whereas NO3 exhibits intense peaks but is generally low to

undetectable (Figure 1). As silicate is used by a more limited

number of taxa (e.g., some eukaryotic phytoplankton, protists,

and sponges), this micronutrient persists in the water column and

can perhaps serve as a “conservative” nutrient tracer for influxes of

other nutrients which may be rapidly assimilated into

microbial biomass.

In contrast with the persistent deviations from the annual cycle

for the above variables, storm-driven pH decreases were apparent
Frontiers in Marine Science 08
for ~ 2 weeks (breakpoint 15.57 days, Figure 3), as in the long-term

observations, likely due to organic compounds, which are

increasingly recognized as important in controlling coastal pH

(Kerr et al., 2023) (Figure 3). The only other variable with a

significant storm signal was chlorophyll a (breakpoint 6 days);

post-storm conditions include an initial wash out (as existing

phytoplankton are diluted by freshwater fluxes or lysed due to

low salinity conditions), followed by a phytoplankton bloom due to

nutrient influxes, predominantly large, eukaryotic phytoplankton

(Steichen et al., 2020; Gronniger et al., 2022). As temporal

variability is inherently high within this system, especially for

biological variables, detection of a phytoplankton bloom, albeit

briefly, is somewhat surprising. A number of other variables did not

exhibit significant post-storm breakpoint values (NH4, NO3, Secchi

depth, turbidity, temperature), although these parameters are

significant in other systems following storms (Steichen et al.,

2020); however, values may differ due to the sensitivity of

different metrics, distinct characteristics of ecosystems, as well as

the availability of baseline data to constrain natural variability. As

tropical cyclones are predicted to increase in intensity, and

potentially in frequency, with global change (Knutson et al.,

2021), wet storms with the potential for long-term alteration of

environmental factors are likely to impact coastal ecosystems as well

as the people and other organisms that depend on them.
Future directions

The Piver’s Island Coastal Observatory has >1200 standardized

time point observations now spanning nearly 15 years; continued

observations will characterize the evolving pulse and press of this

ecosystem as well as guide experimentation to test specific

hypotheses, e.g., microbiome responses to increases in

temperature and acidity (Wang et al., 2021). Several core

variables already demonstrate statistically significant long-term

trends and episodic-event-driven responses (e.g. , pH,

chlorophyll), but other core global change variables such as

temperature have not yet emerged from the background

environmental variability (Figure 1). Extended duration and/or

higher frequency sampling through expanded in situ sensors or

automated samplers may help to constrain both long term trends as

well as shorter term ecological variability and disturbance response.

For example, extended duration (1995-present) hourly in situ

temperature measurements from this site show a significant slope

(0.035 ± 0.002°C/y, p<0.01) that exceeds global mean increases

(~0.007) but will need to be continued for another decade to break

through the predicted time of emergence (Table 1). These

approaches may also help to better constrain the persistence of

storms impacts on biogeochemical (or ecological) variables as well

as the mechanisms behind their differential recovery times. This

study utilizes comprehensive weekly sampling at a single location,

but complementary studies in the larger estuarine system that

sample (1) high frequency observation of select variables at a

single location (Paerl et al., 2009), (2) estuarine spatial variability

at coarse temporal resolution (Asmala et al., 2021) or (3) offshore
FIGURE 3

Time scale of environmental variable responses to wet tropical
cyclones. (A) Panel showing post-storm deviation of environmental
variable Dissolved Organic Carbon (DIC) from predicted seasonal
norm for up to 180 days following three wet tropical cyclones that
impacted the study site Irene (2011), Florence (2018) and Dorian
(2019). Red line tracks the deviation from seasonally-expected
values, the vertical black line indicates the predicted break point
(days) with the shaded region showing the standard error (B) Table
summarizing break point analysis for a suite of environmental
factors. Bold rows indicate statistically-significant deviations from
seasonal environmental conditions. Direction indicates whether the
environmental factor is higher or lower than the expected
seasonal condition.
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gradients at even coarser temporal resolution (Wang et al., 2019) all

provide their own unique insights into environmental trends and

their drivers. Coordinated sampling, especially following different

kinds of disturbance (heat waves, winter storms, etc.) as well as

synthesis across multiple research platforms could help to resolve

the timing and spatial extent of the pulse and press of this system

(Larkin et al., 2020; Patrick et al., 2022). Understanding how

seasonal and episodic variability as well as longer term trends,

many of which are in flux, impact the composition and function of

this ecosystem is critically important to understand the

biogeochemistry and ecology, impacts on fisheries, recreation,

commerce or other human uses, and broader habitat of this large

coastal ecosystem.
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