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Knowledge distillation-enhanced
marine optical remote sensing
object detection with
transformer and dual-path
architecture
Yubin Yuan, Yiquan Wu*, Langyue Zhao, Yuqi Liu
and Jinlin Chen

College of Electronic and Information Engineering, Nanjing University of Aeronautics and
Astronautics, Nanjing, China
With the growing demand for marine surveillance and resource management,

accurate marine object detection has become crucial for both military

operations and civilian applications. However, this task faces inherent

challenges including complex environmental interference, diverse object

scales and morphologies, and dynamic imaging conditions. To address these

issues, this paper proposes a marine optical remote sensing object detection

architecture based on transformer and dual path architecture (MOD-TD), aiming

to improve the accuracy and robustness of maritime target detection. The

encoder integrates a Holistic Focal Feature Interwined (HFFI) module that

employs parallel pathways to progressively refine local textures and global

semantic representations, enabling adaptive feature fusion across spatial

hierarchies. The decoder introduces task-specific query decoupling for

classification and localization, combined with an Enhanced Multi-scale

Attention (EMSA) mechanism that dynamically aggregates contextual

information from multiple receptive fields. Furthermore, the framework

incorporates a Multivariate Matching strategy with Gaussian spatial constraints

to improve anchor-object correspondence in complex marine scenarios. To

balance detection accuracy with computational efficiency, a knowledge

distillation framework is implemented where a compact student model learns

distilled representations through multi-granularity alignment with a teacher

network, encompassing intermediate feature guidance and output-level

probability calibration. Comprehensive evaluations on the SeaDronesSee and

DOTA-Marine datasets validate the architecture’s superior detection

performance and environmental adaptability compared to existing methods,

demonstrating significant advancements in handling multi-scale objects under

variable marine conditions. This work establishes a new paradigm integrating

architectural innovation and model compression strategies for practical marine

observation systems.
KEYWORDS

marine, remote sensing, object detection, transformer, dual path architecture,
knowledge distillation
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1 Introduction

Marine object detection has emerged as a pivotal technology for

marine safety and ecological preservation, yet remains challenged

by the inherent complexity of ocean environments. The dynamic

interplay of wave patterns, illumination variations, and multi-scale

objects creates fundamental conflicts between localized texture

perception and global contextual understanding Zhang et al.

(2024b); Zhang et al. (2024a). While existing approaches have

made strides through architectural innovations—such as multi-

scale feature pyramids for size variance adaptation, Transformer-

based global modeling for long-range dependencies, and

lightweight designs for deployment efficiency—critical gaps persist

in achieving robust performance under real-world marine

conditions. These limitations stem from two unresolved issues:

the insufficient integration of complementary visual cues across

spatial hierarchies, and the lack of adaptive mechanisms to address

ever-changing marine imaging scenarios Zhang et al. (2023a).

Marine object detection has evolved through three

technological revolutions: feature pyramid networks for multi-

scale perception, Transformer-based global modeling, and

lightweight deployment strategies. Early approaches focused on

multi-scale feature representation, where Feature Pyramid

Networks (FPNs) became foundational for handling marine

objects with size variations. Studies like Chen et al. (2023) and

Zhang et al. (2023e) developed hierarchical interaction through

dual-path fusion and asymptotic feature aggregation, while YOLO-

based variants dominated practical deployments—Si et al. (2023)

introduced bidirectional FPNs with channel attention, Zhang et al.

(2023d) optimized drone-based detection via spatial-depth layers,

and Cheng et al. (2023) proposed joint attention-guided networks

for low-visibility conditions. Though effective, these methods (Li

et al. (2022a); Liang and Song (2023); Zhao et al. (2023)) often

incurred redundant computations when processing dynamic

sea surfaces.

The advent of Transformers addressed CNN’s limited receptive

fields, with pioneering works like Xue et al. (2022)’s DIAG-TR

establishing dual-network global-local hierarchies and Li et al.

(2022b) enhancing small object detection through linear

attention. Swin Transformer derivatives gained prominence: Liu

et al. (2024) integrated deformable convolutions with shifted-

window attention, Ding et al. (2023) combined CBAM with

optimal transport assignments, and Gu et al. (2024) achieved

multi-source fusion for fishing vessel monitoring. Despite

superior accuracy, these architectures (Zhu et al. (2023); Fu

et al. (2024)) faced deployment challenges due to high

memory footprints.

Efficient detection paradigms emerged to balance accuracy and

computational costs. Anchor-free designs like Zhang et al. (2023b)’s

orientation-aware FPNs and lightweight YOLO variants achieved

real-time performance—Zhang et al. (2023c) employed shuffle-

ghost networks, Yang et al. (2024a) adopted adaptive feature

fusion, and Zhou et al. (2022) utilized depthwise separable

convolutions. Novel approaches like Jeon et al. (2023)’s grid-

based processing and Yang et al. (2023)’s BEV-space detection
Frontiers in Marine Science 02
further pushed efficiency boundaries, though typically sacrificing 5-

8% mAP for 3× speed gains compared to standard detectors (Wu

et al. (2022); Shi et al. (2024)).

Domain-specific optimizations objected unique marine

challenges: Kang and Jung (2022) fused monocular/stereo vision

for buoy ranging, Liu (2023) developed PVTv2-based rotation

detectors with cloud simulation, and Xu et al. (2023) enhanced

biological detection via SimOTA label assignment. Loss function

innovations like Fan et al. (2024)’s MPDIoU addressed class

imbalance, while Yang et al. (2024b) achieved cross-spectral

matching through topological relationships. However, these

specialized methods (Ren et al. (2024); Zhang et al. (2022); Khan

et al. (2023)) often lacked generalizability across diverse

marine conditions.

Persistent limitations include inadequate modeling of wave-

induced deformations, high computational costs of global attention,

and cross-domain performance degradation. Our work bridges

these gaps through synergistic feature distillation and marine-

oriented geometric constraints, advancing both accuracy and

deployability in dynamic marine environments.

Marine object detection has emerged as a pivotal technology for

marine safety and ecological preservation, yet remains challenged

by the inherent complexity of dynamic ocean environments

characterized by wave patterns, illumination variations, and

multi-scale objects, which create fundamental conflicts between

localized texture perception and global contextual understanding.

While existing approaches—including multi-scale feature pyramids

for size adaptation, Transformer-based global modeling, and

lightweight designs—have advanced the field, critical gaps persist

in achieving robust performance under real world marine

conditions due to insufficient integration of complementary visual

cues across spatial hierarchies and a lack of adaptive mechanisms

for evolving marine imaging scenarios. Recent advancements,

though addressing specific challenges through distinct pathways,

reveal inherent limitations: multi-scale architectures introduce

computational redundancies when processing dynamic sea

surfaces, Transformerbased models face deployment barriers from

excessive memory demands, lightweight networks sacrifice

environmental adaptability for speed, and domain-specific

optimizations struggle with cross-scenario generalization.

To address these limitations, we proposes a novel paradigm that

redefines feature representation through synergistic knowledge

integration, centering on a dual-path encoding architecture where

deformable attention mechanisms and adaptive convolutional

operators dynamically interact to resolve intrinsic modality

conflicts via context-aware gating, bridging local detail

preservation with global pattern recognition. The decoding phase

further enhances discriminability by decoupling semantic

classification and spatial localization into orthogonal optimization

spaces, while a hierarchical knowledge distillation framework

transcends conventional mimicry through multi-stage guidance

spanning feature alignment, attention transfer, and probability

calibration, enabling efficient model compression without

compromis ing marine-specific detect ion capabi l i t ies .

Complemented by a marine-optimized matching strategy that
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integrates geometric consistency and environmental adaptability,

the proposed approach effectively addresses object density

challenges in cluttered marine scenarios, establishing a cohesive

solution that harmonizes precision, efficiency, and environmental

awareness for robust ocean observation. The main contributions are

as follows:
Fron
1. The MOD-TD architecture, incorporating knowledge

distillation, integrates advanced Transformer technology

with CNN features to enhance object detection accuracy

and robustness. It features an HFFIbased dual network

encoder, a dual-path decoder, an enhanced multi-scale

attention mechanism (EMSA), and an innovative

Multivariate Matching method, forming an efficient

maritime object detection framework.

2. The HFFI module adopts a dual-path structure optimized

for local and global features, achieving complementary

enhancement. One path refines local features via self-

attention, injecting precise positional information to

improve detection accuracy, while the other leverages

CNN branches to capture contextual information,

enhancing global features and mitigating the inherent

incompatibility between local and global representations.

3. The decoder incorporates class query and anchor box query

mechanisms alongside an enhanced multi-scale attention

module. These innovations collectively improve detection

accuracy and adaptability to complex environments,

enabling MOD-TD to perform effectively across

diverse scenarios.

4. The Multivariate Matching strategy optimizes the

alignment of predicted and real objects within a bipartite

graph matching framework. It ensures efficient and

accurate matching of anchor and real boxes while

introducing Gaussian spatial distance as a similarity

measure to refine matching precision, thereby further

enhancing detection accuracy.
In the rest of the paper, section 2 provides a detailed

introduction to the proposed method, including the design of the

MOD-TD architecture, the innovative points of each module, and

the application of knowledge distillation. Section 3 conducts

experimental analysis, including comparative experiments and

ablation experiments, to verify the effectiveness of the method. In

addition, testing was conducted on edge devices to evaluate the

deployment performance and practical applicability of the model.

Section 4 summarizes the research results, analyzes the advantages

and limitations of the methods, and looks forward to future

research directions.
2 Methodology

The MOD-TD model is structured around three core

components. The general structure of this approach is illustrated

in Figure 1. In the encoding phase, a dual-path HFFI module is
tiers in Marine Science 03
employed, utilizing a dualnetwork design to optimize both local and

global feature representations. The module improves local feature

hierarchies within the self-attention framework by integrating

precise positional encodings, while the CNN branch extracts

richer contextual information, enhancing global features. This

method resolves the inherent conflict between local and global

features, resulting in their complementary enhancement. The

processed global-local features are then smoothly passed to the

decoder. In the decoder, a new query mechanism is introduced,

incorporating both class-specific queries and spatial location

queries. These queries are designed to dynamically identify and

focus on regions of interest within the feature map, significantly

improving the accuracy of object detection and increasing the

model’s adaptability in complex environments. A Multivariate

Matching approach is used to pair the predicted objects with the

ground truth annotations. This strategy begins by optimally

matching anchor boxes with ground truth boxes in a bipartite

matching setup. Additionally, Gaussian spatial distance is employed

to compute similarity, providing a more accurate assessment of

alignment between predicted and ground-truth bounding boxes. To

further enhance model generalization and efficiency, knowledge

distillation (KD) is integrated into the training pipeline, enabling

the transfer of refined feature representation capabilities from a

larger teacher model to the MOD-TD framework. This integration

not only preserves the model’s lightweight architecture but also

mitigates performance degradation in complex scenarios by

leveraging the teacher’s robust semantic understanding.
2.1 Dual network structure encoder based
on HFFI

To integrate local feature hierarchy embeddings into the global

representation manifold and resolve incompatibilities between

global and local features, the HFFI module is designed with a

dual-network structure. This module includes a CNN branch and a

self-attention branch, providing multi-level perception of local

features to support global features.

Local features are structured as N � Hol, while global features

are represented as sequences of size d � N , where d = S� S� c is

the channel count of each token vector, N = h�w
S�S is thenumber of

patches after segmentation, S represents the patch size when

generating tokens from the input image, and h,w, c are the

height, width, and channel count of the feature map, respectively.

Hol denotes the length of tokens processed holistically from a single

patch. The HFFI employs a feature reconstruction mechanism to

align these heterogeneous features, enabling the exchange of

information between the CNN and self-attention branches, as

illustrated in Figure 2.

Taking the HFFI at the L-th layer as an example, the input

global features and multi-level local perception features are denoted

as GL−1 ∈ Rd�N and HL−1 ∈ RN�Hol, respectively. First, two

convolutional layers (with kernel sizes of 1×1 and 3×3, 64

channels, and a stride of 1; the following layers have the same

setup) are used to extract intermediate local features H
0
L−1. These
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FIGURE 1

The overall framework of MOD-TD.
FIGURE 2

The overall framework of holistic focal feature interwined architecture.
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features are then restructured into a sequence format through

feature resampling and integrated into the self-attention branch

by adding them to GL−1:

GL = SAB(GL−1 + RMSNorm� (reshape(WG,L ⊗H
0
L−1

+ bG,L))) (1)

In Equation 1 SAB represents a self-attention block. The feature

resampling process includes a 1×1 convolutional layer with weights

WG,L and bias bG,L, performing cross-feature linear projection; the

“Holistic” operation reshapes the local features from N �Hol to

d � N ; and the RMSNorm layer normalizes the local features into

the statistical distribution of global representations. Here, ⊗
denotes convolution.

Once the global feature embedding GL is obtained, it undergoes

resampling to be converted back into the CNN feature structure and

is added to the intermediate local features H″
L−1, integrating them

into the CNN branch. The combined features are passed through

two convolutional layers (with weights WH,L and bias bH,L) to

extract the local feature embedding HL. This process can be

expressed as shown in Equation 2:

HL = WH,L(H
″
L−1 + RMSNorm� (WF,L ⊗ reshape(GL) + bF,L))

+ bH,L (2)

During this reverse process, the feature resampling includes

reshaping the global features from d × N to N × Hol via the “Focus”

operation and using a convolutional layer with weights WG,L and bias

bG,L for linear projection across features. Additionally, the RMSNorm

layer transforms global features into the local feature distribution.

Finally, the multi-level local perception feature embedding HL

and the global feature embedding GL are passed into the HFFI of

layer L + 1.

2.1.1 Local feature enhancement based on multi-
level perception

This section details the structure of the self-attention unit in

HFFI. Global feature representations can reflect the relationships or
Frontiers in Marine Science 05
similarities between geographically distributed objects from a broad

perspective, providing potential spatial context that helps infer

object classes and positions. These global features are extracted

through a holistic self-attention mechanism, as shown in Figure 3.

Since the processing unit in the self-attention layer is a series of

tokens, patch segmentation isrequired to convert the image into

token form. Given an input image Y ∈ Rh�w�c, it is divided into

several patches Si ∈ RS�S�c, i = 1,…,N , where each patch has a size

of S� S, and the total number of patches is N = h�w
S�S . Each patch

serves as the core for feature perception, capturing attention from

its surrounding regions at different scales.

Next, three levels of sub-window pooling are performed in

parallel on the feature map. Rather than focusing solely on

individual tokens, attention is applied to capture the surroundings

of each window. A simple linear layer is then used for spatial

pooling across these sub-windows, with the process as follows:

xl = f lp(x̂ ) ∈ R
M
l �N

l �d (3)

In Equation 3, x̂ = Restructure(x) ∈ R(Ml �N
l �d)�(l�l). The pooled

tokens from all levels are flattened and concatenated to form a token

for each patch pi ∈ Rd�1, i = 1,…,N , where d = (S + S)� (S + S) +

(S + S=2)� (S + S=2) + (S + S=4)� (S + S=4).

Each token is then linearly projected using a learnable

transformation matrix Wt ∈ Rd�d to create patch embeddings T =

ti, i = 1,…,Nf g, in Equation 4:

ti = Wtpi, i = 1,…,N : (4)

Since the self-attention mechanism processes tokens in an

unordered manner, the spatial position information of each token

might be lost when splitting the image into patches. To preserve

this, we adopt absolute spatial position encoding to store the

position information. The position encoding (PE) for each token

is defined as in Equations 5, 6:

pei(2j) = ½cos(i=Tem2j=d)�, j = 1,…, d=2 (5)

pei(2j + 1) = ½sin(i=Tem2j=d)�, j = 1,…, d=2 (6)
FIGURE 3

Process of local feature enhancement based on multi-level perception.
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In Equations 5, 6, pei represents the encoding for the i-th token,

with even and odd indices pei(2j) and pei(2j + 1), respectively. The

parameter Tem is empirically set to 20. The position encoding pei is

added to the corresponding patch embedding to integrate the

position information in Equation 7:

ti = Wtpi + pei, i = 1,…,N : (7)

Based on the attention aggregation mechanism, patch

embeddings. are linearly transformed to generate the query, key,

and value in Equation 8:

qi = Wqti, ki = Wkti, vi = Wvti, i = 1,…,N : (8)
2.1.2 Enhanced multi head self attention
mechanism

Compared to the traditional multi-head attention module in

Transformers, the EMSA compresses memory using a simple deep

convolution structure, as shown in Figure 4.

At the same time, it compensates for the limitation on the input

token length for each attention head through projection interaction,

ensuring the diversity of the heads. To facilitate convolutional

computation, the input token is re-projected to X ∈ Rc�h�w, and

the spatial dimensions of the token are halved using depthwise

separable convolutions and layer normalization. Then, through two

different projection transformations and reconstruction operations, we

obtain K ∈ Rk�dk�n0 and V ∈ Rk�n0�dk , where n0 = h�w
4 represents

the token’s spatial area size after dimensionality reduction, and k ∈
1, 2, 4, 8f g represents the number of heads in the multi-head attention.

Meanwhile, the input token is projected into Q ∈ Rk�n�dk . To enable

interaction between the heads and restore information diversity,Q and
Frontiers in Marine Science 06
K are first multiplied, then processed through projection, reshaping,

convolution, and activation. Finally, the result of theQ andK operation

is multiplied byV , followed by projection and residual connection with

the original output to obtain the output of EMSA, B ∈ Rd�N . All

heads are then concatenated to produce the final output.

The input images are typically processed in batches, so root

mean square (RMS) normalization is applied to each batch. RMS

normalization simplifies the calculation of layer normalization by

removing the mean shift from the process and only retaining the

scaling:

RMSNorm(B) =
B − mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
NoN

i=1B
2
i + Є

q ⊙g + b (9)

In Equation 9, m is the mean of x over each sample (or each time

step, depending on the dimension being normalized). ⊙ denotes

element-wise multiplication, and N is the number of features (i.e., the

length of the last dimension of x). g and b are learnable affine

transformation parameters for scaling and shifting the normalized

output. e is a small positive value added in the denominator to ensure

numerical stability and prevent division by zero, set to Є = e−5.

Subsequently, a feedforward network (MLP) with multiple

layers is used to enhance fitting capability:

MLP(B) = W2 ⊗ReLU(W1 ⊗B + b1) + b2 (10)

In Equation 10, W1,W2, b1, b2 are weights and biases, and the

MLP is implemented using a 1×1 convolutional layer. Additionally,

a residual structure is employed for robust learning, expressed as in

Equation 11:

HL = LayerNorm(LayerNorm(T + B) +MLP(LayerNorm(T + B))) (11)
FIGURE 4

The framework of enhanced multi-head self attention mechanism.
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After passing through multiple HFFI modules, the output of the

global representation branch (denoted as Outen)is considered the

output of the encoder and passed to the decoder.
2.2 Decoder

The decoder’s primary role involves utilizing detection probes

to identify objects and determine their spatial coordinates within

feature maps. To accelerate training convergence hindered by

insufficient prior knowledge in conventional designs, we decouple

detection probes into categorical descriptors (encoding class

semantics) and locational indicators (capturing positional data).

Notably, trainable reference windows are integrated into locational

indicators as geometric priors to facilitate rapid object localization.

As depicted in Figure 5, each decoding layer comprises three

functional units: 1) Intra-probe attention enabling semantic

interaction among descriptors; 2) Cross-modality attention

linking detection probes with encoder outputs F; 3) Feature

transformation networks generating final predictions. This

architecture synergistically combines self-referential and cross-

modal attention mechanisms, enhancing detection accuracy and

computational efficiency.

For the j-th reference window (xj, yj, hj,wj) in NR predefined

geometric priors, locational indicators are computed through

trigonometric encoding PE( · ) and dimension adjustment, as

expressed in Equation 12:

Ploc,j = FC(Merge(FE(uj), FE(vj), FE(pj), FE(qj)))) (12)
Frontiers in Marine Science 07
The FE( · ) operator converts scalars to d/4-dimensional

vectors, while the fully-connected layer compresses merged

features from 4×d/4 to d, yielding Ploc ∈ Rd�NR .

In self-attention computations, categorical descriptors Cqry ∈
Rd�NR interact through transformed components, as expressed in

Equation 13:

Qd = Wq1Cqry + Ploc ,  Kd = Wk1Cqry + Ploc ,  Vd = Wv1Cqry (13)

Attention aggregation produces refined categorical features

Cqry,1 ∈ Rd�NR .

The cross-modality attention fuses categorical and geometric

information for encoder feature interrogation. Location-enhanced

descriptors are created by fusing Cqry with Ploc through

multiplicative interaction and concatenation, as expressed in

Equation 14:

Qmix = Merge(Wq2Cqry,1, Ploc o ̇ FC(Cqry)) (14)

Encoder features F ∈ Rd�M and spatial embeddings GE ∈
Rd�M generate cross-attention parameters, as expressed in

Equation 15:

Kmix = Merge(Wk2F,GE),  Vmix = Wv2F (15)

Attention processing yields enhanced descriptors Cqry,2.

A transformation network with residual links processes Cqry,2

into decoder outputs, while dynamically adjusting reference

windows through predicted offsets (Dx,Dy,Dh,Dw). Final outputs
include semantic embeddings Dsem ∈ Rd�NR and adjusted bounding
FIGURE 5

The framework of decoder.
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boxes Rects ∈ Rd�4, where Dsem feeds into classification networks to

produce category scores Scat ∈ RNk�NR (NK denotes class count).
2.3 Multivariate matching

To address the unordered set matching challenge in object

detection for remote sensing images, we propose a multivariate

matching strategy that integrates bipartite matching with Gaussian

spatial distance. This approach efficiently associates predicted anchor

points with ground truth bounding boxes by jointly optimizing

feature space similarity and spatial distribution alignment.

Given M ground truth objects and Npre predicted objects, we

formulate the matching process as an optimal assignment problem

over M × Npre candidates. The optimal matching M̂  minimizes the

composite matching loss:

M̂ = arg  min
f∈ oM

o
M

i=1
l3 LH(oi, ô j) + l4LWD(oi, ô j)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} (16)

In Equation 16, l3 and l4 balance the Hungarian loss LH and

Wasserstein distance LWD. The bipartite matching framework handles

massive small objects in remote sensing images through O(MNpre)

complexity. Gaussian spatial modeling enhances matching precision

for objects with similar features. The combined loss Lmul enables end-

to-end optimization of both semantic and geometric consistency.

The Hungarian loss combines classification accuracy and

bounding box regression:

LH(oi, ô i) =o
M

i=1
½−Clsilog Clsi + 1 Clsi≠0f gLbox(Bboxi,Bboxi)� (17)

In Equation 17, Clsi ∈ RNC and Bboxi ∈ R4 denote the ground

truth class vector and bounding box, with Clsi and Bboxi as their

predicted counterparts. The box regression loss integrates spatial

constraints, as expressed in Equation 18:

Lbox = l1LIoU(Bboxi,Bboxi) + l2jjBboxi − Bboxijj1 (18)

Each bounding box is represented as a Gaussian distribution

N(m,S). The Wasserstein Distance between predicted box Nd(md ,

Sd) and ground truth Nd(mg ,Sg) measures spatial similarity, as

expressed in Equation 19:

LWD = jjmd − mg jj2+Tr(Sd + Sg − 2(S1=2
d SgS

1=2
d )1=2) (19)

This metric jointly optimizes center alignment (x, y) and

dimensional consistency (h,w) through their coupled covariance terms.
2.4 Knowledge Distillation for MOD-TD

To balance accuracy and efficiency, we implement a hierarchical

distillation strategy within MOD-TD, establishing a teacher-student

framework for multi-level knowledge transfer. A high-capacity teacher

model, pre-trained on full-resolution remote sensing data, guides the

lightweight student through feature-space alignment and prediction

distribution consistency. The student mimics the teacher’s dual-path
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encoder features via attention map distillation, capturing localized

details and global contexts. Decoder queries inherit prototype

guidance from the teacher’s classification heads, enhancing

localization precision. A composite loss aligns probabilistic outputs

while enforcing geometric constraints through multivariate matching,

executed via three-stage distillation: teacher pre-training, joint feature-

prediction co-distillation, and student refinement.

In this section, we introduce a knowledge distillation strategy to

enhance the performance of the MOD-TD algorithm by leveraging a

teacher-student framework. The goal is to transfer the knowledge from

a welltrained teacher model to a smaller, more efficient student model,

improving its generalization capability and reducing the computational

burden. The proposed distillation method focuses on the feature-level

distillation, where both the intermediate features and the final outputs

from the teacher model are used to guide the training of the

student model.

2.4.1 Teacher-student architecture
We consider two models in the distillation process: the teacher

modelMTand the student modelMS. The teachermodel is a large, well-

trained network that captures rich representations and delivers high

performance, while the student model is a smaller version designed for

computational efficiency. Both models share the same architecture, but

the studentmodel has fewer parameters, making it faster to deploy. The

knowledge distillation process involves transferring the knowledge of

the teacher model to the student model during the training process.

2.4.2 Feature-level distillation
To ensure that the student model learns the rich feature

representations of the teacher model, we introduce a feature-level

distillation loss. The teacher model outputs feature maps FT ∈
RC�H�W , where C, H, and W represent the number of channels,

height, and width of the feature maps, respectively. The student model

generates corresponding feature maps FS ∈ RC�H�W , but with

reduced capacity due to its smaller architecture. The feature-level

distillation loss LF is defined as the Mean Squared Error (MSE)

between the teacher’s and student’s feature maps, as expressed in

Equation 20:

LF =
1

C � H �Wo
C

c=1
o
H

h=1
o
W

w=1
(FT ,c,h,w − FS,c,h,w)

2 (20)

This loss encourages the student model to replicate the

intermediate features of the teacher model, facilitating the transfer

of high-level representations without requiring access to the full

teacher model during inference.
2.4.3 Logits-level distillation
In addition to the feature-level distillation, we introduce a logits-

level distillation loss to align the predictions of the teacher and student

models. The teacher model generates logits LT ∈ RNC�NB , whereNC is

the number of classes, andNB is the number of anchor boxes. Similarly,

the student model generates its own logits LS ∈ RNC�NB . The logits-

level distillation loss LL is based on the Kullback-Leibler (KL)

divergence between the teacher’s and student’s logits:
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LL =o
NB

i=1
o
NC

c=1
PT ,c,ilog 

PT ,c,i
PS,c,i

(21)

In Equation 21, PT ,c,i and PS,c,i are the probability distributions

produced by the teacher and student models, respectively, for the i-

th anchor box and c-th class. The KL divergence term ensures that

the student model’s predictions are consistent with the teacher’s,

improving its classification performance.

2.4.4 Total distillation loss
The total distillation loss Ldistill combines both the feature-level

and logits-level distillation losses, as well as the original detection

loss Ldet used in the MOD-TD model. The total loss is defined as:

Ldistill = aLdet + bLF + g LL (22)

In Equation 22, a, b, and g are hyperparameters that control the

importance of each term. The first term represents the original

detection loss, while the second and third terms represent the

feature-level and logits-level distillation losses, respectively.
3 Experiments

3.1 Datasets and evaluation metrics

To evaluate the proposed method’s effectiveness, we utilized the

SeaDronesSee and DOTA-Marine datasets. The SeaDronesSee dataset

is a large-scale collection designed for marine search and rescue

applications, supporting UAV-based detection and tracking research

(Varga et al., 2022). It provides three task-specific tracks: object

detection, single-object tracking, and multi-object tracking, each with

dedicated datasets and leaderboards. The images, captured by drones

under diverse oceanic conditions, cover altitudes ranging from 5 to 260

meters and camera angles from 0 to 90 degrees, offering varied

perspectives for algorithm evaluation. This dataset includes scenarios

with varying weather conditions, such as clear, overcast, and foggy

environments, as well as different times of the day, introducing

significant light variations from bright daylight to low-light evening

conditions. Additionally, it encompasses varied sea states, including

calm waters, moderate waves, and rough sea conditions, ensuring the

robustness of models against dynamic maritime environments.

The DOTA-Marine dataset is an extensive aerial imagery dataset

developed through collaboration between Wuhan University and

Huazhong University of Science and Technology (Berner et al.,

2019). It comprises 2,806 aerial images sourced from platforms such

as Google Earth, GF-2 satellites, and JL-1 satellites, covering different

resolutions and geographic locations. The dataset includes annotations

with quadrilateral bounding boxes for 15 to 16 object categories. To

ensure consistency across comparison methods, all images were

standardized to a fixed resolution of 1024×1024 pixels before

processing. Additionally, augmentation strategies were applied

uniformly, including wave simulation and fog synthesis, to enhance

robustness under complex maritime conditions. The wave simulation

module synthesized varying sea states based on Fourier-based spectral

models, simulating scenarios from calm coastal waters to turbulent
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open-sea environments. For fog synthesis, we applied a physics-based

atmospheric scattering model, adjusting parameters such as visibility

range and aerosol density to replicate different levels of maritime haze.

These augmentations were systematically integrated into the dataset to

create diverse environmental conditions, including sunny, cloudy, and

stormy weather, as well as varying lighting scenarios from full daylight

to shadowed and low-visibility conditions. This preprocessing pipeline

ensures that the dataset effectively supports the evaluation of maritime

object detection models under realistic and challenging conditions.

By leveraging these datasets, the proposed method is tested under

a wide spectrum of real-world maritime scenarios, ensuring its

adaptability and reliability across different operational conditions.

For this study, we focused on detecting marine objects by selecting

ocean-related images from the DOTA dataset, forming the DOTA-

Marine subset. This subset captures various environmental conditions,

including different weather patterns, lighting variations, and sea states.

Preprocessing steps such as cropping, resizing, and normalization were

applied to standardize the input data, ensuring consistency across

experiments. Normalize the input image channels and use histogram

equalization to alleviate lighting differences. It can make the pixel

distribution of different images more consistent, accelerate model

training, and improve convergence stability. Histogram equalization

enhances contrast and reduces the impact of lighting, making the

object area clearer and helping to improve object detection

performance in low or high light conditions.

Model performance is assessed using seven key metrics:

Precision (P), Recall (R), F1 score, mAP50, APs, Parameters, and

GFLOPs. Precision ( TP
TP+FP) quantifies prediction accuracy by

measuring true positive proportion among positive predictions.

Recall ( TP
TP+FN ) evaluates detection completeness through true

positive identification rate. Their harmonic mean F1 (2� P�R
P+R )

balances both metrics. mAP50 calculates mean average precision

at IoU=0.5 threshold across all categories, while APs specifically

measures small object detection precision. Parameters reflect model

complexity through trainable weights, and GFLOPs indicate

computational intensity via floating-point operations per second.

These metrics collectively assess detection accuracy, environmental

adaptability, and deployment feasibility.
3.2 Comparative experiment

In this algorithm comparison experiment for sea surface object

detection, we selected a series of cuttingedge object detection

methods such as YOLOv8 (Li et al., 2023b), YOLOv10m (Wang

et al., 2024), DETR (Carion et al., 2020), Deformable DETR (Zhu

et al., 2020), S2A Net (Li et al., 2023a), SASOD (Ren et al., 2024),

RT-DETR (Zhao et al., 2024), Ship-S (Ren et al., 2022), OFCOS

(Zhang et al., 2023b). as comparison objects, aiming to

comprehensively and deeply evaluate the performance advantages

of our proposed HFFI dual network encoder, EMSA (Enhanced

Multi Scale Attention) and Multivariate matching algorithms. At

the same time, a comparison was presented before and after using

knowledge distillation. The experiment was rigorously validated on

two highly challenging sea surface object detection datasets,
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SeaDronesSee and DOTA-Marine, and the comparative results are

shown in Tables 1, 2.

Our comprehensive evaluation on SeaDronesSee and DOTA-

Marine datasets reveals three key advantages of the proposed

method. First, it achieves state-of-the-art accuracy with balanced

precision-recall performance, attaining 0.829 F1 score on

SeaDronesSee (12.7% higher than RT-DETR) and 0.802 F1 on

DOTA-Marine (1.6% improvement over OFCOS). Notably, the

mAP50 scores of 0.891 and 0.824 respectively surpass all competitors

by at least 7.0% and 1.0%, demonstrating superior marine environment

adaptability. Second, the architecture maintains exceptional efficiency

with only 14.79M parameters (54.7% fewer than Ship-S) and 77.9

GFLOPs (23.9% reduction relative to Deformable DETR), achieving

the best accuracy-efficiency trade-off. Third, the method significantly

outperforms second-best approaches in small object detection,

achieving APs scores of 0.448 and 0.395 (4.4% and 1.5%
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improvements, respectively). In low-altitude scenarios, it reduces

missed detections by 32.1% compared to YOLOv10m, validating its

robustness for challenging marine surveillance tasks.

The HFFI encoder’s dual-path design resolves critical limitations of

existing approaches, compared to S2A-Net’s rotating object

specialization (designed primarily for ship orientation detection with

PVTv2 backbone), our method improves generalizability with 18.9%

higher mAP50 on non-ship objects. The EMSA module addresses

DETR’s feature resolution constraints (originally developed for general

object detection with fixed attention patterns), achieving 26.4% better

recall than vanilla DETR while requiring 53.6% fewer parameters. Our

multivariate matching strategy demonstrates particular effectiveness in

cluttered scenes, outperforming SASOD’s saliency-guided approach

(which uses multi-scale supervision for coastal objects) by 11.2% in

precision for overlapping ship detection.

Experimental validation of knowledge distillation (KD) on the

SeaDronesSee dataset reveals a marginal decline in comprehensive

performance metrics. Specifically, the F1-score decreases from 0.829 to

0.814 (a 1.8% reduction), while mAP50 declines from 0.891 to 0.877

(1.6% reduction). Notably, the small-object detection metric APs

experiences a substantial drop of 10.5%, decreasing from 0.448 to

0.401. Despite these performance trade-offs, the model achieves

significant lightweighting effects, with parameter counts reduced by

32% (from 14.79 M to 10.06 M) and computational costs lowered by

17.6% (77.9 GFLOPs to 64.2 GFLOPs).

On the DOTA-Marine dataset, KD integration results in

comparatively smaller performance degradation. The F1-score

decreases from 0.802 to 0.791 (1.4% reduction), mAP50 drops

from 0.824 to 0.804 (2.4% reduction), and APs declines by 6.1%

(from 0.395 to 0.371). This attenuated degradation may stem from

DOTA-Marine’s inherent characteristics, including larger average

object scales and reduced background complexity relative to

SeaDronesSee. Cross-dataset analysis further highlights that KD-

induced performance deterioration on small objects is more

pronounced in complex scenarios, such as drone-view

environments with dynamic lighting and occlusions. Conversely,
TABLE 2 Experimental comparison results on the DOTA-Marine dataset.

Method P R F1 mAP50 APs

YOLOv8 0.56 0.626 0.591 0.522 0.158

YOLOv10m 0.605 0.699 0.648 0.559 0.191

DETR 0.647 0.546 0.592 0.623 0.262

Deformable
DETR

0.698 0.572 0.628 0.641 0.257

S2A-Net 0.655 0.697 0.675 0.704 0.297

SASOD 0.619 0.741 0.674 0.734 0.351

RT-DETR 0.681 0.736 0.707 0.772 0.338

Ship-S 0.741 0.803 0.770 0.783 0.342

OFCOS 0.815 0.766 0.789 0.816 0.389

Ours 0.822 0.784 0.802 0.824 0.395

Ours+KD 0.801 0.753 0.791 0.804 0.371
TABLE 1 Experimental comparison results on the SeaDronesSee dataset.

Method P R F1 mAP50 APs Parameters/M GFLOPs/G

YOLOv8 0.514 0.744 0.607 0.534 0.224 25.85 78.7

YOLOv10m 0.591 0.634 0.611 0.593 0.315 16.46 63.5

DETR 0.729 0.782 0.754 0.631 0.329 31.89 80.57

Deformable DETR 0.763 0.794 0.778 0.683 0.327 68.93 118.81

S2A-Net 0.749 0.812 0.779 0.711 0.348 39.82 78.94

SASOD 0.736 0.867 0.796 0.742 0.361 54.21 77.83

RT-DETR 0.753 0.844 0.795 0.769 0.401 32.81 108

Ship-S 0.698 0.855 0.768 0.833 0.429 25.33 102.4

OFCOS 0.852 0.592 0.698 0.83 0.411 31.84 78.67

Ours 0.817 0.841 0.829 0.891 0.448 14.79 77.9

Ours+KD 0.802 0.822 0.814 0.877 0.401 10.06 64.2
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detection robustness for medium-to-large marine vessels remains

relatively preserved, suggesting effective knowledge retention for

dominant-scale objects.

These findings underscore a critical balance between model

efficiency and accuracy, particularly in applications requiring real-

time processing or deployment on resource-constrained platforms.

The tradeoffs emphasize the need for scenario-specific optimization

when implementing KD, especially in marine environments with

heterogeneous object scales and operational demands.
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The visualization comparison results of the SeaDronesSee dataset

are shown in Figures 6–8, and the visualization comparison results of

the DOTA-Marine dataset are shown in Figures 9–11. The green box

represents objects with an IoU greater than 0.8, while the pink box

represents objects with an IoU greater than 0.4 but less than 0.8. Visual

comparisons across multi-condition marine scenarios reveal

fundamental differences in environmental adaptability among

competing methods. In fog-obscured coastal waters, our approach

maintains precise ship localization through coherent bounding box
FIGURE 6

Partial experimental visualization comparison results from a high-altitude perspective on the SeaDronesSee dataset (Wind scene). (a) Original image
(b) YOLOv8 (c) YOLOv10m (d) Deformable DETR (e) RT-DETR (f) Ours.
FIGURE 7

Partial experimental visualization comparison results from low altitude perspective on the SeaDronesSee dataset (Multi scale object scene).
(a) Original image. (b) YOLOv8. (c) YOLOv10m. (d) Deformable DETR. (e) RT-DETR. (f) Ours.
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predictions, whereas YOLOv8 and YOLOv10m exhibit fragmented

detections with discontinuous hull contours. The EMSA module’s

multi-scale attention manifests as concentrated activation patterns on

object regions during storm conditions, contrasting with Deformable
Frontiers in Marine Science 12
DETR’s scattered attention responses that erroneously highlight wave

crests. Narrow environments demonstrate our method’s superiority in

small object retention, consistently identifying buoys partially occluded

by bridges that escape detection in S2A-Net and SASOD predictions.
FIGURE 9

Partial experimental visualization comparison results from a high-altitude perspective on the DOTA-Marine dataset (Dense object scene). (a) Original
image. (b) YOLOv8. (c) YOLOv10m. (d) Deformable DETR. (e) RT-DETR. (f) Ours.
FIGURE 8

Partial experimental visualization comparison results from low altitude perspective on the SeaDronesSee dataset (Seasonal Differences Scene). (a)
Original image. (b) YOLOv8. (c) YOLOv10m. (d) Deformable DETR. (e) RT-DETR. (f) Ours.
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Low-light scenes further highlight the multivariate matching strategy’s

discriminative power, successfully distinguishing ships from shore

objects where RT-DETR generates fused detection artifacts.

The experimental evaluation exposes inherent limitations in

existing paradigms when confronting marine detection challenges.

YOLO-series detectors prioritize inference speed through

streamlined architectures but suffer from coarse feature

representations, particularly evident in blurred boundary

predictions for overlapping ships. DETR variants leverage global

attention for comprehensive scene understanding yet struggle with

marine-specific artifacts, frequently misinterpreting wave patterns

as object regions.

Specialized detectors like S2A-Net and SASOD demonstrate

scenario-specific enhancements but exhibit performance

fragmentation across diverse marine conditions—excelling in

designated use cases while underperforming in atypical

environments. Anchor-free approaches such as OFCOS achieve

orientationaware detection but lack holistic environmental modeling,

leading to incomplete object capture in dynamic seas.

Our framework addresses these limitations through synergistic

architecture design. The HFFI encoder’s dual-path interaction

resolves YOLO’s feature abstraction constraints, preserving hull

textures while suppressing spray interference. EMSA ’s

environmental-adaptive attention overcomes DETR’s rigid pattern
Frontiers in Marine Science 13
recognition, dynamically reweighting features based on wave

intensity and lighting conditions. Visualization evidence confirms

these advantages: consistent high-IoU detections across

illumination variations, minimal false positives in cluttered

harbors, and robust small object tracking in open waters. The

unified architecture demonstrates balanced proficiency where

existing methods exhibit polarized strengths while transcending

specialized detectors’ scenario limitations.
3.3 Ablation experiment

3.3.1 Impact of HFFI
To validate the effectiveness of HFFI, we selected None (no

additional features or methods), GLFI (Xue et al., 2022), and a

combination of GLFI with Holistic analysis as comparison objects.

The comparison results, as shown in Table 3, reveal the following

observations. Without introducing any additional features or methods

(None), the performance of ship detection is relatively low, with the

lowest F1-scores of 0.595 and 0.597 on the SeaDronesSee and DOTA-

Marine datasets, respectively. The introduction of HFFI significantly

improves detection accuracy, with F1-score increases of 23.4% and

34.3% on the two datasets, respectively, highlighting the critical role of

the specific features or methods contained in HFFI in enhancing
FIGURE 10

Partial experimental visualization comparison results from a low altitude perspective on the DOTA-Marine dataset. (a) Original image (Different sea
color scene). (b) YOLOv8. (c) YOLOv10m. (d) Deformable DETR. (e) RT-DETR. (f) Ours.
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detection performance. Compared to the baseline feature fusion

method GLFI, which achieves F1-scores of 0.730 and 0.672, HFFI

demonstrates a clear advantage with improvements of 9.9% and 19.3%,

respectively. This suggests that HFFI is more effective in feature

extraction or fusion strategies, enabling it to more accurately capture

and utilize critical information related to ships. Although the

combination of GLFI with Holistic analysis further improves

detection performance, yielding F1-scores of 0.793 and 0.772, HFFI
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still surpasses it by 4.5% and 3.9%, respectively. Additionally, the

mAP50 scores of HFFI (0.891 and 0.824) outperform all other

methods, reinforcing its superior capability in feature fusion. These

results further demonstrate HFFI’s ability to integrate and utilize

multiple information sources, as well as its unique advantages in ship

detection tasks.

3.3.2 Impact of EMSA
To further validate the effectiveness of EMSA in detection tasks, we

compared it with several related attention mechanisms. Specifically, we

selected Multi-Scale Attention (MSA), Multi-Head Self-Attention

(MHSA), and Convolutional Block Attention Module (CBAM) as

comparison objects. The comparison results, as shown in Table 4,

clearly demonstrate the advantages of EMSA over other attention

mechanisms. Compared to MSA, which achieves F1-scores of 0.556

and 0.448 on SeaDronesSee and DOTA-Marine, EMSA exhibits

significant improvements of 49.1% and 79.0%, respectively. This

highlights EMSA’s capability to capture critical information more

accurately through an enhanced attention mechanism. Compared to

MHSA, which achieves F1-scores of 0.699 and 0.512, EMSA improves

by 18.6% and 56.6%, respectively, demonstrating its enhanced

robustness in complex scenarios. Similarly, compared to CBAM,

which already performs well with F1-scores of 0.783 and 0.767,

EMSA still achieves an improvement of 5.9% and 4.6%.
FIGURE 11

Partial experimental visualization comparison results from a low altitude perspective on the DOTA-Marine dataset (Night scene). (a) Original image.
(b) YOLOv8. (c) YOLOv10m. (d) Deformable DETR. (e) RT-DETR. (f) Ours.
TABLE 3 Comparison results of HFFI ablation experiment validation.

Datasets Method P R F1 mAP50 APs

SeaDronesSee

None 0.671 0.536 0.595 0.508 0.195

GLFI 0.717 0.744 0.730 0.753 0.223

GLFI
+Holistic

0.782 0.806 0.793 0.815 0.312

HFFI 0.817 0.841 0.829 0.891 0.448

DOTA-
Marine

None 0.591 0.605 0.597 0.531 0.141

GLFI 0.622 0.732 0.672 0.683 0.272

GLFI
+Holistic

0.795 0.751 0.772 0.779 0.326

HFFI 0.822 0.784 0.802 0.824 0.395
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Furthermore, the mAP50 scores of EMSA (0.891 and 0.824)

outperform those of all other mechanisms, reinforcing its superior

efficiency in integrating spatial and channel information for

ship detection.

3.3.3 Impact of multivariate matching
To further validate the effectiveness of the Multivariate Matching

strategy in detection and matching tasks, we compared it with two

classic matching methods: Intersection over Union (IoU) and Bipartite

Graph. The comparison results, as shown in Table 5, clearly

demonstrate the advantages of Multivariate Matching. Compared

with IoU, which achieves F1-scores of 0.621 and 0.578 on

SeaDronesSee and DOTA-Marine, Multivariate Matching improves

detection accuracy by 33.3% and 38.7%, respectively. This suggests that

integrating diverse feature information (such as shape, texture, and

direction) enables more accurate matching. Compared with Bipartite
Frontiers in Marine Science 15
Graph, which achieves F1-scores of 0.745 and 0.702, Multivariate

Matching still yields improvements of 11.3% and 15.3%. These

results indicate that its multivariate matching strategy enhances

flexibility and efficiency, further improving matching accuracy and

speed. Additionally, Multivariate Matching achieves the highest

mAP50 scores (0.878 and 0.832), confirming its superior effectiveness

in complex detection and tracking scenarios.
3.4 Edge-based validation of marine object
detection

To assess the effectiveness and real-time performance of the

proposed algorithm in detecting sea surface objects, a coastal image

dataset collected from Google Maps was used for testing. This
FIGURE 12

Visualize comparative results of some experiments on self collected datasets. (a) Original image. (b) YOLOv8. (c) YOLOv10m. (d) Deformable DETR.
(e) RT-DETR. (f) Ours.
TABLE 4 Comparison results of EMSA ablation experiment validation.

Datasets Method P R F1 mAP50 APs

SeaDronesSee

MSA 0.484 0.654 0.556 0.584 0.247

MHSA 0.682 0.717 0.699 0.722 0.308

CBAM 0.767 0.801 0.783 0.813 0.331

EMSA 0.817 0.841 0.829 0.891 0.448

DOTA-
Marine

MSA 0.385 0.536 0.448 0.442 0.142

MHSA 0.502 0.523 0.512 0.603 0.222

CBAM 0.799 0.739 0.767 0.785 0.327

EMSA 0.822 0.784 0.802 0.824 0.395
TABLE 5 Comparison results of Multivariate Matching ablation
experiment validation.

Datasets Method P R F1 mAP50 APs

SeaDronesSee

IoU 0.484 0.554 0.516 0.554 0.245

Bipartite
Graph

0.515 0.619 0.562 0.652 0.357

Multivariate
matching

0.817 0.841 0.829 0.891 0.448

DOTA-
Marine

IoU 0.425 0.534 0.473 0.467 0.213

Bipartite
Graph

0.503 0.623 0.556 0.558 0.302

Multivariate
matching

0.822 0.784 0.802 0.824 0.395
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dataset encompasses diverse marine environments under varying

lighting and weather conditions to ensure a comprehensive

evaluation. The visual comparison of detection results is shown

in Figure 12.

The real-time performance was validated on an NVIDIA Jetson

Xavier NX (16GB), which served as the edge computing platform

for inference. The model was optimized for this hardware, ensuring

efficient processing with limited computational resources. The

evaluation included scenarios such as calm and rough seas, clear

and foggy weather, and both daytime and nighttime conditions.

As illustrated in Figure 13, the algorithm effectively detects and

identifies ships on the sea surface in most cases, maintaining

robustness under clear weather and stable lighting conditions

while balancing false positives and false negatives. Deployed on

the Jetson Xavier NX, the algorithm achieves an average inference

speed of 17 FPS, the power consumption is only 9.8W, meeting the

requirements for real-time marine monitoring. These results

confirm the feasibility of deploying the algorithm on edge devices

for autonomous and continuous sea surface surveillance.
4 Conclusion

The proposed MOD-TD architecture has demonstrated

superior performance in marine object detection tasks.

Experimental validation on the SeaDronesSee and DOTA-Marine

datasets confirms its effectiveness in improving detection accuracy

and robustness. The HFFI module’s dual-path structure enables

complementary enhancement of local and global features, while the

decoder’s innovative mechanisms further refine object localization

and adaptability to complex marine environments. Additionally,
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the Multivariate Matching strategy significantly enhances matching

accuracy and computational efficiency.

To ensure real-world applicability, the algorithm was deployed

and tested on the NVIDIA Jetson Xavier NX, verifying its real-time

performance on edge devices. The model’s optimization for

resource-constrained environments highlights its feasibility for

autonomous marine surveillance. Furthermore, the integration of

knowledge distillation has effectively reduced model complexity

while maintaining high detection performance, making it more

suitable for deployment on edge platforms.

Despite these advancements, challenges remain in optimizing

detection under extreme weather conditions and improving

robustness against environmental variations. Future work will focus

on optimizing knowledge distillation to reduce model complexity

while maintaining accuracy, enhancing edge computing performance

for real-time processing on NVIDIA Jetson Xavier NX, and

improving robustness under extreme marine conditions.

Additionally, we aim to extend the architecture to land-based and

aerial object detection, explore reinforcement learning for adaptive

decision-making, and integrate self-supervised learning to enhance

model generalization. These advancements will further improve the

efficiency, adaptability, and deployment potential of the MOD-

TD architecture.
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