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The utilization of synthetic aperture radar (SAR) for depth inversion is crucial for

accurate underwater mapping. However, current SAR-based techniques face

challenges in segmentation accuracy, which directly affects inversion precision

and spatial resolution. Traditional segmentation methods lack efficiency and

often result in low-resolution outcomes. To address these issues, we propose a

novel SAR water depth inversion method based on variable window sliding

segmentation. This method optimizes nearshore image utilization by

dynamically adjusting the pixel size and preventing coastline encroachment,

leading to more precise swell wavelength measurements. When applied to the

eastern sea off Naraha, Japan, our method achieved a minimum mean relative

error (MRE) of 9.2% for shallow waters (0 to 20 m depth) and 4.9% for deeper

waters (80 to 100 m depth). These results significantly improve upon those of

traditional methods, which typically show MREs ranging from 10% to 30%.

Additionally, our method achieves a maximum spatial resolution of 5.5 m, a

notable advancement in nearshore depth measurement. The study also revealed

that different depth ranges and function types, particularly linear and atanh

functions, impact measurement performance, demonstrating superior

accuracy across multiple metrics.
KEYWORDS

depth inversion, synthetic aperture radar, variable window, sliding segmentation,
swell wavelengths
1 Introduction

Depth inversion is a crucial area of research in marine geology and ocean resource

development. With the continuous advancement of marine science and technology and the

increasing demand for applications, depth inversion technology has become key in fields

such as marine mapping, ocean resource exploration, and environmental monitoring.
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Synthetic aperture radar (SAR) technology, as a remote sensing

tool, has demonstrated unique advantages and broad application

prospects in depth inversioncit (Loor and Hulten, 1978; Loor, 1981;

McLeish et al., 1981; Valenzuela et al., 1983).

Traditional depth measurement methods mainly include lead-

line sounding and sonar sounding (Wu et al., 2013). Lead-line

sounding, which measures depth by lowering a weighted line to the

seabed, is a simple but inefficient method suitable for local shallow

water measurements. Sonar sounding, which uses sound wave

propagation characteristics, can be divided into single-beam sonar

and multibeam sonar (Yang et al., 2023; Qi et al., 2023). Single-

beam sonar has limited coverage and lower efficiency, whereas

multibeam sonar offers broader and more accurate measurements

but is expensive and complex to operate. Additionally, side-scan

sonar, which is primarily used for seabed topography mapping, can

also assist in depth measurement.

With the development of remote sensing technology, depth

inversion methods have garnered increasing attention. Optical

remote sensing, which analyzes multispectral images acquired by

satellites or aircraft and combines empirical models to estimate

depth, is suitable for clear, shallow waters but is affected by water

transparency and suspended particles (Jay and Guillaume, 2016).

Airborne light detection and ranging (LiDAR) bathymetry, which

uses laser pulses to measure depth, is suitable for high-precision

measurements in shallow waters and coastlines but is limited by

depth, high costs and operational complexity (Wang et al., 2022).

Despite the achievements of these methods, their limitations

are apparent.

As SAR technology evolves and has broader applications (Mao

et al., 2022; Zhou et al., 2023; Zhang et al., 2024a, b; Cao et al., 2024),

the use of SAR data for depth inversion has emerged as a new,

effective method (Alpers and Hennings, 1984; Zheng et al., 2006).

SAR technology, through the transmission and reception of

microwave signals, can acquire surface reflection signals without

being constrained by weather, time, and light conditions, thereby

obtaining sea surface characteristic information (Mao et al., 2021).

Compared with optical remote sensing, SAR technology offers all-

weather, all-time observation capabilities, making it particularly

suitable for ocean regions with poor atmospheric transparency or

severe cloud cover. Thus, using SAR technology for depth inversion

overcomes the natural condition limitations of traditional methods,

enabling efficient and accurate ocean depth detection.

In depth inversion study, SAR technology derives depth

information mainly by analyzing sea surface reflection signals.

Given the relationships between depth and factors such as ocean

surface waves and tides, analyzing wave characteristics and

reflection intensity in SAR images can reveal depth distribution

patterns (Zheng et al., 2012; Li et al., 2009). Traditional inversion

methods are based on complex physical equations and radar

backscatter models and achieve shallow sea topography inversion

by directly solving the SAR imaging process (Alpers and Hennings,

1984; Shuchman et al., 1985). This approach performs well in areas

with continuous seabed terrain variations but requires high-quality

SAR images. The complexity of the marine environment and the

impact of SAR image noise limit the practical application of

this method (Huang et al. , 2000). Methods based on
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strong tidal currents and local seabed interactions, while

theoretically innovative, face challenges such as computational

complexity, sensitivity to initial depth accuracy, and relatively low

detection resolution.

Therefore, continuous exploration of new techniques and

methods is necessary to improve inversion accuracy and

reliability in shallow sea topography. Currently, a method that

relies on the refraction and shoaling of long surface gravity waves

propagating toward the coast, establishing a direct relationship

between swell and depth, is gradually being applied for depth

inversion (Boccia et al., 2015; Bian et al., 2020; Brusch et al.,

2011). With the advancement of spaceborne SAR technology,

more SAR satellite data are being used for shallow sea topography

detection. Using the fast Fourier transform to calculate wave

information and combining it with the linear dispersion relation

for depth inversion has yielded good results (Pleskachevsky et al.,

2011; Misra et al., 2020). Satellites such as ERS-2, RESAT-1, HJ-1C

SAR, and Sentinel-2 have been applied in depth detection

experiments, demonstrating the feasibility of depth detection on

the basis of swell characteristics and linear dispersion relationships

(Fan et al., 2008; Mishra et al., 2014; Bian et al., 2016; de Michele

et al., 2021).

The use of the linear dispersion relation to obtain water depth

from SAR data has significantly enhanced the precision and

efficiency of depth inversion, offering a powerful tool for mapping

seabed topography. However, this method still faces several

challenges that need to be addressed to improve its accuracy,

especially in regions with uneven or complex seabed terrain. One

of the primary challenges lies in the accurate extraction of wave

wavelength information, which is central to depth inversion via the

linear dispersion relation. The size and segmentation of image units

are crucial factors in this wavelength extraction process. Previous

studies have often relied on fixed image unit sizes ranging from 5 to

10 times the wavelength (Huang et al., 2021). While this approach

may work in relatively stable environments, it becomes problematic

when the wavelength varies with depth erratically. Applying a

constant image unit size across the entire remote sensing image

assumes that the wavelength varies uniformly, which is rarely the

case, particularly in areas with significant variations in water depth.

This leads to decreased accuracy and efficiency, as wavelength

information may be distorted or inaccurately captured.

Furthermore, human activities and irregular coastlines introduce

additional complexities in nearshore areas. Coastal development,

such as ports, breakwaters, and underwater infrastructure, can

significantly alter wave patterns and complicate the segmentation

process. Irregular coastal terrains, combined with rapidly changing

seabed features, make applying a fixed image unit size difficult,

further reducing the method’s reliability in regions with dynamic or

complex coastal changes. To overcome these challenges, more

adaptive and sophisticated algorithms are required to dynamically

adjust image unit size and segmentation parameters to

accommodate the local variations in wavelength and depth.

To address these issues, we propose a depth inversion method

based on variable window image unit segmentation. This method

dynamically adjusts the size of image units during segmentation,

determines unit changes via linear functions, atanh functions, and
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their symmetric functions to accurately extract wavelength

information in different areas, avoiding complex manual

judgments and enhancing segmentation efficiency and inversion

accuracy. For irregular coastlines, this method increases the

utilization rate of image depth inversion in nearshore areas by

transforming the starting point along the coastline and extending

outward. We applied and tested this method in the sea area east of

Naraha, Japan, with satisfactory results.
2 Materials and methods

2.1 Study area and materials

The eastern coast of Japan, situated in the northwestern Pacific

Ocean, is closely connected to the broader Pacific Ocean. This

coastal region exhibits significant variability in water depth and

presents complex topographical features. The relatively shallow

coastal waters provide a rich habitat for marine life, making this

area one of Japan’s essential fishing centers. Geologically, the

eastern coast lies at the boundary between the Pacific Plate and

the Philippine Sea Plate, resulting in frequent geological activities

such as earthquakes and volcanic eruptions. Additionally, coastlines

are highly irregular, forming numerous excellent harbors and ports

that facilitate marine trade and transportation.

As shown in Figure 1, The study area selected for this research is

the waters near Naraha, a city in Fukushima Prefecture, Japan,

located along the eastern coast. Naraha’s coastline stretches

approximately 50 km and is characterized by its winding and

variable nature, with complex topography. The surrounding

mountains and hilly terrain cause the coastline to be sinuous and

undulating, creating many natural bays and ports. Owing to its

location in a seismic zone, frequent geological activity may lead to

changes in the coastline. Additionally, influenced by the Pacific

climate, the coastline may experience variations due to monsoons

and oceanic fluctuations, affecting coastal topography.
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The Gaofen-3 (GF-3) satellite is a high-resolution radar satellite

from China that was successfully launched on August 10, 2016, at

the Taiyuan Satellite Launch Center. The GF-3 satellite boasts 12

imaging modes, making it the satellite with the most imaging modes

among SAR satellites globally (Liang et al., 2024). In depth

inversion, the GF-3 satellite has exceptional technical advantages.

First, it offers a spatial resolution of up to 1 meter, enabling the

satellite to precisely capture minute details of the sea surface,

providing fine-grained data crucial for depth inversion.

Additionally, the application of multipolarization SAR technology

allows the satellite to obtain more comprehensive sea surface

scattering information. These parameters are essential for

improving the accuracy and reliability of depth inversion.

In this study, we utilized the Fine Stripmap 1 mode of the GF-3

satellite, which achieves a resolution of 5 m and a swath width of 50

km, with dual-polarization capabilities. Compared with other

satellites, GF-3 has a strong ability to observe sea surface

fluctuations. As shown in Figure 2, the entire remote sensing

image was extracted to analyze surface wave patterns across

different coastal regions. Subfigures 2(B) to 2(E) display areas

within the red dashed box, progressively moving farther from the

coastline, with each subfigure highlighting the swell characteristics

at varying distances from the shore. Specifically, Figure 2B

illustrates the region closest to the coast, where the swell is most

prominent, exhibiting strong and well-defined patterns typical of

the nearshore environment. Figure 2C captures a slightly offshore

area where the swell patterns remain visible, albeit with reduced

intensity as the distance from the shore increases. Figure 2D shows a

more distant offshore region, where the swell is still detectable,

though it appears less pronounced and more dispersed, indicating

the influence of deeper waters. Finally, Figure 2E depicts the

furthest offshore area, where the swell is subtle but still

discernible, demonstrating the persistence of wave propagation

over large distances from the coastline. The variations in pattern

across these different distances are crucial for depth inversion, as

they provide valuable insights into wave dynamics, which are

essential for understanding depth features.
FIGURE 1

Study area. The dashed box represents the depth inversion area in this study.
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2.2 Image segmentation method

To perform depth inversion, a single remote sensing image

needs to be segmented into multiple small image elements, each

processed individually to determine the corresponding water depth.

However, given that the variation in water depth is relatively small

compared with the wide range of remote sensing images, manual

selection of image elements during segmentation can reduce the

inversion efficiency. Therefore, choosing image elements is

fundamental to depth inversion and crucial for accuracy.

Previous studies have examined the influence of image elements

on depth inversion and suggested appropriate ranges for these

elements. However, as the observation capabilities of different

remote sensing images vary, finer adjustments to the image

elements are needed. Considering that the wavelength of surface

waves is positively correlated with shallow water depth, the image

elements should also vary during segmentation. Traditional

segmentation methods are usually fixed or manually determined,

significantly reducing efficiency. Such ambiguous segmentation

methods often hinder reproducibility when wave information is

used for depth inversion. Therefore, this study proposes a variable

window sliding segmentation method for image segmentation. As

illustrated in Figure 3, the process is as follows:

2.2.1 Image preprocessing
The irregular remote sensing image is adjusted to obtain a

regular image, as shown in Figure 3A. The original image is not a

regular rectangle, leading to some null values at the edges during

segmentation. These null values introduce errors into the image

unit spectrum. The adjustment aims to eliminate the influence of

edge null values, thereby improving the depth inversion accuracy at

the image edges.
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2.2.2 Information storage
A remote sensing image is stored as an intensity information

matrix and a position information matrix via software. Separating

the two types of data ensures that only the intensity information

matrix is manipulated during sliding window image segmentation.

This separation also makes it easier to retrieve corresponding

latitude and longitude information for the varying image units,

thereby enhancing segmentation efficiency.

2.2.3 Coastline identification and
noise processing

Software or programs are used to identify coastlines and coastal

obstacles, such as ports and ships, in remote sensing images,

avoiding the introduction of external interference. The impact of

the coastline and external interference on the spectrum is mainly

observed in shallow water areas because the image units are smaller

in these areas, making the influence of the coastline and noise more

noticeable. Thus, it is necessary to determine the coastline shape

before image unit segmentation to provide a starting point for

subsequent segmentation. Ships, oil slicks, internal waves, and other

factors are considered noise when extracting wave length

information of surface waves, and these areas are typically

masked during the processing stage to prevent them from

interfering with the analysis. Noise is reduced by averaging

surrounding pixels, thus minimizing inversion errors.

2.2.4 Image unit extremum determination
The dynamic adjustment of image units requires a clear range.

An appropriate segmentation range allows for more accurate

retrieval of wavelength distribution information. A rough range

can be obtained through simple trials. In this study, as shown in

Figure 4, the image unit size increases gradually from the coastline
FIGURE 2

High-resolution SAR remote sensing image from the GF-3 satellite, acquired on March 8, 2018. (B–E) depict images gradually moving away from the
coastline outlined in (A).
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to the open sea, with the smallest unit being 50×50 pixels and the

largest being 400×400 pixels.

2.2.5 Determining the image unit
variation function

The relationship between wavelength and depth is nonlinear,

and the depth characteristics vary in different areas. Thus, the image

unit variation function can be diverse. An accurate variation

function should align with the spatial variation in the swell

wavelength, but determining this function is challenging because

of the variable nature of wavelength information. Therefore, only an

approximate variation function can be sought. However, a dynamic

window is always more accurate and efficient than a fixed window.

In this study, the image unit size variation from minimum to

maximum is determined on the basis of three functions: a linear

function, an atanh function, and a symmetric function of atanh with

respect to the linear function(Sy-atanh). The choice of atanh is

based on the relationship between depth and the swell wavelength,

as illustrated in Figure 4B.
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2.2.6 Window sliding
After determining the starting point on the coastline, image unit

segmentation is performed along the x-direction of the coastline

with a sliding step of 25 pixels. This step size is specifically chosen to

address the challenge posed by the small coverage of high-

resolution SAR images, which can affect the accuracy of depth

inversion. By using a step size of 25 pixels, we aim to balance both

the image resolution and the need for effective segmentation,

ensuring that the method is robust enough to work with high-

resolution images that have limited coverage. Once segmentation

reaches the end of a segment, the next starting point is moved along

the y-direction of the coastline, and steps 3-5 are repeated. For

complex coastlines, an image unit expansion method is applied

throughout the segmentation process to retrieve additional units as

needed. This approach increases the utilization of image data near

the coastline, helping to avoid inversion errors caused by the

coastline intruding into image units during segmentation.

Due to the irregularity of coastlines, the wave-based method for

depth inversion struggles with accurately segmenting images near
FIGURE 3

Process of the remote sensing image segmentation method. (A–E) correspond to each step in the method, including regularization of original
image, information storage, coastline identification and noise processing, image element size extreme value judgment, determination of function,
and window slide.
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the shore, leading to challenges in accurately inverting nearshore

water depths. Typically, depth inversion areas are defined at a fixed

distance from the coastline to overcome segmentation issues, or

interpolation methods are used. However, these approaches often

result in inaccurate depth inversion along the coastline. To address

this challenge and improve the resolution of depth inversion, we

propose a specialized method for handling starting points on the

coastline. Taking Figure 5A as an example, the first step is to extract

the coastline from the image, as shown in Figure 5B. After

identifying the starting points along the coastline, we extend these

points diagonally in both the upper-right and lower-right

directions, thereby forming pixels that fully utilize the available

image information. Next, we check whether the coastline intersects

any newly formed pixels. If the coastline does intrude into the pixel

area, we exclude these pixels from the depth inversion process, as

illustrated in Figures 5C–E. By doing so, we ensure that only the

most relevant regions, free from the interference of the coastline, are

used for depth inversion. This approach enhances the resolution of

depth inversion by accurately defining the region of interest near

the coastline. It eliminates the inaccuracies introduced by

interpolation or arbitrary distance-based segmentation and allows

for more precise depth inversion, especially in areas where

traditional methods struggle.

Initially, to avoid the intrusion of the coastline into the pixels,

we considered determining different extension methods according

to the slope of the coastline. However, this approach results in
Frontiers in Marine Science 06
segmentation gaps when there are corners in the coastline, as shown

in Figure 5F. One potential solution involves allowing the starting

points to extend upward and downward at the corners, but this

requires identifying the corners, adding complexity to the process.

Therefore, we adopted the approach of extending in two directions

for each starting point pixel, which is more efficient and convenient.

This method also effectively avoids introducing errors caused by the

complete intrusion of the coastline, as shown in Figure 5H.
2.3 Theory of depth inversion methods

The theory of depth inversion based on wave dynamics, also

referred to as linear wave theory or Airy theory, provides analytical

solutions to the momentum and mass conservation equations that

describe the velocity field and pressure along a water column. This

theory establishes a relationship between wave speed, wave

frequency, and water depth (the linear dispersion relationship)

(Svendsen, 2006), which can be expressed as follows:

l = l0 tanh (kh) (1)

where l0 = gT2=2p , T is the wave period, ɡ is the acceleration

due to gravity, k is the wavenumber, and h is the water depth. The

influence of the mean flow is neglected in (1). The water depth is

expressed as follows:
FIGURE 4

Remote sensing image segmentation method. (A) shows the result of segmentation along the x-direction at the coastline. (B) illustrates the curve
that represents the variation in image element size with respect to x-pixels. This provides a detailed explanation of the fifth section in Figure 3.
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h =
l
2p

atanh (l=l0) (2)

Using the two-dimensional FFT, the wavelength of the pixels

segmented in Section 3.1 is obtained while simultaneously

recording the latitude and longitude information of the pixel

centers (Santos et al., 2020). The wavelength information is then

incorporated into (2) for depth inversion, and the inversion results

are filtered via a Gaussian filter.

Equations 1, 2 show that the accuracy of l0 significantly

influences the inversion results. When l0 is overestimated, the

estimated depth h is typically too shallow; conversely, an

underestimated l0 leads to an overestimation of h. The

determination of l0 is inherently linked to the initial depth

estimation. Inaccurate initial depth values can introduce

substantial errors in the inversion process, particularly in deep-

water regions. To minimize these errors, using multiple data sets

and computing their average to determine the initial depth and l0 is
common practice.
3 Results

3.1 Depth inversion results under fixed
window segmentation

Initially, we selected six fixed window sizes for bathymetric

inversion in the study area to observe the inaccuracies of fixed

window inversion and to determine the appropriate range for the
Frontiers in Marine Science 07
windows. Figures 6A–F show the wavelength calculation results for

window sizes of 50, 100, 150, 200, 300, and 400 pixels, respectively.

When the window is small, the wavelength resolution in shallow

areas (near the coastline) is better, but it worsens as the distance

from the coastline increases. This is clearly observed in the green

area in Figure 6A. As the fixed window size increases, the

wavelengths in areas far from the coast become more

distinguishable. However, the wavelengths near the coast, while

somewhat resolvable, are larger than those in the calculations with

smaller windows.

The wavelengths of swells near the coast are shorter and change

more rapidly spatially. A larger window encompasses too much

image information, including more wavelength data, which is

evidently inaccurate for capturing nearshore swell wavelengths.

Conversely, for areas far from the coast where swell wavelengths

are longer, a small window might not even contain a complete wave

period. Hence, smaller windows must be used near the coast,

whereas larger windows are necessary farther offshore,

underscoring the need for the dynamic window approach

we propose.

Furthermore, as the window size increases, the left boundary of

the calculation area shifts away from the coastline, significantly

deforming the boundary line compared with the original coastline.

This phenomenon is understandable, as the center points of

windows near the coast move farther offshore as larger windows

expand outward, causing the inversion area’s left boundary to shift

rightward. The deformation occurs because larger windows, with

fixed sliding steps, have greater distances between their center
FIGURE 5

Coastal line processing method. Extracting the coastline from the remote sensing image in (A) yields (B). (C, D) depict two curved coastline
segmentation methods. (E) shows the segmentation method where the coastline protrudes outward at the critical position. (F, G) illustrate how
different segmentation methods for curved coastlines can lead to reduced resolution. (H) represents the segmentation method where the coastline
concaves inward at the critical position.
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points, weakening the boundary resolution and deforming the

coastline. This deformation does not occur with smaller windows.

Additionally, our proposed outward expansion method was also

applied with fixed windows. This method allows for the generation

of an approximate irregular coastline even with unsuitable

windows, whereas previous studies typically smoothed the

bathymetry near the coastline into a curve.

We utilized (2) to perform depth inversion using the calculated

wavelengths, and the inversion results are shown in Figure 7.

Overall, the depth inversion results from smaller windows tend to

be smaller. This is because in areas far from the coastline, where the

wavelengths are smaller, fixed smaller wavelengths lead to overall

smaller inversion results. As the window size increases, the water

depth away from the coast gradually becomes more regular, and the

range of water depths in the inversion increases, approaching the

actual situation. However, issues in wavelength calculations persist

in the depth inversion results.

Additionally, we observed that with larger window sizes, the

spatial resolution of the inversion results decreases, which is more

evident in the shape of the coastline. Therefore, the fixed window

segmentation method inevitably introduces various issues, affecting
Frontiers in Marine Science 08
both the inversion accuracy and spatial resolution. Moreover,

manual judgment involvement in different segmentations of

remote sensing images consumes considerable manpower

and resources.
3.2 Depth inversion results using variable
window segmentation

We also present the results of the wavelength calculation and

depth inversion under the sliding variable window segmentation

method employed in this study, as shown in Figure 8. The inversion

results under the three types of window variation curves used in this

study are closely aligned with the coastline identified in the remote

sensing images, as the left boundary of the inversion area did not

shift in all three cases. Compared with the fixed window

segmentation method, the wavelengths obtained via the sliding

variable window method are more suitable for each region of the

entire area, as shown in Figures 8A–C. In the nearshore area, the

wavelengths are smaller and gradually increase as we move away
FIGURE 6

Wavelength inversion results are obtained through fixed-window processing. (A–F) display the results for varying window widths of 50, 100, 150,
200, 300, and 400 pixels, respectively. These different window sizes demonstrate the influence of spatial resolution on the accuracy and quality of
wavelength inversion, emphasizing how the choice of window width can affect the precision of the results. Smaller window sizes are better suited
for nearshore areas, while larger windows are more appropriate for offshore regions. However, a fixed window size is insufficient to accurately
calculate surge wave wavelengths, particularly in cases where spatial variation is significant.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1509503
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhang et al. 10.3389/fmars.2025.1509503
from the coastline. Additionally, the shape of the coastline remains

unchanged under all three scenarios.

Similarly, using (1) and (2), we derived the bathymetric

distribution and compared it with the results obtained from fixed
Frontiers in Marine Science 09
window sizes, as shown in Figure 9. Compared with those under

small window segmentation, the inversion results under the three

variation functions show clear depth resolution in areas far from the

coast. Compared with those of larger windows, the inversion results
FIGURE 8

Wavelength inversion results after sliding window processing (A–C), and the functions used are Linear, atanh, and Sy-atanh, respectively.
FIGURE 7

Water depth inversion results are obtained through fixed-window processing. (A–F) correspond to window widths of 50, 100, 150, 200, 300, and
400 pixels, respectively. The inverted water depth data clearly reflects the limitations of wave wavelength extraction using fixed windows. Smaller
windows cannot capture information from deeper water, while larger windows may lead to data omission in nearshore areas. These results highlight
the challenges of using a fixed window size for accurate water depth inversion across varying spatial scales.
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under the three variation functions demonstrate higher resolution

at the coastline, avoiding boundary shifts and maintaining

good resolution.

Overall, the inversion results from the sliding segmentation

with variable windows inherit the advantages of both small and

large windows. The dynamic variable windows enable the

segmented image to better adapt to the wavelength information

of different regions. This results in bathymetric inversion with more

pronounced spatial detail than fixed windows do. For example, the

bathymetric changes in Figures 9A–C are smoother, whereas those

in Figures 9D–F show noticeable differences, which we analyze in

the following sections. While manually adjusting the window size is

possible, it greatly depends on the operator’s expertise and is time-

consuming, especially for wider swath images and long time series

images. Therefore, our proposed method effectively addresses

these issues.

The overall distribution of the water depth obtained is close to

that of the Earth Topography One Arc-Minute Global Relief Model

(ETOPO2022) data. However, the maximum spatial resolution of

the water depth obtained in this study reaches 5.5 m, which is

crucial for nearshore water depth inversion. To better illustrate the

inversion’s reliability, we matched this study’s inversion results with
Frontiers in Marine Science 10
the ETOPO2022 data because their spatial resolutions differ. As

shown in Figure 10, the comparison between the two datasets

reveals that the determination coefficient for all three inversion

results is 0.98, with a root mean square error (RMSE) of less than 6

m, a mean relative error (MRE) of less than 14%, and a mean

absolute error (MAE) of less than 5 m. The fit between the two

datasets remains relatively stable for water depths less than 50 m.

However, when the water depth exceeds 50 m, the inversion results

of the linear function curve tend to be underestimated. In contrast,

those of the symmetric atanh function curve tend to be

overestimated. Only the inversion results of the atanh function

curve exhibit a slightly better fit than the other two, with the

smallest RMSE and MRE among the three, at 4.8 m and 9.8%,

respectively. Previous depth inversion methods have been difficult

to verify on a large scale, with MREs typically between 10% and 30%

(Pleskachevsky et al., 2011; Santos et al., 2021; Pereira et al., 2019).

The spatial resolution typically ranges from hundreds of m to

kilometers, making remote sensing data near coastlines nearly

unusable. In comparison, our proposed method is efficient, has

high precision, and offers high utilization.

To observe the inversion capability of this method across

different water depths, we divided the inversion results into
FIGURE 9

Comparison of depth inversion results after fixed window processing (A–C) and sliding window processing (D–F). The results demonstrate that the
sliding-window approach effectively addresses the limitations observed in the fixed-window method, providing more accurate water depth inversion
across the entire area, particularly in nearshore regions. This improvement highlights the advantages of the sliding-window technique in overcoming
spatial resolution challenges inherent to fixed-window processing.
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ranges with intervals of 20 m, ranging from 1 to 100 m. The specific

errors are shown in Table 1. Concerning the relative error, the

inversion results under the three window change functions

exhibited significant relative errors between 20 m and 60 m, as

depicted in Figure 11A. Among them, the inversion results of the

symmetric atanh function were the poorest, showing unstable

inversion capabilities with significant variations in relative error.

Conversely, the results obtained from the linear function and atanh

were relatively close. With respect to the absolute error, as shown in

Figure 11B, as the water depth increased, the absolute error of the

inversion results from the linear function gradually increased.

However, for symmetric atanh and atanh, their absolute errors

decreased gradually for water depths exceeding 60 m. Overall, the

results obtained from the atanh function corresponding to the
Frontiers in Marine Science 11
window transformation yielded slightly better outcomes, as

evident from the variation curve of the RMSE in Figure 11C.

To further analyze the inversion results, we isolate the inversion

results segmented by the atanh function curve window

transformation. After the spatial resolution is reduced, the overall

consistency between the inversion results and the ETOPO2022 data

becomes more evident, as shown in Figures 12A, B. Statistical

analysis revealed that the maximum water depth in the study area

is 92 m, and the minimum depth is 5 m, with an average depth of 37

m, as shown in Figure 12C. The values are distributed mainly

between 10 m and 50 m. Notably, the quantity of inverted values is

related to both the characteristics of the water depth distribution in

the study area and the properties of the window. The deeper the

water depth is, the larger the data interval and the larger the

window. Overall, the northern part of the study area has relatively

shallow water depths, primarily within 50 m. In contrast, the

southern part experiences drastic changes in water depth,

gradually approaching the Japan Trench.
4 Discussion

We calculated the gradient of water depth changes to

demonstrate variations in the inversion results. As shown in

Figure 13A, the gradient of the water depth along the east–west

direction reveals a distinct band of intense depth changes not far

from the shore (enclosed by the solid green line in Figure 13A),

where the maximum depth gradient reaches 9.2 m per kilometer.

Additionally, in the southeastern region of the study area, two

circular areas with significant gradients are observed (enclosed by

the solid blue circles in Figure 13A). Moreover, the changes in the

north–south gradient in the inversion results are relatively small, as

depicted in Figure 13B. However, within the band of intense east–

west gradient changes, three regions with significant north–south

gradient changes are identified (enclosed by the dashed green lines

in Figure 13B). The two regions with pronounced north–south

gradient changes are consistent with the locations of the circular

depressions shown in Figure 12C, which are more readily

observable because of the reduced resolution in Figure 12A. This

highlights the importance of enhancing spatial resolution in

remote-sensing-based inversions. The appearance of these
FIGURE 10

Comparison of depth inversion results after sliding window processing and ETOPO2022 data. The functions used are Linear (A), atanh (B), and Sy-
ATANH (C).
TABLE 1 The specific inversion results of the three variation functions at
different depth ranges.

Depth
range

Function
type

Number MRE
(%)

MAE
(m)

RMSE
(m)

0-20

Linear 5898 10.7 1.4 1.7

atanh 5929 9.2 1.2 1.5

Sy-atanh 5576 12.9 1.6 1.9

20-40

Linear 4576 15.6 3.9 4.5

atanh 3793 12.6 3.2 3.6

Sy-atanh 4926 19.1 4.6 5

40-60

Linear 7232 11.7 5.2 5.9

atanh 5370 11.3 5.3 6

Sy-atanh 5154 16.1 6.8 7.7

60-80

Linear 4544 7.2 5.5 7.5

atanh 4543 7.1 5 6.2

Sy-atanh 5380 10.4 6.2 7.2

80-100

Linear 383 8.3 7.4 8

atanh 892 4.9 4.3 5.8

Sy-atanh 1525 5.6 4.9 6.5
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depressions may be related to underwater seismic activity (Booth

et al., 2020), which requires further investigation.

In fact, the SAR bathymetric inversion method proposed in this

paper has broad applications in real-world scenarios, including

coastal management, maritime navigation, and disaster response.

High-precision SAR bathymetric inversion technology can be used

for regular monitoring of coastline depth changes, thereby assessing

beach erosion and accretion. For example, in areas prone to erosion,

this technology can help managers identify severely eroded regions

and develop protective strategies accordingly. Additionally, in

maritime navigation, high-precision SAR bathymetric inversion

technology can be used for route planning and obstacle detection,

accurately measuring channel depths to ensure that vessels avoid

shallow areas and underwater reefs during navigation.

The dynamic window sliding segmentation method proposed in

this paper is our preliminary work, and we will further refine it in

future studies. By dynamically adjusting the window size, we have

enhanced the accuracy of bathymetric inversion and increased the

method’s utilization and resolution of remote sensing images

through outward expansion. However, there is no universally

applicable method for determining the variation function, and we

have only conducted preliminary attempts, considering the varying
Frontiers in Marine Science 12
depth and wavelength distributions in different marine areas. This,

we believe, is a key factor in further improving the inversion

accuracy and resolution.

In future work, integrating optical methods with SAR inversion

for multisource data fusion presents several challenges that need to be

addressed. One major challenge is the difference in the types of

information provided by each sensor. SAR data, which captures

surface characteristics and dynamics, often struggles with shallow

water due to surface roughness and wave effects. In contrast, optical

imagery provides high spatial resolution and can capture underwater

features directly in clear water but is limited by environmental

conditions such as cloud cover and water turbidity. Thus,

combining these two data sources requires careful alignment of the

information extracted from each sensor type. To address this, one

potential solution is the development of advanced fusion algorithms

that can effectively combine the complementary strengths of both

datasets. These algorithms should account for differences in

resolution, spectral range, and environmental sensitivities. For

example, SAR data can provide detailed surface information, while

optical data can improve the accuracy of bathymetric models by

filling in gaps in the shallow-water depths and providing higher

resolution for the seafloor. Another challenge is the need for robust
FIGURE 11

Analysis of the error in water depth inversion after sliding window processing. (A, B) show the MRE and MAE in different water depth ranges, with the
numerical value on the horizontal axis representing the end point of the water depth range. (C) shows the RMSE of the water depth inversion in
different water depths.
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FIGURE 13

Variation in the water depth gradient in the east–west direction (A) and north–south direction (B). The green solid and dashed lines enclose the
regions with relatively large gradients near the coastline. The blue solid and dashed lines enclose the regions with relatively large gradients far from
the coastline.
FIGURE 12

Water depth distribution (A) and three-dimensional representation of water depth (B) under the atanh segmentation function. (C) shows the
numerical statistics of the water depth.
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data preprocessing to correct various distortions and discrepancies

between the data sources. Techniques like image registration,

normalization, and co-registration will be critical in accurately

aligning the SAR and optical images.
5 Conclusions

This study addresses critical challenges in SAR-based depth

inversion techniques and proposes a method based on variable

window image element segmentation. This method significantly

enhances the accuracy and efficiency of depth inversion in regions

with complex underwater terrain. Through an analysis of SAR images

along the coast of Naraha, we successfully extracted accurate

wavelength information and derived water depth distributions via

linear dispersion relationships. Compared with traditional fixed

window size segmentation methods, the variable window image

segmentation method can more accurately adapt to changes in wave

characteristics under different water depth conditions, thus improving

the accuracy of depth inversion. The coast of Naraha, characterized by

frequent geological activity and complex water depth variations,

demands greater precision and reliability in depth inversion

techniques. The method adopted in this study enables effective depth

detection in regions with irregular coastlines and uneven underwater

terrain, with RMSE and MRE values of 4.8 m and 9.8%, respectively,

and a maximum spatial resolution of 5.5 m. This provides new

technological support for marine mapping, marine resource

exploration, and ocean environmental monitoring. Furthermore, the

results of this study further validate the feasibility of depth inversion on

the basis of wave characteristics and linear dispersion relationships,

expanding the application scope of SAR technology in marine science.

With the continuous development of spaceborne SAR technology and

the acquisition of more high-resolution SAR satellite data, we believe

that SAR depth inversion methods based on variable window image

element segmentation will play a more critical role in future ocean

exploration, providing more accurate and reliable data support for

scientific marine research. In future, further improvements in

segmentation algorithms and the integration of multisource data

could enhance depth inversion in more challenging environments.

Additionally, the development of automated, real-time depth inversion

systems for large-scale monitoring could broaden the applicability of

this method.
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