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In Plectropomus leopardus, Vibrio disease and Hirudo parasitic disease are

relatively common. Timely recognition of these diseases can improve the

survival rate of Plectropomus leopardus and prevent their spread. However,

early-stage diseases are difficult to distinguish due to their small size and subtle

characteristics. Traditional manual recognition methods rely on personal

experience and subjective judgment, leading to time-consuming and error-

prone diagnoses. To address the challenges in detecting and classifying

Plectropomus leopardus diseases, this paper proposes PLDNet (Plectropomus

Leopardus Disease Detection Network), a real-time detection and recognition

method that provides faster and more accurate diagnoses for fish farms. PLDNet

incorporates two significant advancements: First, it employs FocalModulation,

which enhances the model’s ability to identify key disease characteristics in

images. Second, it introduces the MPDIoU (Minimum Point Distance-based

Intersection over Union) for bounding box similarity comparison, optimizing

the loss function and improving recognition accuracy. This paper also presents

the PLDD (Plectropomus Leopardus Disease Dataset), a newly developed dataset

that includes comprehensive images of healthy and diseased specimens. PLDD

addresses the scarcity of data for this species and serves as a valuable resource

for advancing research in marine fish health. Empirical validation of PLDNet was

conducted using the PLDD dataset and benchmarked against leading models,

including YOLOv8-n, YOLOv9-m, and YOLOv9-c. The results show that PLDNet

achieves superior detection performance, with an average detection accuracy of

84.5%, a recall rate of 86.6%, an mAP@o.5 of 88.1%, and a real-time inference

speed of 45 FPS. These metrics demonstrate that PLDNet significantly

outperforms other models in both accuracy and efficiency, providing practical

solutions for real-time fish disease management.
KEYWORDS

deep learning, disease detection, Plectropomus leopardus, Vibrio disease, Hirudo
parasitic disease
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1 Introduction

Plectropomus leopardus, a marine fish of high economic value, is

prized for its ornamental qualities and high nutritional value, making it

a favorite in the market Khasanah et al. (2019). However, high-density

facility-based culture makes Plectropomus leopardus susceptible to

diseases, significantly affecting culture efficiency and turning it into a

high-risk, high-return industry Li et al. (2024). In particular, Vibrio

disease and Hirudo parasitic disease have caused substantial economic

losses for aquaculture operations Gai et al. (2022). Outbreaks of these

diseases can lead to high mortality rates and reduced market value of

infected fish, compounding financial losses for farmers. To mitigate

these impacts, targeted detection of Plectropomus leopardus diseases is

crucial to reduce illness and mortality Duarte (2014).

Traditional methods for disease detection in Plectropomus

leopardus include manual visual observation and rapid pathogen

detection kits. Manual observation is inefficient and highly

subjective, often resulting in missed detections and limited

accuracy. This approach requires significant labor and frequently

leads to irregular data recording, which delays and impairs the

accuracy of diagnoses. Although rapid pathogen detection kits

provide a more convenient method for detecting aquatic diseases,

they often lack the necessary sensitivity and specificity, resulting in

potential false positives or false negatives. Additionally, these kits

require tissue sampling from diseased specimens, which adds

complexity and increases the time required for testing. Therefore,

precise identification and accurate localization of diseases in

Plectropomus leopardus remain critical challenges in aquaculture.

In recent years, fish disease detection methods have evolved

significantly, from traditional image processing techniques to more

advanced deep learning models, particularly convolutional neural

networks (CNNs). These advancements have significantly enhanced

the accuracy and efficiency of disease diagnosis. Despite these

developments, challenges remain in achieving both high detection

accuracy and real-time performance, especially in aquaculture

settings where rapid response is critical. The traditional methods,

although effective, struggle with processing large datasets quickly

enough for timely intervention. To overcome these challenges, this

study leverages deep learning-based methods, focusing on

optimizing both the accuracy and speed of disease recognition in

Plectropomus leopardus.

Detecting diseases in Plectropomus leopardus presents notable

challenges, primarily due to the absence of comprehensive datasets

tailored to its diseases. Current technologies are inefficient, and the

application of deep learning methodologies remains unexplored in

disease detection for this species. To address these issues, we have

developed the PLDD (Plectropomus Leopardus Disease Detection

dataset), filling the existing gap in data availability. This dataset is

specifically designed to improve model training and evaluation,

directly resolving the limitations imposed by the lack of data.

Furthermore, we propose a new method called PLDNet

(Plectropomus leopardus Disease Detection Network), to enable

real-time disease identification and classification. PLDNet leverages

this dataset to offer improved diagnostic capabilities, addressing

both the data scarcity and the inefficiencies of existing technologies.

The main contributions of this paper are as follows:
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• A comprehensive dataset PLDD is provided, which includes

images of both healthy and diseased samples collected from

various specimens. This dataset can be used for training and

evaluating disease detection models in Plectropomus

leopardus, addressing the current lack of available data.

• A new model, PLDNet, is proposed for disease detection

and recognition in Plectropomus leopardus. This model

introduces two significant advancements. First, it employs

FocalModulation, significantly enhancing the model’s

ability to identify key disease characteristics in images,

particularly for small targets like Hirudo parasitic disease.

Second, it incorporates the the MPDIoU (Minimum Point

Distance-based Intersection over Union) for bounding box

similarity comparison, optimizing the loss function and

thereby improving the detection model’s accuracy.

• We implemented the YOLOv8-n, YOLOv9-m, and

YOLOv9-c models and compared them against our

proposed PLDNet. Our method outperforms the other

object detection approaches in both accuracy and speed

on the same dataset.
The organization of this paper is as follows: Section 2 covers the

related work; Section 3 discusses the materials and methods used in

this study; Section 4 presents the results and discussion; Section 5

provides the conclusions and suggests directions for future work.
2 Related work

2.1 Vibrio disease

Vibrio disease is a class of bacterial infections caused by various

species of the genus Vibrio, which naturally occur in aquatic

environments. These diseases are particularly problematic in fish

species such as Plectropomus leopardus, where they can manifest as

septicemia, leading to rapid decline in health and high mortality

rates Austin and Austin (2016).

The pathogenicity of Vibrio species is linked to their ability to

produce toxins and invade the host’s immune system, making early

detection crucial for disease management Colquhoun and Sørum

(2001). Historically, detecting vibriosis in fish has relied on

traditional methods such as direct microscopic examination,

cultural isolation on selective media, and biochemical tests. These

methods, while valuable for confirming the presence of Vibrio, are

labor-intensive, time-consuming, and often require a high degree of

expertise Bowker et al. (2011).

One of the primary challenges in detecting Vibrio disease is

their asymptomatic nature during the early stages. The subtle

clinical signs and the small size of the affected areas make it

difficult for traditional methods to accurately diagnose the disease

in its initial phases Defoirdt et al. (2011). In response to these

challenges, there has been a push towards developing more

sophisticated diagnostic tools. Recent advancements include the

use of molecular techniques such as PCR, which offers increased

sensitivity and specificity in detecting Vibrio species Panicker et al.

(2004). Additionally, the integration of immunological methods like
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enzyme-linked immunosorbent assays (ELISA) has provided

another layer of detection capability Li et al. (2010).

Despite these advancements, current detection methods face

significant limitations, especially regarding their suitability for real-

time, in-field diagnostics. The reliance on specialized equipment

and reagents often makes these methods impractical for immediate,

on-site use, leading to delays in treatment and management

Defoirdt et al. (2011). These challenges underscore the need for

innovative diagnostic solutions that provide rapid, accurate, and

user-friendly detection of Vibrio diseases in aquaculture. PLDNet

addresses these issues by leveraging cutting-edge computer vision

techniques to enable real-time detection at the point of care.
2.2 Hirudo parasitic disease

Hirudo parasitic disease is a significant issue in aquaculture,

causing substantial economic losses and health challenges for fish

populations. This parasitic condition is primarily characterized by

the presence of leeches that attach to the host, leading to physical

damage, stress, and secondary infections. The complexity of

managing this disease is compounded by the life cycle of the

parasites and their resilience to conventional treatments.

Cruz-Lacierda et al. Pérez (2009) explored various parasitic

diseases affecting fish and shrimp culture, noting the substantial

impact of parasites like Hirudo on aquaculture productivity. The

study highlighted the difficulty of controlling these parasites due to

their complex life cycles and the limited effectiveness of single-

measure treatments. Integrated management approaches,

combining knowledge of parasite biology and effective treatment

methods, were emphasized as crucial for disease control in

aquaculture settings.

The life cycle of the parasites and their resilience to

conventional treatments add to the complexity of managing this

disease. Research indicates that the attachment of leeches can cause

severe pathological changes in fish, including tissue damage and

immunological responses. For example, Woo and Bruno Buchmann

(2015) reported that Hirudo parasitic behavior leads to extensive

tissue damage and immunosuppression in the host, increasing

susceptibility to secondary infections. These pathological changes

can significantly impair fish health and growth, leading to reduced

aquaculture productivity.

Effective management strategies often require a combination of

improved aquaculture practices, the development of resistant fish

strains, and innovative treatment methods. According to Schlotfeldt

and Alderman Lieke et al. (2020), incorporating improved water

quality management, regular monitoring, and the use of biological

control agents can enhance disease control. Additionally, the

development of fish strains with genetic resistance to parasitic

infections has shown promise in reducing the incidence of

Hirudo parasitic disease.

Recent advancements in diagnostic technologies have also

contributed to better management of Hirudo parasitic disease.

For instance, molecular diagnostic tools, such as PCR-based

assays, have been developed to detect parasitic DNA in fish

tissues, allowing for early and accurate diagnosis Keeling et al.
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(2013). Early detection is critical for implementing timely and

effective treatment strategies, minimizing the impact of the

disease on aquaculture operations.

In summary, the effective management of Hirudo parasitic

disease in aquaculture requires a multifaceted approach that

includes improved aquaculture practices, genetic resistance,

innovative treatment methods, and advanced diagnostic

technologies. These strategies collectively address the complex

challenges posed by the life cycle and resilience of Hirudo

parasites, ultimately enhancing the health and productivity of

aquaculture systems. The PLDNet approach is proposed to

enhance the detection and classification of this challenging

Hirudo parasitic disease, ultimately improving the health and

productivity of aquaculture systems.
2.3 The detection of fish diseases

Traditional expert system detection methods rely on the

experience and knowledge of experts who diagnose diseases by

dissecting and analyzing fish samples. This approach is not only

time-consuming and labor-intensive but also requires highly

specialized skills Wagner (2017). To address these issues,

researchers have developed various fish disease detection methods

based on image processing and computer vision technologies.

Fish disease detection methods can be broadly categorized as

follows. Camera image detection uses standard cameras to capture

images of the fish’s surface and detect abnormalities through image

processing techniques. This method is non-invasive and relatively

easy to operate, making it suitable for large-scale field applications.

Microscope image detection, on the other hand, uses high-

resolution microscope images to detect minute lesions, making it

more appropriate for laboratory environments due to its

complexity. Spectral image detection and fluorescence image

detection employ spectral characteristics and fluorescent markers,

respectively, to provide detailed detection information, though

these methods require more advanced and expensive

instrumentation. Ultrasound image detection and sensor-based

methods enable rapid, real-time fish disease detection through

non-destructive testing. However, these methods require

sophisticated equipment and techniques.

In addition to these traditional techniques, recent

advancements in deep learning have revolutionized fish disease

detection. Convolutional neural networks (CNNs) have been

applied to classify and detect fish diseases with higher accuracy

and efficiency. For example, Shaveta Malik et al. Malik et al. (2017)

applied image processing techniques and machine learning

algorithms to identify diseased fish, achieving high-accuracy

classification through PCA-based dimensionality reduction. Md.

Jueal Mia et al. Mia et al. (2022) proposed an automated fish disease

recognition method combining computer vision with expert

systems, achieving an accuracy of 88.87% with a Random Forest

classifier. Noraini Hasan et al. Hasan et al. (2022) used a multi-layer

CNN architecture for fish disease classification, achieving an

impressive accuracy of 94.44%, demonstrating the power of deep

learning in fish disease recognition.
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Recent advancements in biological detection for aquaculture

have also contributed significantly to the development of fish

disease detection systems. For example, Xinyu Xie et al. Xie et al.

(2021) applied Mask Scoring R-CNN to intelligently detect mango

disease spores, providing valuable insights into the adaptation of

deep learning architectures, such as Mask R-CNN, for disease

recognition in various biological contexts, including aquatic

species. Similarly, Bing Han et al. Han et al. (2022) introduced

Mask_LaC R-CNN to measure the morphological features of fish, a

technique that can be directly adapted for detecting diseases by

analyzing subtle morphological changes in fish caused by infections.

Furthermore, Longqin Gong et al. Gong et al. (2022) explored a

semi-supervised, attention-based method for underwater fish

tracking, which plays a vital role in real-time disease detection in

natural aquatic environments. Their approach emphasizes the

potential of combining attention mechanisms with deep learning

to enhance the accuracy and robustness of fish disease detection

systems, particularly in dynamic and complex aquaculture settings.

Despite these advancements, the performance of existing

methods remains limited, particularly when it comes to real-time

detection and handling small or subtle disease markers. These

methods typically fail to achieve the speed required for timely

diagnosis, which is crucial in aquaculture settings. To address these

issues, the introduction of PLDNet represents a significant step

forward. PLDNet integrates advanced deep learning techniques,

including FocalModulation and MPDIoU, which enhance the

model’s ability to detect and localize disease features quickly and

accurately. PLDNet not only improves detection speed but also

enhances the precision of detecting small and subtle disease

markers that traditional methods may overlook, making it a

valuable tool for real-time aquaculture disease management.
2.4 FocalModulation and MPDIoU in
object detection

Recent advancements in object detection have introduced

various techniques to optimize both the accuracy and speed of

deep learning models Wu et al. (2020). FocalModulation is one such

innovation designed to improve feature extraction across multiple

spatial scales. It has been widely applied to enhance model

performance, particularly in tasks requiring the identification of

small or subtle features Yang et al. (2022). FocalModulation allows

the model to focus more on the critical regions of an image, which is

crucial for detecting small disease markers in Plectropomus

leopardus, such as the attachment sites in Hirudo parasitic disease

and early lesions in Vibrio disease.

MPDIoU is another advanced technique that improves the

precision of bounding box localization. Traditional Intersection

over Union (IoU) metrics can struggle to accurately localize small

objects or subtle features. MPDIoU addresses this by focusing on

the minimum point distance between predicted and ground truth

boxes, which enhances detection performance by ensuring more

accurate localization of disease markers Siliang and Yong (2022).

These methods, FocalModulation and MPDIoU, have been

integrated into the PLDNet architecture to address the challenges
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of accurate disease detection and localization in Plectropomus

leopardus. While traditional object detection methods struggle

with small or subtle disease features, PLDNet leverages these

techniques to improve both the speed and accuracy of disease

detection in real-time, making it a valuable tool for aquaculture.
3 Materials and methods

3.1 PLDD

3.1.1 Data collection
The dataset used in this study was meticulously curated to

facilitate comprehensive research on diseases affecting

Plectropomus leopardus. Images were collected from various

aquaculture facilities specializing in the breeding of Plectropomus

leopardus. The collection process focused on capturing both healthy

specimens and those exhibiting symptoms of common diseases,

such as Vibrio disease and Hirudo parasitic disease, as shown in

Figure 1. The dataset includes a total of 1,041 images, classified into

three categories: healthy Plectropomus leopardus, Hirudo parasitic

disease, and Vibrio disease. Each image was meticulously annotated

by experienced veterinarians and marine biologists to ensure

accurate documentation of the disease status.
3.1.2 Dataset features
The dataset comprises various high-resolution images that

capture the subtle details crucial for disease detection in

Plectropomus leopardus. It includes a spectrum of disease

severities and stages, providing a comprehensive basis for robust

model training and evaluation. Detailed annotations accompany

each image, offering precise localization of disease symptoms and

facilitating in-depth analysis and model learning.
3.1.3 Data preprocessing
Training a robust model typically requires a substantial amount

of annotated data, which is challenging to collect, especially for

complex actions that are time-consuming and labor-intensive to

annotate Liu et al. (2018); Meng et al. (2018). Before commencing

model training, the dataset underwent rigorous preprocessing steps

to enhance the input images’ variability and improve the training

model’s robustness, thereby optimizing model performance and

generalization capabilities. This preprocessing included techniques

such as random cropping, rotation, flipping, saturation adjustment,

and adding noise to augment the dataset. These augmentations

increased the variability and improved the model’s robustness

under different viewing angles and environmental conditions.

Figure 2 illustrates the processed images. Through these data

augmentation methods, the original dataset of 429 images was

expanded to 1,041 images. Additionally, pixel values of the

images were normalized to a standard range to ensure consistent

training conditions across the dataset. The dataset was then divided

into distinct training, validation, and test sets to facilitate effective

model parameter learning, hyperparameter tuning, and final

model evaluation.
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3.2 PLDNet

3.2.1 The framework of PLDNet
As illustrated in Figure 3, PLDNet (Plectropomus leopardus

Disease Detection Network) is a convolutional neural network

specifically designed for the real-time detection and classification

of diseases in Plectropomus leopardus. The architecture of PLDNet

integrates several advanced components to enhance detection

accuracy and efficiency.

The network begins with convolutional layers that perform initial

feature extraction from input images. These layers capture essential

low-level features such as edges, textures, and simple patterns, which

form the foundation for identifying disease characteristics.

Following the initial convolutional stages, the network

incorporates the ResNCSPELAN4 blocks, which are designed to

deepen the network’s capacity to learn complex and hierarchical

features. The ResNCSPELAN4 blocks enable the model to

effectively capture intricate patterns and subtle disease markers,

which are crucial for accurate detection in medical imaging.

To handle multi-scale features, PLDNet integrates the

FocalModulation technique. This technique refines the network’s
Frontiers in Marine Science 05
ability to focus on important regions within the images, enhancing

its sensitivity to small and subtle disease features. FocalModulation

plays a pivotal role in the feature extraction process of PLDNet by

focusing attention on critical regions of the input image. This

mechanism enables the network to prioritize the most relevant

disease-related features while downplaying irrelevant background

information. Within this process, the FocalModulation module

dynamically adjusts attention across the feature maps, selectively

highlighting regions that exhibit subtle disease characteristics. This

targeted enhancement allows PLDNet to improve the detection of

small-scale or less obvious symptoms, which might otherwise be

overshadowed by the surrounding healthy tissue. By effectively

enhancing these important areas, FocalModulation significantly

improves the network’s ability to capture and classify complex

disease patterns.

An upsampling operation is applied after the FocalModulation

layer, followed by a concatenation with the corresponding feature

maps from earlier layers. This fusion enhances the model’s capacity

to aggregate contextual information across different resolutions,

further improving its accuracy in detecting disease features.
(a) (b) (c) (d)

FIGURE 2

Data augmentation (A) the original image; (B–D) the data augmented image.
(a) RedMulletFish (b) Vibrio_disease (c) Hirudo

FIGURE 1

Sample fish images of the dataset (A) Red Mullet Fish; (B) Vibrio Disease; (C) Hirudo.
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Multiple ResNCSPELAN4 blocks are again used in this stage to

refine the features before the final classification.

PLDNet introduces the the MPDIoU as a similarity measure for

bounding box predictions, significantly improving the precision

and accuracy of disease localization.

The PLDNet framework also includes an auxiliary branch that

aids in training by providing additional gradient signals, helping the

model to converge faster and more effectively. The output from this

auxiliary branch is integrated with the main output to produce the

final predictions.

Overall, the advanced components within PLDNet, including

the ResNCSPELAN4 blocks, FocalModulation, and the MPDIoU

loss function, work together to create a robust and efficient network

capable of detecting even the most challenging disease features in

Plectropomus leopardus. This design ensures that PLDNet is a

valuable tool for aquaculture, enabling precise and real-time

disease monitoring.
3.2.2 FocalModulation
One of the key innovations in PLDNet is the integration of

FocalModulation, which significantly enhances the network’s ability

to detect disease features across multiple scales. By dynamically

adjusting its focus, the FocalModulation module enables PLDNet to
Frontiers in Marine Science 06
capture and pool features from both fine-grained local contexts and

broader spatial regions Yang et al. (2022). This ensures that even the

smallest and most subtle disease markers are effectively identified,

thereby increasing the model’s adaptability to diverse object sizes

and shapes, and enhancing its robustness.

FocalModulation is a key component that enhances the

network’s focus on crucial regions within an image. This

enhancemen t invo lve s th r ee main proce s s e s : f o ca l

contextualization, gated aggregation, and an element-wise

affine transformation.

3.2.2.1 Focal contextualization

This process encodes visual contexts from different spatial

ranges—short, medium, and long. Given an input feature map X,

it is first projected into a new feature space as Z0 = fz(X) ∈
RH�W�C . Subsequently, L depth-wise convolutional layers extract

contextual information hierarchically:

Z‘ = f ‘a (Z
‘−1)≜GeLU(Convdw(Z

‘−1)) (1)

where f ‘a is the contextualization function at the ℓ-th level, this

hierarchical contextualization allows the network to capture context

at different granularity levels, enhancing its ability to perceive

fine details.
Silence

Conv

Conv

RepNCSPELAN4

Conv

RepNCSPELAN4

Conv

RepNCSPELAN4

Conv

RepNCSPELAN4

FocalModulation

Upsample

Concat

RepNCSPELAN4
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Concat RepNCSPELAN4
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Concat
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Linear

Linear
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Input
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FIGURE 3

The Framework of PLDNet.
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3.2.2.2 Gated aggregation

After encoding the visual contexts, the network selects gated

aggregation to combine these contexts into a modulator selectively.

This is achieved by first obtaining spatial and level-aware weights

G = fg(X) ∈ RH�W�(L+1), where fg( � ) is a lightweight linear

function responsible for calculating the gating weights. The final

output is then computed by performing a weighted sum through

element-wise multiplication to obtain a single feature map Zout of

the same size as the input X:

Zout = o
L+1

‘=1

G‘⨀Z‘  (2)

Here, G‘ ∈  RH�W�1 represents the channel for level ℓ.

3.2.2.3 Element-wise affine transformation

Finally, the modulator obtained through gated aggregation, M =

h(Zout) ∈  RH�W � C, is applied to the query token via an

element-wise affine transformation:

yi = q(xi)⨀ h  o
L+1

‘=1

g‘i � z‘i
 !

(3)

In this equation, The query token q( · ) is learned during

training to emphasize disease-related regions, enhancing detection

accuracy for subtle markers and suppressing irrelevant background

areas, ⨀ denotes element-wise multiplication, h( · ) is a linear layer

function modeling the relationships between different channels,

where g‘i and z‘i are the gating value and visual feature at location ℓ

of G‘ and Z‘ respectively, The final output, yi, is the enhanced

feature map that reflects the combination of the query token and the

aggregated features, ensuring more accurate disease detection

The FocalModulation formula can be expressed as (3).

FocalModulation, as shown in Figure 3, significantly boosts the

model’s ability to discern fine details, which is crucial for early-stage

disease detection. This comprehensive approach ensures that

PLDNet can effectively manage the varying scales and

complexities of disease features in Plectropomus leopardus,

providing a more accurate and reliable diagnosis.

3.2.3 MPDIoU
Another key innovation in PLDNet is the use of the MPDIoU

(Minimum Point Distance-based Intersection over Union) for

bounding box similarity comparison. Traditional IoU metrics

often fail to capture the precise alignment required for small

objects and subtle features. MPDIoU addresses this by focusing

on the minimum point distance between predicted and ground

truth boxes, providing a more accurate measure of bounding box

overlap Siliang and Yong (2022). This novel approach optimizes the

loss function during training, leading to improved localization and

classification performance. The use of MPDIoU ensures that the

network can more precisely identify and delineate disease-affected

regions in the images.

MPDIoU is calculated by minimizing the distance between the

corresponding points of the predicted bounding box and the

ground truth bounding box. The coordinates of the top-left (x1,

y1) and bottom-right (x2, y2) points define a unique rectangle, and
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the distances between these points are minimized. The calculation

is as follows:
• Define the coordinates of the top-left (x1, y1) and bottom-

right (x2, y2) points of the ground truth box Agt and the

predicted box Aprd .

• Compute the squared d i s t ance s be tween the

corresponding points:
d21 = (x1,prd − x1,gt)
2 + (y1,prd − y1,gt)

2 (4)

d22 = (x2,prd − x2,gt)
2 + (y2,prd − y2,gt)

2 (5)
• Normalize these distances by the width w and height h of

the bounding boxes:
MPDIoU =
Agt   ∩

  Aprd

Agt   ∪  Aprd
−
d21   +   d

2
2

w2   +   h2
(6)

where Agt and Aprd denote the areas of the ground truth and

predicted bounding boxes, respectively.

The loss function LMPDIoU based on MPDIoU can be defined as:

LMPDIoU = 1 −MPDIoU (7)

This loss function is minimized during training to ensure that the

predicted bounding boxes closely match the ground truth boxes, taking

into account both the overlap area and the distances between

corresponding points. By incorporating these factors, MPDIoU

provides a more comprehensive measure of bounding box similarity,

improving the model’s performance in localizing and classifying

objects, especially in cases involving small and subtle features.
4 Results and discussion

4.1 Experimental setup

To evaluate the performance of the proposed PLDNet in

detecting and classifying diseases in Plectropomus leopardus, a

series of experiments were conducted. The experimental setup is

divided into four main components: Hardware Configuration,

Software Environment, Dataset, Training Procedure:

Hardware Configuration: All experiments were conducted on a

system equipped with an NVIDIA RTX 4060Ti GPU, 32GB RAM,

and an Intel i5-13400F CPU.

Software Environment: The model was implemented using

Python 3.11 and torch 3.1. The training and testing processes

were managed using the PyTorch framework, and data

preprocessing was performed with OpenCV.

Dataset: The dataset comprises 1041 annotated images of

Plectropomus leopardus, including both healthy specimens and

those affected by various diseases such as Vibrio disease and Hirudo

parasitic disease. The dataset was split into 70% training, 20%

validation, and 10% testing sets. Data augmentation techniques

such as rotation, scaling, and flipping were applied to increase the

variability of the training set.
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Training Procedure: The network was trained for 400 epochs

using the Adam optimizer with an initial learning rate of 0.001. The

learning rate was reduced by a factor of 0.1 every 30 epochs to

facilitate fine-tuning. A batch size of 16 was used, and early stopping

was implemented to prevent overfitting, with validation loss

monitored and a patience of 10 epochs before halting training.
4.2 Metrics for evaluating performance

The performance of PLDNet was evaluated using several

standard metrics, including Accuracy, Precision, Recall, F1-Score,

mAP and FPS to ensure a comprehensive assessment:

Accuracy: Measures the proportion of correctly identified

instances among the total instances.

Accuracy =
TP   +  TN

TP   +  TN   +   FP   +   FN
(8)

where TP is the number of true positives, TN is the number of

true negatives, FP is the number of false positives, and FN is the

number of false negatives.

Precision and Recall: Precision measures the proportion of true

positive detections among all positive detections, while Recall

measures the proportion of true positive detections among all

actual positives.

These metrics help in understanding the trade-off between the

model’s ability to identify true disease cases and its tendency to

generate false positives.

Precision =
TP

TP   +   FP
(9)

Recall =
TP

TP   +   FN
(10)

F1-Score: The harmonic mean of precision and recall, providing

a single metric to balance the trade-off between precision and recall.

F1 − Score = 2� Precision  �  Recall
Precision  +  Recall

(11)

mAP (mean Average Precision): Calculated as the average of the

precision values at different recall levels, mAP is used to summarize

the precision-recall curve in a single value.

mAP =
1
No

N

i=1
APi  (12)

where N is the number of classes, and APi is the average

precision for class i.

FPS (Frames Per Second): Measures the number of frames the

model can process per second, reflecting its real-time processing

speed. A higher FPS indicates better model performance for real-

time applications.

FPS =
1000

Total Time Taken (ms)
(13)

where “Total Time Taken (ms)” is the total time taken to

process the frames in milliseconds.
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4.3 Model training

PLDNet underwent a pretraining phase to accelerate its ability to

recognize and classify diseases in Plectropomus leopardus. This phase

leveraged the PLDD, enabling the model to learn essential feature

representations, such as texture changes and patterns linked to different

disease states. By identifying key features early, PLDNet enhanced its

generalization capabilities, ensuring robust performance across various

disease types and environmental variations.

For the final training phase, the complete PLDD, which includes

conditions such as Vibrio disease and Hirudo parasitic disease, was

used. This thorough training process contributed to PLDNet’s

superior performance. In contrast, the comparison models did

not undergo pretraining, focusing solely on the full training phase

with the same dataset.

During training, the model’s performance was compared

against three baseline models: YOLOv8-n, YOLOv9-m, and

YOLOv9-c. These models were selected due to their proven

efficacy in object detection tasks, serving as benchmarks to

evaluate the effectiveness of PLDNet.

As shown in Figure 4, PLDNet consistently maintains lower loss

values throughout the entire training process compared to the

baseline models, such as YOLOv8-n, YOLOv9-m, and YOLOv9-c.

This indicates that PLDNet benefits from a more stable and efficient

learning process over time. The smooth and continuous reduction

in loss demonstrates the network’s ability to refine its predictions

effectively, even as training progresses. While all models display a

general downward trend in loss, PLDNet’s significantly lower loss

values across epochs emphasize its superior performance in

detecting small-scale and complex disease features, such as

Hirudo parasitic disease. This reflects its robustness and enhanced

capability in handling subtle and intricate disease characteristics

compared to the baseline models.

The chart clearly shows that PLDNet outperforms the YOLOv8-n,

YOLOv9-m, and YOLOv9-c models. The initial sharp decrease in loss

for PLDNet, followed by a smooth and gradual decline, reflects its

superior ability to learn complex patterns within the dataset. Notably,
FIGURE 4

Loss comparison.
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while the loss for YOLOv9-c stabilizes at a higher value, PLDNet

continues to reduce loss, demonstrating its robustness in identifying

small-scale features such as Hirudo parasitic disease.

In our experiments, we observed that using the MPDIoU loss

function resulted in faster convergence and improved accuracy

compared to traditional IoU-based loss functions. This

enhancement was especially prominent in challenging scenarios

requiring precise localization, where small and subtle disease

features need to be detected accurately.
4.4 Ablation study

To further evaluate the effectiveness of the key innovations

introduced in PLDNet, we conducted an ablation study to assess the

individual contributions of the FocalModulation and the MPDIoU.

The goal of this study was to isolate the impact of each of these

components on the overall performance of the disease detection model.

In this experiment, we created three variations of the PLDNet:
Fron
• PLDNet (without FocalModulation): This model was

trained without the FocalModulation mechanism, keeping

the rest of the architecture unchanged. The goal was to

assess how the absence of FocalModulation impacts the

model’s ability to focus on subtle disease features.

• PLDNet (without MPDIoU loss): In this version, we

removed the MPDIoU loss function and replaced it with

a traditional Intersection over Union (IoU) loss. This

allowed us to evaluate the contribution of MPDIoU in

improving localization accuracy, particularly for closely

spaced or partially occluded disease features.

• PLDNet (full version): This model includes both the

FocalModulation mechanism and MPDIoU loss,

representing the complete PLDNet architecture.
The results of the ablation study are summarized in Table 1. The

evaluation metrics used include Precision, Recall, mAP@0.5, and

mAP@0.5-0.95.
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The results of the ablation study indicate that both

FocalModulation and MPDIoU loss are crucial for enhancing the

performance of PLDNet. Removing the FocalModulation

mechanism resulted in a slight decrease in both recall and mAP

values, highlighting the importance of this component in improving

the model’s ability to detect subtle disease features. Similarly, the

exclusion of MPDIoU loss led to a small decrease in the mAP@0.5-

0.95 score, suggesting that MPDIoU is particularly beneficial for

improving localization accuracy in challenging cases with closely

spaced or partially occluded disease features.

These findings demonstrate that both the FocalModulation

mechanism and the MPDIoU loss function significantly

contribute to the performance of PLDNet in detecting and

localizing disease features.
4.5 Detection performance

The detection performance of the proposed PLDNet model was

thoroughly evaluated and compared against three established

models: YOLOv8-n, YOLOv9-c, and YOLOv9-m. The evaluation

metrics considered include Precision, Recall, mAP@0.5, mAP@0.5-

0.95 and FPS which are summarized in Table 2.

As indicated in Table 2, PLDNet outperforms the baseline

models in several key metrics. Notably, it achieved the highest

mAP@0.5and mAP@0.5-0.95 scores of 0.881 and 0.653,

respectively, demonstrating superior accuracy in detecting and

localizing disease features in Plectropomus leopardus images.

While YOLOv9-m showed slightly higher Precision, PLDNet

achieved a balanced performance across all metrics, including a

FPS of 37.04, making it a more reliable choice for real-time disease

detection in aquaculture.

The PR (Precision-Recall) curves, depicted in Figure 5, further

illustrate the comparative performance of these models. The PR

curve of PLDNet consistently shows higher values across various

recall thresholds, particularly in the lower recall range. This

indicates that PLDNet maintains high precision even when a

broader set of potential disease instances is identified, a key
frontiersin.or
TABLE 1 Ablation study results.

Models Precision Recall mAP@0.5 mAP@0.5-0.95

PLDNet (without FocalModulation) 0.878 0.825 0.863 0.625

PLDNet (without MPDIoU) 0.851 0.854 0.869 0.655

PLDNet (fullversion) 0.845 0.866 0.881 0.653
The bold values represent the highest performance metrics for each category (Precision, Recall, mAP@0.5, and mAP@0.5-0.95).
TABLE 2 Performance metrics of various models.

Models Precision Recall mAP@0.5 mAP@0.5-0.95 FPS

YOLOv8-n 0.853 0.780 0.815 0.567 88.50

YOLOv9-c 0.892 0.821 0.861 0.631 29.67

YOLOv9-m 0.895 0.807 0.853 0.616 42.37

PLDNet 0.845 0.866 0.881 0.653 37.04
The bold values represent the highest performance metrics for each category (Precision, Recall, mAP@0.5, and mAP@0.5-0.95).
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FIGURE 5

PR curves of the four models.
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FIGURE 6

F1 curves of the four models.
(c) Yolov8-n (d) Yolov9-m

(e) Yolov9-c (f) PLDNet

(b) Ground Truth Image(a) Original Image

FIGURE 7

Model Detection Results (A) Original Image; (B) Ground Truth Image; (C–F) Detection results of different models.
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advantage in minimizing false positives while ensuring

comprehensive detection.

Additionally, the F1 curve analysis, shown in Figure 6, reveals that

PLDNet maintains superior F1 scores across varying confidence

thresholds compared to the other models. The F1 score, which

balances precision and recall, is a critical metric for evaluating the

overall effectiveness of the detection model. The consistency of

PLDNet’s F1 score, particularly in the mid to high-confidence range,

underscores its robustness in making accurate predictions without

sacrificing recall. This balance is vital for real-time applications, where

both accuracy and speed are necessary to ensure timely disease

detection and intervention in aquaculture environments.

The detection results of the four models—YOLOv8-n,

YOLOv9-m, YOLOv9-c, and PLDNet are visually compared in

Figure 7. This figure illustrates the models’ abilities to identify and

label disease features in Plectropomus leopardus. Notably,

YOLOv8-n tends to over-label certain areas, resulting in multiple

detections of the same disease instance, as seen with the repeated

detection of Vibrio disease. In contrast, both YOLOv9-m and

YOLOv9-c demonstrate more restrained detection outputs but

occasional ly miss subtle disease features , potential ly

compromising comprehensive disease monitoring.

PLDNet, however, strikes a balanced approach. It offers a

precise and consistent identification of disease features,

successfully capturing both Hirudo and Vibrio disease with fewer

false positives compared to YOLOv8-n. The improved detection

accuracy is evident in its ability to distinguish between closely

related disease instances, reflecting its superior feature learning

capabilities. This visual analysis aligns with the quantitative results

shown in Table 2, where PLDNet achieves higher mAP scores and

recall, underscoring its reliability in real-time disease detection in

aquaculture environments.

In conclusion, the experimental results clearly indicate that

PLDNet provides a substantial improvement in disease detection

performance for Plectropomus leopardus. The model’s superior

precision, recall, and mAP scores, combined with its efficient

learning capabilities, make it a valuable tool for real-time disease

monitoring in aquaculture.
4.6 Discussion

The experimental results presented in this study demonstrate

that the proposed PLNet model significantly outperforms existing

models in detecting diseases in Plectropomus leopardus. The

superior performance of PLDNet can be attributed to several key

innovations introduced in this research. Notably, the integration of

FocalModulation effectively enhances the model’s ability to capture

multi-scale features, which is crucial for identifying both small and

subtle disease manifestations. Additionally, introducing the

MPDIoU metric further improves the model’s accuracy,

particularly in challenging scenarios where disease features are

closely spaced or partially obscured.
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The improved detection accuracy and efficiency of PLDNet hold

significant implications for the aquaculture industry. Early and

precise detection of diseases is paramount in reducing mortality

rates and minimizing economic losses, making this model a valuable

tool for real-time disease monitoring Pires et al. (2021). By enabling

timely intervention, PLDNet can contribute to healthier fish

populations and more sustainable aquaculture practices.

When compared to existing methodologies, such as those

proposed by Shaveta Malik et al. and Md. Jueal Mia et al.,

PLDNet demonstrates clear advantages in both speed and

accuracy. Previous approaches have often struggled with the

trade-off between these two aspects, particularly in real-time

applications. PLDNet addresses these limitations through its

advanced architectural design and innovative metrics, providing a

more robust and accurate solution for the detection of diseases in

Plectropomus leopardus. This study not only validates the

effectiveness of the proposed model but also sets a new

benchmark for future research in the domain of aquaculture

disease detection.
5 Conclusion

In this study, we present PLDNet, a novel convolutional neural

network for real-time detection and classification of diseases in

Plectropomus leopardus. Utilizing techniques like FocalModulation

and MPDIoU, PLDNet outperforms existing models (YOLOv8-n,

YOLOv9-m, YOLOv9-c) in key metrics, achieving the highest mean

Average Precision (mAP) scores and demonstrating superior

precision and recall. This model enhances early disease detection,

crucial for reducing mortality and economic losses in aquaculture.

Future work could involve expanding the dataset and refining the

model for even greater accuracy. Overall, PLDNet marks a

significant advancement in fish disease monitoring, offering a

valuable tool for sustainable aquaculture practices.
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