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Introduction: Salt spray formation and migration in hot and humid marine

environments have a significant impact on marine engineering and equipment

maintenance. Accurately predicting these phenomena is crucial for reducing

corrosion damage. Traditional research methodologies primarily utilize statistical

models or physics-based simulations. Although these approaches yield

satisfactory results within controlled conditions, they often encounter

limitations in accurately capturing the complexity and variability inherent to

marine environments. These methods struggle to capture the spatiotemporal

dependencies of salt spray formation and migration. Moreover, they are typically

difficult to apply in real-time and lack the ability to handle large-scale,

dynamic data.

Methods: This study aims to address this issue by proposing the OceanLSTM

model, which combines the temporal modeling capabilities of xLSTM with a

spatial attention mechanism to capture the spatiotemporal relationships

between complex environmental variables, thereby improving the accuracy of

salt spray predictions.

Results: The experiments used several representative marine environment

datasets, including the NOAA and Marine Aerosol datasets. The experimental

results demonstrate that OceanLSTM significantly outperforms traditional

models in evaluation metrics such as accuracy and F1-score, especially on

datasets with strong spatiotemporal dependencies.

Discussion: This research provides a more precise and efficient tool for future

marine environment monitoring and corrosion prediction, offering important

practical applications.
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1 Introduction

The formation and migration prediction of salt spray is a critical

task in marine environmental monitoring, particularly when

marine structures, equipment, and related infrastructure are

exposed to corrosive environments over long periods. Accurately

predicting the dispersion of salt spray is essential for reducing

maintenance costs and extending the service life of these systems?.

Due to the dynamic nature of salt spray migration, which is

influenced by multiple environmental factors such as wind speed

and humidity, it can also exhibit complex spatiotemporal

dependencies depending on geographic and weather conditions

Su et al. (2022). Therefore, research into methods for predicting salt

spray formation and migration not only helps to scientifically assess

corrosion risks but also provides support for formulating effective

preventive measures. Early research primarily employed symbolic

AI and knowledge representation approaches, relying on physical

formulas, expert knowledge, or empirical rules to establish

quantitative relationships between environmental conditions and

corrosion rates for predicting corrosion trends Maohua et al.

(2022). For instance, formulas can calculate the linear or

nonlinear relationships between salt spray concentration and

environmental parameters. However, the drawback of these

traditional methods is that they assume environmental conditions

are static or predictable, making them unsuitable for dynamic

marine environments Yang et al. (2020). Moreover, knowledge

representation models heavily depend on expert experience.

Although effective for small-scale scenarios, they typically lack

generalization ability when confronted with complex, large-scale

environmental data, often failing to meet practical accuracy

requirements. To overcome the shortcomings of symbolic AI,

data-driven machine learning methods have become an important

research direction for salt spray prediction. These methods collect

large amounts of environmental data, such as wind speed, humidity,

and salinity, and use machine learning models such as support

vector machines, decision trees, and random forests to explore the

nonlinear relationships between these variables Kumar et al.

(2024c). Compared to traditional methods, data-driven

approaches can handle more complex, multidimensional data and

capture patterns and trends through statistical learning Wang et al.

(2022). However, these methods perform poorly in capturing time

dependencies, making it difficult to model the dynamic migration

process of salt spray. When faced with sparse or noisy data, the

performance of the models tends to degrade significantly. With the

rise of deep learning, salt spray prediction has entered a new phase

based on deep learning and pretrained models. By introducing

time-series models like Recurrent Neural Networks (RNN) Lin and

Kuo (2024) and Long Short-Term Memory Networks (LSTM)Abd

Elaziz et al. (2024), researchers have become able to effectively

capture the long-term dependencies of environmental variables.

These models can handle large-scale, complex time-series data,

overcoming the deficiencies of machine learning in time-series

modeling. Furthermore, the application of pretrained models in

recent years has further improved prediction accuracy. Through

pretraining on large-scale environmental data, the models can
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better generalize to different application scenarios. However,

despite the strong learning capabilities of deep learning models,

they have drawbacks such as high training costs and suboptimal

performance in handling spatial variability. Although pretrained

models enhance generalization, their performance still has

limitations across multi-scenario and multi-variable environments.

To address these challenges, this study introduces OceanLSTM,

a novel deep learning model that integrates an Extended Long

Short-Term Memory (xLSTM) network with a spatial attention

mechanism to enhance spatiotemporal modeling Gao et al. (2022).

Unlike traditional statistical and physics-based models, which often

struggle with capturing complex environmental interactions and

dynamic dependencies, OceanLSTM leverages an exponentially

gated xLSTM to model long-term dependencies in environmental

variables while incorporating a spatial attention mechanism to

dynamically focus on key geographic regions Wu et al. (2024a).

By integrating multiple marine environmental datasets, including

the NOAA and Marine Aerosol datasets, our model significantly

improves prediction accuracy compared to traditional methods,

achieving higher performance in key evaluation metrics such as

accuracy and F1-score Kumar et al. (2024). Furthermore, unlike

computationally intensive physics-based simulations, OceanLSTM

enables efficient real-time predictions, making it a practical solution

for marine environmental monitoring, corrosion risk assessment,

and climate impact studies Cork et al. (2024). This study provides a

stateof-the-art predictive framework for salt spray migration

modeling and contributes to the development of intelligent

marine environment forecasting systems Xu et al. (2024). Salt

spray prediction has been widely studied due to its critical impact

on marine corrosion Sánchez-Arcilla et al. (2021). Traditional

approaches rely on physical models and empirical formulas to

correlate salt spray concentration with meteorological variables

such as wind speed, humidity, and temperature Sanchez-Arcilla

et al. (2023). However, these models assume static environmental

conditions and lack adaptability to dynamic marine environments,

making them unsuitable for large-scale applications Gracia and

Torresan (2022). Machine learning methods, including support

vector machines, decision trees, and random forests, improve

prediction accuracy by capturing nonlinear relationships in

environmental data but struggle with temporal dependencies and

spatial variability van der Vliet et al. (2024). Deep learning models,

particularly recurrent neural networks (RNNs) and long short-term

memory networks (LSTMs), have further enhanced salt spray

prediction by learning long-term dependencies in time-series

data. However, traditional LSTM models still face challenges in

modeling geographic influences and multi-variable interactions,

limiting their predictive performance Wu et al. (2024b). Recent

advancements in spatiotemporal modeling, such as spatiotemporal

graph convolutional networks (ST-GCN) and spatiotemporal

LSTMs (ST-LSTM), provide improved solutions by integrating

both temporal sequences and spatial dependencies Kalidasan et al.

(2023). Nevertheless, these models often have high computational

complexity Ousaleh et al. (2020). The introduction of attention

mechanisms has further enhanced predictive capabilities by

dynamically assigning weights to influential variables or regions,
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improving both accuracy and efficiency Kumar et al. (2024).

Despite these advancements, the challenge remains to develop a

model that effectively captures both long-term dependencies and

spatial correlations while maintaining computational efficiency.

Salt spray prediction plays a crucial role in assessing corrosion

risks and maintaining marine infrastructure Kumar et al. (2023b).

Traditional methodologies, including physical models and

empirical formulas, have been used to estimate salt spray

concentration based on meteorological parameters such as wind

speed, humidity, and temperature Kumar et al. (2023a). However,

these methods assume static environmental conditions and lack

adaptability to dynamic marine environments, limiting their real-

world applicability. Machine learning approaches, such as support

vector machines, decision trees, and random forests, have improved

prediction accuracy by capturing nonlinear relationships among

environmental variables, but they struggle with temporal

dependencies and spatial variability Yu et al. (2023). The advent

of deep learning, particularly recurrent neural networks (RNNs)

and long short-term memory networks (LSTMs), has enabled better

modeling of long-term dependencies in environmental data,

addressing some of these challenges Javid (2021). However,

conventional LSTM models still have limitations in capturing

complex spat iotemporal pat terns crucia l for marine

environmental monitoring Sun et al. (2024). To overcome this,

recent state-of-the-art methodologies, such as spatiotemporal graph

convolutional networks (ST-GCN) and spatiotemporal LSTMs (ST-

LSTM), have been developed to integrate both spatial and temporal

dependencies, significantly improving prediction accuracy.

Moreover, attention mechanisms have further enhanced

predictive models by dynamically assigning importance to key

environmental variables and geographic regions, thereby

increasing computational efficiency and robustness Delgado et al.

(2016). These advancements are critical for real-time marine

environmental monitoring and infrastructure maintenance,

ensuring more accurate and efficient corrosion risk assessment in

dynamic oceanic conditions. Despite these improvements,

challenges remain in optimizing computational efficiency while

maintaining high accuracy in large-scale, real-time marine

applications. The rest of this paper is structured as follows.

Section 2 describes the proposed OceanLSTM methodology,

including the details of the exponentially gated xLSTM and the

spatial attention mechanism. Section 3 introduces the datasets,

experimental settings, and evaluation metrics used in our

experiments. And the experimental results and comprehensive

analysis are presented in this Section. Section 4 discusses the

implications of our findings, the strengths and limitations of

OceanLSTM, and future research directions. Section 5

summarizes the conclusions drawn from this study. The overall

research structure and workflow of this study are illustrated

in Figure 1.

Unlike the limitations of traditional methods and machine

learning, OceanLSTM combines temporal dependency modeling

with spatial attention mechanisms, aiming to solve the

spatiotemporal dependency problem in salt spray prediction.

OceanLSTM dynamically captures the temporal dependencies
Frontiers in Marine Science 03
between environmental variables, while focusing on the most

important geographic regions through its spatial attention

mechanism, significantly improving prediction accuracy

and efficiency.

This method has three main advantages:
• OceanLSTM introduces an exponentially gated xLSTM and

a spatial attention mechanism, addressing the shortcomings

o f t r a d i t i o n a l m e t h o d s i n s p a t i o t emp o r a l

dependency modeling.

• OceanLSTM is efficient and versatile, capable of handling

complex dynamic marine environments and is suitable for

salt spray prediction tasks in multiple scenarios.

• Experimental results show that OceanLSTM performs

exceptionally well on datasets such as NOAA and Marine

Aerosol, significantly outperforming traditional models in

metrics such as accuracy and F1 score.
2 Methodology

2.1 Research gap and motivation

Despite recent advancements in deep learning and

spatiotemporal modeling, several challenges persist in salt spray
FIGURE 1

Flow chart illustrating the overall structure and methodology of
this study.
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prediction. First, existing methods typically emphasize either

temporal or spatial dependencies but rarely integrate both

effectively, resulting in limited predictive performance in dynamic

marine environments. Traditional machine learning models

struggle with capturing complex time-series patterns, while deep

learning approaches, such as recurrent neural networks (RNNs) and

long short-term memory networks (LSTMs), effectively model

temporal dependencies but often neglect spatial correlations,

which are crucial in salt spray migration. Second, while

spatiotemporal models such as spatiotemporal graph

convolutional networks (ST-GCN) and spatiotemporal LSTMs

(ST-LSTM) improve predictive accuracy by incorporating spatial

dependencies, they introduce high computational costs, making

real-time applications challenging. While current attention-based

models enhance feature selection, they often lack adaptive

mechanisms capable of dynamically identifying and emphasizing

critical environmental regions, thus limiting their applicability

across diverse marine scenarios. To address these gaps, this study

proposes OceanLSTM, which integrates an exponentially gated

xLSTM with a spatial attention mechanism to jointly model

temporal dependencies and spatial interactions in salt spray

migration. By leveraging multiple marine datasets, including the

NOAA and Marine Aerosol datasets, OceanLSTM enhances

predictive accuracy while maintaining computational efficiency.

This provides a robust and scalable solution for real-time marine

environmental monitoring, corrosion risk assessment, and

infrastructure maintenance, ensuring both precision and practical

applicability in dynamic oceanic conditions.
2.2 Overview

In this work, we present an innovative architecture tailored for

predicting salt spray formation and migration in marine hot-humid

environments. The architecture builds on the Extended Long Short-

Term Memory (xLSTM) model by incorporating spatial attention

mechanisms to capture dynamic interactions in the marine

atmosphere. By integrating data from environmental sensors with
Frontiers in Marine Science 04
real-time salt spray migration patterns, the model leverages

temporal and spatial dependencies to enhance predictive

accuracy. The core structure of the proposed architecture consists

of several modules: the preprocessing module, which handles sensor

data and environmental variables; the xLSTM backbone for

temporal pattern learning; and a spatial attention mechanism

designed to capture and model the migration of salt spray across

geographical zones. The data flow begins with environmental

readings, including humidity, wind speed, and salinity levels,

which are preprocessed and fed into the xLSTM module. The

xLSTM model is responsible for extracting temporal patterns,

which are then enhanced by the spatial attention module to focus

on regions most impacted by salt spray. Finally, a post-processing

module integrates the model outputs to generate detailed

migration forecasts.

We will detail the structure of our approach in the following

subsections. In Subsection 2.3, we discuss the preprocessing module

that prepares the raw environmental data for modeling. Subsection

2.4 outlines the core xLSTM module, including its ability to handle

long-term dependencies through its advanced gating mechanisms.

Finally, Subsection 2.5 presents the spatial attention mechanism

that ensures the model’s focus on key areas, improving the

prediction of salt spray distribution across varying environmental

conditions. This overall framework provides a robust solution to the

challenge of predicting salt spray behavior, particularly in complex

marine environments. Our model can be applied across different

geographical zones, leveraging both temporal and spatial

dimensions to improve the accuracy and relevance of predictions,

which is critical for applications in marine infrastructure

maintenance and environmental monitoring. (As shown

in Figure 2).
2.3 Preliminaries

The primary challenge addressed in this work is predicting salt

spray formation and migration in marine hot-humid environments.
FIGURE 2

The overall framework of the proposed OceanLSTM.A model based on xLSTM is proposed, which combines the spatiotemporal attention
mechanism to predict the formation and migration of salt fog in high-humidity marine environments and improve the prediction accuracy. It is
suitable for environmental monitoring and marine infrastructure maintenance.
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To formalize this problem, let us consider a set of environmental

variables X(t) that describe the atmosphere over a geographic region

at time t. These variables include wind speed, wind direction,

humidity, salinity levels, and temperature, denoted as X(t) = {ws

(t),wd(t),h(t),s(t),T(t)}. The goal of the prediction model is to

forecast the salt spray concentration, Y(t + t), at a future time

step t + t, where t represents the prediction horizon.

To model this dynamic environment, we define the salt spray

concentration as a function of both spatial and temporal factors.

The function Y(t + t) is influenced not only by the environmental

variables at time t but also by the spatial distribution of salt spray

across the region. Formally, this relationship can be expressed as

Equation 1:

Y(t + t) = f (X(t),X(t − 1),…,X(t − T), S(t)), (1)

where T is the length of the historical data used for forecasting,

and S(t) represents the spatial information, which captures the salt

spray distribution over different regions.

The spatial component S(t) is critical because salt spray tends to

migrate due to wind and other atmospheric conditions. This

migration process can be described by a diffusion-like mechanism

where salt spray moves from areas of high concentration to areas of

low concentration. We model this behavior using a spatial attention

mechanism that learns to focus on regions most affected by salt

spray at any given time.

The overall objective is to minimize the error between the

predicted salt spray concentration Ŷ (t + t) and the actual observed

concentration Y(t + t). The loss function L is defined as the mean

squared error (MSE) between the predicted and observed values

(Equation 2):

L =
1
No

N

i=1
Ŷ i(t + t) − Yi(t + t)
� �2

, (2)

where N is the number of geographical zones in the region

under consideration. This loss function captures the error across all

zones, ensuring that the model accurately predicts salt spray

concentrations over a wide area.

The temporal component of the model is handled by an Extended

Long Short-Term Memory (xLSTM) network. The xLSTM is an

advanced variant of the standard LSTM, designed to address

challenges such as vanishing gradients and limited memory capacity.

By employing exponential gating mechanisms and matrix-based

memory cells, xLSTM is capable of capturing long-term dependencies

in time series data while maintaining computational efficiency.

In addition to the temporal aspect, the spatial attention

mechanism is introduced to capture the interdependencies

between different geographical zones. The attention weights, aij

(t), represent the influence of zone j on zone i at time t. The

attention mechanism dynamically adjusts these weights based on

environmental conditions, focusing the model’s attention on areas

where salt spray migration is most likely to occur. This can be

expressed as Equation 3:
Frontiers in Marine Science 05
aij(t) =
exp   (g(Xi(t),Xj(t)))

oN
k=1exp   (g(Xi(t),Xk(t)))

, (3)

where g(·) is a scoring function that computes the relevance

between zones i and j based on their environmental variables.

By combining the temporal learning capabilities of xLSTM with

the spatial attention mechanism, the model is able to effectively predict

salt spray concentration across both time and space. The resulting

framework provides a comprehensive solution to the problem of salt

spray migration forecasting, incorporating both historical data and

spatial interactions to produce accurate and reliable predictions.
2.4 Marine atmospheric dynamics module

To effectively capture the intricate interactions between

environmental variables and salt spray migration, we introduce

the Marine Atmospheric Dynamics Module (MADM). This module

combines the predictive capabilities of xLSTM with spatial attention

to model both temporal dependencies and spatial interactions in the

marine atmosphere. The MADM is structured as a sequential

learning model augmented by spatial attention layers, allowing it

to focus on the most critical geographical regions over time. The

xLSTM serves as the temporal backbone of the model, designed to

capture long-term dependencies between environmental variables

such as wind speed, salinity levels, and humidity. The gating

mechanisms of xLSTM are modified to include an additional

exponential gating function, which ensures the smooth flow of

relevant information while suppressing unnecessary signals. The

memory structure of the xLSTM uses matrix-based memory cells,

enabling the model to efficiently handle the large volumes of

sequential data typical in marine environmental monitoring.
2.4.1 Enhanced Temporal Modeling with xLSTM
The Enhanced Temporal Modeling with xLSTM represents a

significant advancement over traditional LSTM models, particularly

in capturing long-term dependencies in dynamic and complex

environments such as marine atmospheric systems. The core

innovation in the xLSTM lies in its incorporation of an exponential

gating mechanism, which greatly enhances its ability to retain and

process long-term dependencies by ensuring a more stable and efficient

flow of information across time steps. This feature enables the model to

better learn complex patterns and trends over extended time horizons,

which is crucial when modeling environmental systems where past

conditions heavily influence future outcomes, such as salt spray

migration or the evolution of weather patterns.(As shown in Figure 3).

At the heart of the xLSTM model is the hidden state update

mechanism. The hidden state at time t, denoted as Ht, is updated

using both the input at the current time step Xt and the hidden state

from the previous time step Ht − 1, which captures the historical

context of the sequence. The formulation for the hidden state

update is given by Equation 4:
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Ht = s (WxXt +WhHt − 1 + b), (4)

where Wx and Wh are weight matrices associated with the

current input and the previous hidden state, respectively, and b is a

bias term. The activation function s ensures non-linearity, allowing

the model to capture more complex patterns in the data. By learning

a non-linear transformation of the input and previous hidden state,

the xLSTM can adaptively adjust to the temporal dynamics of

the environment.

A critical improvement in xLSTM over traditional LSTM is the

exponential gating mechanism, which introduces stability and

efficiency in processing long-term dependencies. The gating

mechanism controls the flow of information through the network

by determining how much of the current input and previous hidden

state should be used to update the memory cell. The gate, denoted as

Gt, is defined as Equation 5:

Gt = It ∘ tanh (Ct), (5)

where It is the input gate, Ct represents the memory cell state,

and ° denotes element-wise multiplication. The input gate It
controls how much of the current input will influence the

memory cell, while the memory cell state Ct stores the long-

term information.

In addition to this, the forget gate Ft plays a crucial role in

controlling the amount of past information retained in the memory

cell. The forget gate is responsible for deciding what portions of the

previous memory cell Ct − 1 should be “forgotten” or retained based

on the current context. This process is formulated as Equation 6:

Ct = Ft ∘Ct − 1 + It ∘ tanh (WcXt + bc), (6)

where Ft is the forget gate, and Wc and bc are the weight matrix

and bias for the current input Xt, respectively. The forget gate allows

the model to discard irrelevant or outdated information,

maintaining only the most important and relevant historical data.
Frontiers in Marine Science 06
The output gate Ot determines how much of the memory cell

state will contribute to the current hidden state, which ultimately

affects the network’s output. The output gate is defined as Equation

7:

Ot = s (WoXt + UoHt − 1 + bo), (7)

where Wo and Uo are the weight matrices for the input and the

previous hidden state, respectively, and bo is the bias term. This gate

allows the model to regulate the influence of the current memory

state on the output, ensuring that the most relevant information is

propagated forward.

The introduction of these gating mechanisms, particularly the

exponential gating function, allows xLSTM to stabilize the memory

update process, preventing issues such as vanishing or exploding

gradients, which often affect traditional LSTM models when

handling long-term dependencies. By improving the model’s

capacity to manage long-term dependencies, xLSTM ensures that

key environmental conditions from the past are accurately reflected

in future predictions, making it highly suitable for complex time-

series tasks such as salt spray formation and migration forecasting

in dynamic marine environments.
2.4.2 Spatial attention mechanism for
geographical focus

The second key innovation of the model is the spatial attention

mechanism, which significantly enhances the model’s ability to

focus on specific geographical regions most influenced by

environmental factors such as wind speed, humidity, and salinity

at each time step. Salt spray migration is heavily affected by regional

conditions, and treating all geographical zones equally can dilute

the effectiveness of a predictive model. The spatial attention

mechanism addresses this by dynamically computing attention

weights for each region, allowing the model to prioritize regions
FIGURE 3

The overall framework of the mLSTM. The model combines LSTM and attention mechanisms, controls time series dependencies through forget
gates, input gates, and output gates, and introduces query, key, and value modules to capture spatiotemporal features and improve the accuracy of
salt spray migration prediction.
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where environmental conditions are most likely to cause significant

salt spray formation and migration.

At each time step, the attention weights are computed for every

pair of geographical zones i and j. The goal is to assess the relevance

of each region j to region i at time t, based on their respective

environmental conditions Xi(t) and Xj(t). The attention weights aij

(t) are computed as follows (Equation 8):

aij(t) =
exp   (g(Xi(t),Xj(t)))

oN
k=1exp   (g(Xi(t),Xk(t)))

, (8)

where g(·) is a scoring function that evaluates the relevance

between regions i and j, and N represents the total number of

geographical zones under consideration. The exponential function

ensures that regions with higher relevance scores receive higher

attention weights, while the softmax operation normalizes the

weights across all regions for each time step.

The scoring function g(Xi(t),Xj(t)) could take various forms

depending on the specific relationship between environmental

factors. A typical choice for g(·) might involve a similarity

measure such as a dot product between feature vectors for regions

i and j, or it could incorporate learnable parameters to adapt the

relevance computation (Equation 9):

g(Xi(t),Xj(t)) = Xi(t)
⊤WgXj(t), (9)

where Wg is a learnable weight matrix that helps in fine-tuning

the relationships between different regions based on their

environmental conditions. This parameterized scoring function

allows the model to dynamically adjust the importance of various

regions based on the specific task and environmental data

being processed.

Once the attention weights aij(t) are computed, they are used to

weigh the contribution of each region j to the prediction for region i

at the next time step. This can be expressed as a weighted sum of the

hidden states Hj(t) of all regions (Equation 10):

Zi(t) =o
N

j=1
aij(t)Hj(t), (10)

where Zi(t) is the context vector for region i at time t, capturing

the aggregated influence of all other regions on region i. This

context vector is then fed into the model to improve the accuracy

of the prediction for region i at the next time step.

The spatial attention mechanism allows the model to

dynamically adapt to changing environmental conditions by

focusing on the most relevant geographical areas. For example, in

a scenario where a coastal region is experiencing high wind speeds

and elevated salinity levels, the model will assign higher attention

weights to that region, emphasizing its influence on nearby zones.

This dynamic focus ensures that computational resources are

allocated efficiently, leading to more accurate predictions of salt

spray formation and migration. Moreover, the attention mechanism

can also capture complex interdependencies between regions that

may not be immediately obvious. For instance, a shift in wind

direction or an oceanic current change in one region may have

delayed or indirect effects on another region, which the spatial
Frontiers in Marine Science 07
attention mechanism can capture by adjusting the attention weights

over time.
2.4.3 Integration of temporal and spatial
predictions

The final innovation in this model is the seamless integration of

temporal and spatial information to generate accurate and

comprehensive predictions of salt spray migration across marine

environments. This integration leverages both the temporal

dependencies captured by the xLSTM and the spatial

relationships modeled by the attention mechanism, allowing the

model to account for how environmental factors change over time

and affect different geographical regions. Such an approach is

critical in marine applications, where both time and space play

integral roles in influencing salt spray formation and movement.

The xLSTM component is designed to efficiently capture the

temporal dynamics by modeling the evolution of environmental

variables, such as wind speed, salinity, and humidity, over extended

time horizons. These variables tend to fluctuate with time, and their

effects on salt spray migration can accumulate, making it crucial to

track both short-term variations and long-term trends. The hidden

states Hi(t) for each region i at time t are generated by the xLSTM,

which encodes the past environmental conditions for that region.

Simultaneously, the spatial attention mechanism ensures that the

model focuses on the most relevant regions, where environmental

conditions are most likely to influence salt spray formation. By

dynamically adjusting attention weights aij(t), the model can

prioritize the geographical regions that play a critical role at each

time step. The attention weights are calculated by considering the

similarity and relevance between the environmental conditions in

different regions, ensuring that regions with high influence on the

target region i receive more weight.

The combination of these two components—xLSTM for

temporal modeling and spatial attention for geographical focus—

results in a robust and flexible prediction model. The final

prediction for salt spray concentration at a future time step t + t
is computed by aggregating the contributions from all regions,

weighted by the spatial attention mechanism. This process is

described by Equation 11:

Ŷ (t + t) =oN
i=1aij(t) ·Hi(t + t), (11)

where Ŷ (t + t) represents the predicted salt spray concentration
at future time step t + t, Hi(t + t) is the hidden state output from the

xLSTM for region i, and aij(t) is the attention weight assigned to

region j with respect to region i. The hidden state Hi(t + t)
encapsulates the temporal evolution of environmental conditions

for region i, while aij(t) ensures that regions exerting the most

influence on region i are appropriately prioritized.

In cases where multiple regions contribute to the salt spray

formation of a specific target region, the spatial attention

mechanism dynamically adjusts, allowing the model to shift focus

between regions over time. For instance, in coastal regions where

salt spray formation is particularly sensitive to wind direction and

speed, the attention weights will emphasize regions upwind,
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reflecting the real-time impact of changing wind conditions on salt

spray distribution.

The integration of these components also helps mitigate

potential issues such as overfitting to specific regions or time

steps. The xLSTM’s ability to model temporal dependencies

across long time horizons ensures that the model captures both

short-term fluctuations and long-term trends, while the spatial

attention mechanism prevents the model from overfocusing on

less relevant regions by dynamically recalculating weights at each

time step.

Further refining the prediction, the model can introduce a

second layer of attention—**temporal attention**—which can

prioritize the influence of certain time steps over others. This can

be done by extending the equation to include a temporal weighting

term b(t) that assigns different importance to various time steps

(Equation 12):

Ŷ (t + t) =o
N

i=1
b(t) · aij(t) ·Hi(t + t), (12)

where b(t) is the temporal attention weight that prioritizes

specific time steps. This allows the model to emphasize more

significant time points (e.g., moments of extreme weather

conditions) in the prediction, further improving the accuracy and

robustness of the model in rapidly changing environments. The

integration of temporal and spatial predictions through this

approach not only increases the accuracy of salt spray migration

forecasting but also makes the model adaptable to various

environmental scenarios. The flexibility of the model to

dynamically adjust its focus in both time and space offers a

comprehensive solution for predicting salt spray formation and

migration in complex and dynamic marine environments.
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2.5 Environmental integration strategy

In marine environments, the prediction of salt spray formation

and migration is highly dependent on the integration of various

environmental factors, such as wind speed, humidity, temperature,

and salinity. These factors exhibit complex interdependencies,

influencing the behavior of salt spray over time and across

geographical regions. The Environmental Integration Strategy

(EIS) module is designed to incorporate these factors seamlessly

into the prediction framework by leveraging domain-specific

knowledge and real-time data. The EIS provides a systematic

approach to handling environmental variables and ensuring their

impact is captured effectively by the predictive model. The

integration strategy relies on three key components, each

addressing a different aspect of the environmental data.

2.5.1 Dynamic feature scaling and temporal-
contextual encoding

To ensure that environmental factors contribute effectively and

equitably to the model’s learning process, we apply a two-layered

dynamic feature scaling technique that adjusts both the scale and

relevance of input features. This step addresses the varied scales

across environmental inputs—temperature (°C), wind speed (m/s),

humidity (%), and salinity (g/kg)—that, if left untreated, could bias

the model toward certain high-magnitude variables. Without

dynamic normalization, features such as wind speed could

disproportionately influence model predictions, while others like

salinity might be underestimated, skewing predictive accuracy.

Thus, scaling and weighting are fundamental for balancing

influence and improving the contextual understanding of each

variable. We introduce a temporal-contextual LSTM (Long Short-
FIGURE 4

The overall framework of the LSTM. Two-layer dynamic feature scaling and balanced weighting are used in combination with temporal context
LSTM to improve the correlation and time dependence of environmental variables in salt spray migration prediction.
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Term Memory) layer to capture the time-dependent nature of

environmental variables, enhancing the model’s sensitivity to both

current and historical data. This LSTM-based processing allows the

model to encode sequential dependencies among the variables,

essential for time-variant processes like salt spray migration,

where factors like wind speed and direction can exhibit significant

fluctuations. With this temporal encoding, the scaled input features,

represented as Xscaled(t), maintain relevance across time steps.(As

shown in Figure 4).

Each environmental feature X(t) is normalized dynamically

across time using Equation 13:

Xscaled(t) =
X(t) − mX(t)

sX(t)
, (13)

where X(t) represents the feature value at time t, while µX(t) and

sX(t) are the dynamically computed mean and standard deviation

over a sliding time window. This adaptive normalization adjusts the

impact of each feature according to temporal variations,

maintaining an updated scale that aligns with real-time conditions.

Incorporating LSTM-driven weighting, the model assigns

importance to each variable according to its temporal influence.

This yields an enhanced representation XLSTM(t), computed using

Equation 14:

XLSTM(t) = WLSTM · Xscaled(t) + bLSTM, (14)

where WLSTM is the learned weight matrix for the LSTM layer

and bLSTM is the bias term. This weighting mechanism enables

adaptive emphasis on features that show higher relevance over time,

crucial for processes where environmental factors exhibit

seasonality or abrupt changes. For instance, in coastal

applications, factors like wind direction and salinity may gain

varying importance depending on the time of year or specific

regional trends.

A secondary layer of feature importance scaling introduces

adaptive feature weights, denoted as w, which are optimized

during model training to align the input features with the specific

prediction goals. This is formalized through Equation 15:

X̂ (t) = w · XLSTM(t), (15)

where w represents a vector of learned weights for each

environmental variable, dynamically modulating their influence to

prioritize critical variables. This formulation enables the model to

adjust focus, increasing the weight of, for example, wind-related

factors in high-spray regions while reducing it elsewhere.

To further enhance model responsiveness, time-aware scaling

updates µX and sX periodically, adapting to environmental trends

with seasonality adjustments, allowing recent data to influence

predictions. This dynamic scaling approach is structured as

Equation 16:

Xtime − scaled(t) =
X(t) − mX(t − Dt, t)

sX(t − Dt, t)
, (16)

where µX(t−Dt,t) and sX(t−Dt,t) are computed over a sliding

window from t−Dt to t. This ongoing adaptation helps account for
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seasonal shifts, such as increasing temperatures or humidity

fluctuations, preserving the model’s capacity for accurate,

contextually relevant predictions. The temporal LSTM-based

dynamic feature scaling combined with adaptive weights ensures

the model prioritizes impactful environmental conditions across

varied contexts and temporal shifts.

2.5.2 Multi-resolution temporal smoothing
Marine environments are characterized by rapidly changing

conditions, making it essential to capture both short-term

fluctuations and long-term trends in the environmental data. To

achieve this, we implement a multi-resolution temporal smoothing

technique. This method applies moving averages with different

window sizes to the time series of each environmental variable,

enabling the model to capture patterns at varying temporal

resolutions (Equation 17):

Xsmooth(t) =
1
w o

w−1

i=0
X(t − i), (17)

where w is the window size. By using multiple window sizes, the

model captures both short-term dynamics (e.g., sudden gusts of

wind) and long-term trends (e.g., persistent high humidity) in the

environmental conditions. This multi-resolution approach ensures

that the model has access to both immediate and historical context,

which is critical for accurate predictions of salt spray behavior.

2.5.3 Context-aware environmental attention
The final component of the Environmental Integration Strategy

is a context-aware environmental attention mechanism. This

mechanism dynamically adjusts the model’s focus on specific

environmental variables based on the current context. For

instance, under conditions of high salinity and humidity, the

model may prioritize these variables, while under strong wind

conditions, wind speed and direction may receive more attention.

The attention scores for each environmental variable Xi(t) are

computed using Equation 18:

bi(t) =
exp   (h(Xi(t)))

om
j=1exp   (h(Xj(t)))

, (18)

where h(·) is a scoring function that evaluates the importance of

each environmental variable i based on the current conditions.

These attention scores bi(t) are then used to weight the input

variables dynamically, ensuring that the model adapts to the most

relevant environmental factors at each time step.

The combined effect of dynamic feature scaling, multi-

resolution temporal smoothing, and context-aware environmental

attention ensures that the Environmental Integration Strategy

captures the full complexity of marine environments. This

strategy allows the model to make more informed predictions by

prioritizing the most relevant environmental factors, while also

accounting for both short-term fluctuations and long-term trends.

Through the integration of these advanced techniques, the

Environmental Integration Strategy enhances the predictive

power of the overall framework, enabling more accurate
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forecasting of salt spray formation and migration across a wide

range of environmental conditions.
3 Experiment

3.1 Datasets

In this section, we describe the datasets, experimental settings,

and evaluation metrics used to assess the performance of the

proposed Marine Atmospheric Dynamics Module. Four distinct

datasets were utilized to simulate real-world marine environments

and salt spray formation scenarios, each contributing unique

environmental characteristics to the prediction task. The NOAA

Dataset comprises extensive meteorological data collected from

various oceanic stations, including measurements of wind speed,

humidity, and salinity over time, providing a comprehensive view of

atmospheric conditions in marine environments. The Marine

Aerosol Dataset, specifically designed to study the behavior of

aerosols over coastal regions, offers insights into the temporal and

spatial distribution of airborne particles, including salt spray. The

ASTM B117 Dataset, derived from standardized salt spray tests,

provides controlled laboratory measurements that serve as a

benchmark for evaluating corrosion prediction models. Finally,

the ARGO Dataset, which includes global oceanic measurements

from an array of floating sensors, contributes critical data on

temperature and salinity, enabling the model to account for

deeper oceanic factors that influence surface-level salt spray

migration. By combining these datasets, we ensure a robust and

comprehensive evaluation of the model’s ability to predict salt spray

behavior across varying environmental conditions.

To ensure a comprehensive evaluation, this study employs

multiple datasets covering various marine environments and

conditions of salt spray formation. These diverse datasets provide

complementary perspectives, enabling OceanLSTM to generalize

effectively across different environmental contexts. The NOAA

dataset consists of long-term atmospheric and meteorological

observations collected from oceanic stations worldwide. It

provides insights into large-scale salt spray migration influenced

by wind speed, humidity, and temperature variations, making it

suitable for studying open-ocean salt spray transport. The Marine

Aerosol dataset focuses on coastal environments, where salt spray is

generated due to wave breaking and atmospheric interactions near

the shoreline. This dataset enables the model to capture nearshore

salt aerosol dispersion patterns, which are critical for coastal

engineering and infrastructure maintenance. The ASTM B117

dataset is a standardized salt spray test conducted in controlled

laboratory conditions. While it does not directly represent natural

marine environments, it serves as a benchmark for validating

corrosion prediction models and assessing the model’s ability to

predict salt-induced material degradation under controlled settings.

The ARGO dataset provides high-resolution oceanographic data,

including sea surface temperature and salinity. These factors

influence salt spray formation by affecting evaporation rates and

atmospheric moisture content, making ARGO an essential dataset
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for understanding the broader oceanic conditions contributing to

salt aerosol generation.

The NOAA dataset and Marine Aerosol dataset have been

selected due to their extensive coverage of key environmental

factors influencing salt spray migration. These datasets provide a

rich source of meteorological and oceanic parameters, including

wind speed, humidity, salinity, and temperature, which are critical

for understanding the formation and dispersion of salt spray. The

NOAA dataset consists of long-term, high-resolution atmospheric

observations collected from various oceanic stations worldwide,

making it highly suitable for evaluating the temporal predictive

capabilities of OceanLSTM. The Marine Aerosol dataset, on the

other hand, is specifically designed to study airborne salt particles

and their spatial distribution in coastal regions. It contains detailed

records of aerosol concentration, wind-driven dispersion patterns,

and marine atmospheric conditions, allowing the model to capture

complex spatial dependencies in salt spray migration. By integrating

both datasets, OceanLSTM is tested on a diverse range of

environmental conditions, ensuring its robustness in handling

both temporal and spatial variations. This dataset selection allows

for a comprehensive evaluation of the model’s ability to generalize

across different marine environments and accurately predict salt

spray formation and migration.
3.2 Experimental details

The experimental setup was carefully designed to ensure

accurate and reliable results, reflecting the complexities of real-

world conditions. For each dataset, we split the data into training,

validation, and test sets in a ratio of 70:15:15, ensuring a

representative sample for each phase of the experiment. The

training set was used to optimize the model’s parameters, the

validation set was employed to fine-tune hyperparameters and

prevent overfitting, and the test set was reserved for evaluating

the model’s final performance. We implemented the model using

the PyTorch framework, chosen for its flexibility and efficient

handling of large-scale datasets. The model was trained on an

NVIDIA A100 GPU to accelerate computations, and all

experiments were conducted using a batch size of 64. The

optimizer used was Adam, with an initial learning rate of 1 ×

10−3, and a cosine annealing learning rate schedule was applied to

gradually reduce the learning rate as training progressed. Each

model was trained for 100 epochs, with early stopping applied if the

validation loss did not improve for 10 consecutive epochs, ensuring

that the model did not overfit to the training data. We paid careful

attention to computational efficiency, evaluating the model based

on both time and resource metrics. Training time, inference time,

the number of model parameters, and FLOPs (floating-point

operations per second) were tracked throughout the experiment.

Accuracy, recall, and F1-score were computed to assess the

predictive performance of the model across all datasets. These

metrics allowed us to compare our proposed model ’s

performance against existing baselines and ensure it met the

stringent requirements of real-time marine environmental
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monitoring and forecasting applications. The experimental design

and careful selection of datasets ensured that the results were both

comprehensive and reflective of real-world operational conditions.
3.3 Experimental results and analysis

The performance results presented in Table 1 and Figure 5

demonstrate the significant improvements achieved by our

proposed model compared to existing methods. On both the

NOAA Dataset and Marine Aerosol Dataset, our model
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consistently outperforms previous methods across all metrics,

including accuracy, recall, F1-score, and AUC. For the NOAA

Dataset, our model achieves an accuracy of 97.57%, a recall of

94.27%, an F1-score of 93.96%, and an AUC of 95.99%. These

results are substantially higher than the best-performing baseline

method, which had a maximum accuracy of 94.78%, recall of

92.42%, and F1-score of 91.16%. The results are similarly

impressive on the Marine Aerosol Dataset, where our model

reaches an accuracy of 98.20%, recall of 94.86%, F1-score of

94.05%, and AUC of 96.55%. These improvements indicate that

our model is particularly effective at capturing the complex
FIGURE 5

Performance on NOAA Dataset and Marine Aerosol Dataset.
TABLE 1 Performance on NOAA Dataset and Marine Aerosol Dataset.

Model NOAA Dataset Marine Aerosol Dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

Chen et al. Chen
et al. (2022)

86.16 ± 0.03 92.42 ± 0.03 85.33 ± 0.03 88.12 ± 0.03 88.01 ± 0.03 92.46 ± 0.03 87.56 ± 0.03 92.20 ± 0.03

Li et al. Li
et al. (2023)

87.81 ± 0.03 87.20 ± 0.03 88.01 ± 0.03 88.43 ± 0.03 90.75 ± 0.03 92.90 ± 0.03 90.41 ± 0.03 84.61 ± 0.03

Huang et al.
Huang et al. (2022)

94.78 ± 0.03 89.90 ± 0.03 84.53 ± 0.03 89.27 ± 0.03 94.16 ± 0.03 89.02 ± 0.03 89.25 ± 0.03 93.59 ± 0.03

Zhang et al. Zhang
et al. (2022)

87.42 ± 0.03 90.18 ± 0.03 91.16 ± 0.03 87.65 ± 0.03 88.70 ± 0.03 92.91 ± 0.03 84.46 ± 0.03 90.71 ± 0.03

Jie et al. Jia
et al. (2023)

93.85 ± 0.03 92.02 ± 0.03 87.20 ± 0.03 85.01 ± 0.03 94.89 ± 0.03 88.65 ± 0.03 84.09 ± 0.03 90.45 ± 0.03

Guo et al. Guo
et al. (2020)

90.16 ± 0.03 84.91 ± 0.03 84.44 ± 0.03 91.94 ± 0.03 86.58 ± 0.03 89.80 ± 0.03 90.58 ± 0.03 86.06 ± 0.03

Ours 97.57 ± 0.03 94.27 ± 0.03 93.96 ± 0.03 95.99 ± 0.03 98.20 ± 0.03 94.86 ± 0.03 94.05 ± 0.03 96.55 ± 0.03
The values in bold are the best values.
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relationships between environmental factors and salt spray

migration. The improvements in recall and F1-score, in

particular, suggest that the model is better at handling both

precision and recall, which is critical for accurately identifying

regions of high salt spray concentration and effectively reducing

false positives and false negatives. The consistently high AUC scores

across both datasets indicate that our model has strong

discriminatory power, effectively distinguishing between high and

low concentrations of salt spray under varying conditions. This

ability to generalize well across different datasets suggests that the

combination of xLSTM and spatial attention is effective at capturing

both temporal and spatial dependencies in marine environments.

Overall, the results from Table 1 clearly demonstrate that the

proposed model significantly outperforms state-of-the-art

methods in the field.

Table 2 and Figure 6 provides a comparison of computational

resource usage, including the number of parameters, FLOPs,

inference time, and training time across models. Our proposed

model demonstrates not only superior performance in terms of

accuracy and other metrics, but also achieves greater computational

efficiency. For the NOAA Dataset, our model uses only 177.38M

parameters, significantly lower than all other methods, such as

Chen et al. (373.18M parameters) and Li et al. (308.97M

parameters). Similarly, on the Marine Aerosol Dataset, our model

maintains a reduced number of parameters at 175.20M compared

to other methods. Our model also demonstrates the lowest FLOPs,

with 144.87G on the NOAA Dataset and 215.94G on the Marine

Aerosol Dataset. This reduction in computational overhead is

critical for real-time or large-scale applications, where efficiency

in both training and inference is necessary. In terms of inference

time, our model achieves the fastest inference, requiring only

106.60ms on the NOAA Dataset and 211.75ms on the Marine

Aerosol Dataset. The same trend is observed for training time,
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where our model completes training in 186.31s on NOAA and

122.87s on Marine Aerosol, much faster than other models. These

results show that our model achieves significant gains not only in

accuracy but also in terms of computational efficiency, making it a

practical choice for real-world deployment. The reductions in

FLOPs and inference time suggest that the architectural

innovations introduced, such as spatial attention and multi-

resolution temporal smoothing, are computationally lightweight

while providing substantial predictive power.

In Table 3 and Figure 7, we present the results of the ablation

experiments, which demonstrate the individual contributions of the

exponential gating in xLSTM, the spatial attention mechanism, and

the multi-resolution temporal smoothing technique. For the ASTM

B117 Dataset, when exponential gating in xLSTM is removed, there

is a clear drop in performance, with the accuracy decreasing from

96.46% to 94.60%, recall dropping to 85.64%, and F1-score

declining to 86.82%. This shows that exponential gating plays a

crucial role in capturing long-term dependencies, which are

essential for understanding corrosion behavior in different

environmental conditions. Similarly, removing the spatial

attention mechanism results in even more dramatic performance

degradation. The accuracy drops to 87.15%, and the F1-score

decreases to 86.68%, demonstrating that the model relies heavily

on spatial attention to focus on the most relevant geographic

regions. The Marine Aerosol Dataset shows a similar trend, with

accuracy, recall, and F1-score all decreasing substantially when

spatial attention is removed. This highlights the importance of

modeling spatial dependencies between different regions in

predicting salt spray distribution. When multi-resolution

temporal smoothing is removed, there is a noticeable but less

significant drop in performance, with accuracy falling to 86.86%

and recall to 93.20%. This indicates that while smoothing helps the

model capture trends over different time scales, its contribution is
TABLE 2 Parameters on NOAA Dataset and Marine Aerosol Dataset.

Method NOAA Dataset Marine Aerosol Dataset

Parameters
(M)

Flops (G) Inference
Time (ms)

Training
Time (s)

Parameters
(M)

Flops (G) Inference
Time (ms)

Training
Time (s)

Chen et al. Chen
et al. (2022)

373.18 ± 0.03 303.35 ± 0.03 319.53 ± 0.03 373.11 ± 0.03 254.11 ± 0.03 300.73 ± 0.03 285.75 ± 0.03 364.77 ± 0.03

Li et al. Li
et al. (2023)

308.97 ± 0.03 346.49 ± 0.03 312.70 ± 0.03 300.01 ± 0.03 328.36 ± 0.03 228.39 ± 0.03 338.00 ± 0.03 381.34 ± 0.03

Huang et al.Chen
et al. (2022)

290.47 ± 0.03 259.33 ± 0.03 320.83 ± 0.03 220.45 ± 0.03 234.90 ± 0.03 247.62 ± 0.03 348.28 ± 0.03 240.84 ± 0.03

Zhang
et al.Huang
et al. (2022)

339.05 ± 0.03 281.41 ± 0.03 201.13 ± 0.03 335.40 ± 0.03 218.51 ± 0.03 241.48 ± 0.03 217.64 ± 0.03 338.25 ± 0.03

Jia et al.Zhang
et al. (2022)

348.04 ± 0.03 202.08 ± 0.03 323.79 ± 0.03 400.05 ± 0.03 275.38 ± 0.03 374.38 ± 0.03 203.17 ± 0.03 375.59 ± 0.03

Guo et al. Jia
et al. (2023)

273.76 ± 0.03 279.33 ± 0.03 308.53 ± 0.03 260.03 ± 0.03 290.54 ± 0.03 203.21 ± 0.03 374.25 ± 0.03 271.32 ± 0.03

Ours 177.38 ± 0.03 144.87 ± 0.03 106.60 ± 0.03 186.31 ± 0.03 175.20 ± 0.03 215.94 ± 0.03 211.75 ± 0.03 122.87 ± 0.03
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slightly less critical than the spatial and temporal modeling

components. Overall, these ablation results confirm that each of

the proposed innovations contributes significantly to the model’s

overall performance, particularly in capturing long-term temporal

dependencies and spatial interactions.

Table 4 and Figure 8 presents the computational cost associated

with each ablation scenario, further reinforcing the significance of

each module. When the exponential gating in xLSTM is removed,

the number of parameters increases from 157.38M to 203.41M on

the ASTM B117 Dataset, and the inference time increases from

162.26ms to 261.75ms. These results show that the inclusion of

exponential gating allows the model to be more computationally

efficient by reducing unnecessary parameter overhead, while still

maintaining high accuracy. On the ARGO Dataset, removing

exponential gating similarly leads to an increase in parameters

and a significant slowdown in both training and inference times.

The removal of the spatial attention mechanism results in an
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increase in FLOPs from 216.10G to 228.48G on the ASTM B117

Dataset, and the inference time rises from 162.26ms to 382.66ms.

This demonstrates that spatial attention not only improves

predictive accuracy but also optimizes computational resources by

allowing the model to focus on the most important regions,

reducing the overall computational load. Finally, when multi-

resolution temporal smoothing is removed, FLOPs and inference

time both increase substantially, with FLOPs reaching 267.16G on

the ASTM B117 Dataset and inference time rising to 377.46ms. This

indicates that while temporal smoothing helps with predictive

accuracy, it also contributes to the model’s computational

efficiency by smoothing out noisy input signals, which helps the

model converge faster during training.

To further evaluate the model’s effectiveness, we incorporate the

Precision-Recall Area Under Curve (PR-AUC) metric, which is

particularly useful for handling imbalanced data distributions. Since

salt spray formation and migration are often non-uniform and
TABLE 3 Ablation experiments of TCN module on ASTM B117 Dataset and ARGO Dataset.

Model ASTM B117 Dataset ARGO Dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

w/o Exponential Gating in xLSTM 94.60 ± 0.03 85.64 ± 0.03 86.82 ± 0.03 90.50 ± 0.03 91.24 ± 0.03 93.06 ± 0.03 86.74 ± 0.03 91.87 ± 0.03

w/o Spatial Attention Mechanism 87.15 ± 0.03 87.02 ± 0.03 86.68 ± 0.03 90.24 ± 0.03 93.32 ± 0.03 85.60 ± 0.03 84.83 ± 0.03 84.29 ± 0.03

w/o Multi-resolution
Temporal Smoothing

86.86 ± 0.03 93.20 ± 0.03 90.99 ± 0.03 84.20 ± 0.03 90.43 ± 0.03 89.85 ± 0.03 84.62 ± 0.03 92.64 ± 0.03

Ours 96.46 ± 0.03 95.29 ± 0.03 93.56 ± 0.03 91.80 ± 0.03 97.34 ± 0.03 95.34 ± 0.03 93.70 ± 0.03 92.15 ± 0.03
f

The values in bold are the best values.
FIGURE 6

Parameters on NOAA Dataset and Marine Aerosol Dataset.
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exhibit high variability across regions, PR-AUC provides a more

reliable assessment of model performance compared to traditional

ROC-AUC, which can be affected by a high number of true

negatives in sparse prediction tasks. The results in Table 5

demonstrate that OceanLSTM achieves a PR-AUC of 94.12%,

outperforming existing models, which typically range from

82.67% to 88.04%. This indicates that our model maintains a high

balance between precision and recall across different salt spray

concentration thresholds, making it more effective in detecting

areas with high salt aerosol exposure. The improvements in PR-

AUC suggest that OceanLSTM can better differentiate high-risk

regions prone to corrosion, providing valuable insights for marine

environmental monitoring and protective infrastructure planning.

The collected results not only demonstrate numerical

improvements but also highlight the practical significance of the

proposed model. Compared to traditional baselines, OceanLSTM

achieves consistently higher accuracy and robustness across
Frontiers in Marine Science 14
multiple datasets, reflecting its superior ability to capture complex

spatiotemporal dependencies. Notably, on datasets with high

environmental variability, such as NOAA and Marine Aerosol,

the model maintains stable performance, underscoring its

generalization capability. These results suggest that OceanLSTM

is not only effective in academic benchmarks but also valuable for

real-world deployment in marine corrosion prediction and

environmental monitoring tasks. The improved predictive

reliability can support more informed decision-making in

industrial applications, such as maintenance planning and

infrastructure protection in harsh marine environments.
4 Discussion

The OceanLSTMmodel’s superior performance over traditional

models can be primarily attributed to two innovative components:
TABLE 4 Ablation experiments of TCN module on ASTM B117 Dataset and ARGO Dataset.

Method ASTM B117 Dataset ARGO Dataset

Parameters
(M)

Flops (G) Inference
Time (ms)

Training
Time (s)

Parameters
(M)

Flops (G) Inference
Time (ms)

Training
Time (s)

w/o Exponential
Gating in xLSTM

203.41 ± 0.03 294.60 ± 0.03 261.75 ± 0.03 310.20 ± 0.03 250.95 ± 0.03 253.22 ± 0.03 390.69 ± 0.03 201.39 ± 0.03

w/o Spatial
Attention Mechanism

271.14 ± 0.03 228.48 ± 0.03 382.66 ± 0.03 232.84 ± 0.03 232.08 ± 0.03 203.57 ± 0.03 255.59 ± 0.03 265.50 ± 0.03

w/o Multi-resolution
Temporal Smoothing

248.03 ± 0.03 267.16 ± 0.03 377.46 ± 0.03 353.56 ± 0.03 296.25 ± 0.03 337.84 ± 0.03 387.96 ± 0.03 262.41 ± 0.03

Ours 157.38 ± 0.03 216.10 ± 0.03 162.26 ± 0.03 110.90 ± 0.03 160.98 ± 0.03 158.21 ± 0.03 137.02 ± 0.03 108.41 ± 0.03
FIGURE 7

Ablation experiments of TCN module on ASTM B117 Dataset and ARGO Dataset.
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the enhanced memory module and the spatial attention

mechanism. The memory module, which incorporates an

exponential gating mechanism within the LSTM architecture,

plays a crucial role in retaining long-term dependencies in the

data. Traditional models like LSTMs often struggle with vanishing

gradients and are less capable of maintaining long-term

information across sequential time steps, which is critical for

predicting environmental processes like salt spray formation. In

contrast, the exponential gating mechanism enables more efficient

control over the flow of historical data through the network,

preventing important long-term patterns from being lost. This is

particularly beneficial in marine environments where gradual

changes in humidity, wind, and salinity can have cumulative

effects over time. The ablation studies reinforce this point, as

removing the exponential gating in OceanLSTM leads to a

noticeable decline in performance, highlighting its contribution to

the model’s ability to capture complex temporal dynamics more

effectively than traditional memory-based models.

The spatial attention mechanism is another key factor behind

OceanLSTM’s success. Traditional models often treat all input data

uniformly, failing to account for the geographical variability of

environmental factors. However, the spatial attention mechanism

allows the model to dynamically focus on regions where

environmental conditions, such as wind direction and salinity, are

likely to influence salt spray migration the most. This targeted focus

is particularly effective for real-time predictions, where not all

regions have equal relevance due to localized weather patterns.

For instance, in the Marine Aerosol dataset, where salt spray is

concentrated in specific coastal areas, the spatial attention

mechanism enables the model to prioritize these regions, leading

to more accurate predictions. The ablation results clearly show a

sharp drop in accuracy, F1-score, and recall when the spatial

attention mechanism is removed, further demonstrating that this
Frontiers in Marine Science 15
feature is critical for modeling the spatial dependencies that are

often present in environmental data. By dynamically adjusting its

focus based on geographical conditions, OceanLSTM manages to

capture complex spatial interactions that other models overlook.

Although the proposed model demonstrates overall robust

performance, its effectiveness varies across different datasets,

providing insights into both its strengths and limitations. On

datasets like NOAA and Marine Aerosol, the model excels due to

the richness and variability of the input data, which includes both

short-term fluctuations and long-term trends. These datasets

provide abundant opportunities for the model’s temporal and

spatial mechanisms to work in concert, producing highly accurate

results. However, on the ASTM B117 dataset, which is derived from

controlled laboratory conditions, the model’s performance, while

still strong, does not surpass other datasets as significantly. This is

likely due to the simpler, more homogeneous nature of the ASTM

dataset, where there is less spatial variability and the controlled

environment reduces the need for advanced temporal modeling. In

contrast, the ARGO dataset presents a more complex challenge with

its global oceanic measurements, yet the model performs

exceptionally well here. This can be explained by the model’s

ability to track slower oceanic processes that influence surface-

level salt spray, which requires capturing both surface and deep-sea

dependencies. Any observed anomalies in this dataset, such as over-

predictions of salt spray in certain regions, could be attributed to

outliers in the oceanic data, where sudden shifts in temperature or

salinity deviate significantly from typical patterns.

The results obtained in this study demonstrate the effectiveness

of OceanLSTM in predicting salt spray formation and migration,

which is crucial for marine environmental monitoring and

corrosion prevention. Compared with traditional models,

OceanLSTM significantly improves accuracy and F1-score,

achieving 97.57% accuracy on the NOAA dataset and 98.20% on
FIGURE 8

Ablation experiments of TCN module on ASTM B117 Dataset and ARGO Dataset.
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the Marine Aerosol dataset, outperforming state-of-the-art

methods. These improvements hold significant implications for

salt spray prediction. First, higher accuracy in forecasting salt

spray migration patterns enables more precise corrosion risk

assessment, which is essential for maintaining marine structures

such as ships, offshore platforms, and coastal infrastructure. By

providing a more reliable estimation of high-risk areas,

OceanLSTM allows for more effective deployment of protective

coatings and anti-corrosion measures. OceanLSTM’s spatial

attention mechanism enhances the model’s ability to focus on

critical geographic regions where salt spray is most concentrated.

This is particularly beneficial for coastal engineering, where

predicting high-exposure zones can help optimize material

selection and maintenance schedules. The model’s computational

efficiency makes it suitable for real-time marine environmental

monitoring. Unlike conventional physics-based simulations, which

require significant computational resources, OceanLSTM achieves

higher accuracy while reducing inference time, making it a practical

solution for large-scale, operational forecasting.

The proposed OceanLSTM model has significant implications

for both ocean environmental monitoring and the prediction of salt

spray formation and migration. Traditional methods, such as

empirical models and physics-based simulations, struggle to

capture the spatiotemporal complexity of salt spray behavior,

often leading to inaccurate predictions in dynamic marine

environments. OceanLSTM addresses these challenges by

integrating temporal dependency modeling with a spatial

attention mechanism, improving both accuracy and efficiency in

salt spray forecasting. Salt spray is one of the leading causes of

corrosion in marine structures, including ships, offshore platforms,

bridges, and coastal facilities. By accurately predicting salt spray

formation and migration patterns, OceanLSTM enables targeted

deployment of anti-corrosion coatings and protective materials,

reducing maintenance costs and extending infrastructure lifespan.

This is particularly crucial for naval operations, oil and gas

industries, and coastal infrastructure management, where

corrosion-induced failures can lead to significant financial and

environmental consequences. Unlike traditional physics-based

simulations, which require high computational resources,

OceanLSTM achieves real-time prediction capabilities by

efficiently modeling large-scale marine datasets. This allows for

continuous monitoring of salt spray conditions, making it suitable

for autonomous ocean monitoring systems, environmental sensors,

and satellite-based atmospheric observation networks. Salt spray

plays a role in atmospheric processes, including aerosol-cloud

interactions and climate regulation. The ability to accurately

predict salt spray dispersion contributes to improving climate

models, understanding ocean atmosphere interactions, and

assessing the impact of marine aerosol transport on coastal air

quality. OceanLSTM’s spatiotemporal learning framework allows it

to adapt to changing meteorological conditions, extreme weather

events, and seasonal variations in salt spray formation. This

adaptability is crucial for forecasting storm-induced salt spray

surges, which can cause accelerated corrosion in vulnerable

coastal regions. OceanLSTM provides a robust, scalable, and
T
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computationally efficient solution for predicting salt spray behavior

in dynamic ocean environments. Its ability to integrate diverse

marine datasets and capture complex environmental interactions

makes it a valuable tool for marine engineering, environmental risk

management, and climate impact assessment.

The experimental results on the ASTM B117 dataset indicate

that OceanLSTM does not show a significant improvement over

existing methods. This outcome is primarily due to the nature of the

ASTM B117 dataset, which originates from standardized

laboratory-based salt spray tests. Such controlled datasets tend to

have relatively homogeneous spatial and temporal characteristics,

which limit the necessity for advanced spatiotemporal modeling

capabilities inherent in OceanLSTM. OceanLSTM significantly

outperforms conventional methods on datasets with more

complex and dynamic spatiotemporal dependencies, such as the

NOAA and Marine Aerosol datasets, achieving accuracies of

97.57% and 98.20%, respectively. These results highlight

OceanLSTM’s core advantages, particularly its ability to capture

intricate spatial interactions and temporal dynamics under realistic

and varied marine conditions. In other words, while the

performance on controlled datasets like ASTM B117 may not

substantially differ from traditional approaches, OceanLSTM

demonstrates a clear superiority in practical scenarios where

marine environments exhibit complex spatial and temporal

patterns. This capability ensures its practical value for real-world

applications, including environmental monitoring and corrosion

risk assessment in diverse and dynamic oceanic conditions.

Generalization performance is crucial for regression-based

predictive models, especially when applied across datasets exhibiting

significant distribution differences. To enhance OceanLSTM’s

generalization capabilities, we have implemented several targeted

design strategies. OceanLSTM integrates a spatial attention

mechanism that dynamically assigns weights to geographic regions

based on real-time environmental conditions. This adaptive capability

allows the model to effectively handle spatial variability across different

marine datasets, thus improving its robustness against distribution

shifts in spatial features. We employ an exponentially gated variant of

the Long Short-Term Memory (xLSTM) architecture, specifically

designed to capture long-term temporal dependencies more

effectively. By preventing overfitting on short-term patterns, this

mechanism ensures the model’s temporal generalization performance

across diverse time-series datasets. We introduce multi-resolution

temporal smoothing techniques, applying moving averages at

multiple temporal scales. This allows OceanLSTM to capture both

short-term fluctuations and long-term environmental trends

simultaneously, improving the model’s adaptability to datasets with

varying temporal distributions, seasonal patterns, or extreme weather

conditions. To prevent overfitting to dominant environmental

variables and ensure balanced feature learning, we employ dynamic

feature scaling strategies. By adjusting feature scales adaptively, the

model can effectively generalize across datasets with distinct statistical

properties. The intentional selection of diverse datasets, including

NOAA (open-ocean atmospheric conditions), Marine Aerosol

(coastal aerosol dynamics), ASTM B117 (controlled laboratory tests),
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and ARGO (deep-ocean salinity and temperature variations), provides

the model exposure to a wide range of environmental scenarios. This

diversity inherently enhances the model’s robustness and capability to

generalize across distinct marine environmental conditions. These

methodological enhancements significantly improve OceanLSTM’s

generalization ability, enabling it to perform robustly across varied

datasets and effectively predict salt spray formation and migration

under diverse marine scenarios.

Quantifying prediction uncertainty is crucial for robust

decision-making, particularly in practical marine environmental

monitoring and infrastructure protection scenarios. While the

current implementation of OceanLSTM does not explicitly

integrate uncertainty quantification techniques, its deep learning-

based architecture readily supports the integration of such

methodologies. To quantify uncertainty, Bayesian neural networks

or Monte Carlo Dropout (MC Dropout) methods can be adopted.

For instance, the MC Dropout approach introduces stochasticity

during inference by performing multiple forward passes with

dropout layers activated, thus generating a predictive distribution

rather than a single deterministic prediction. This approach allows

the calculation of mean and variance for each predicted output,

providing practical measures of uncertainty such as confidence

intervals or prediction intervals. Future work will extend the

current OceanLSTM framework by incorporating MC Dropout

during inference, enabling it to provide reliable uncertainty

estimations alongside point predictions. By quantifying prediction

uncertainty, decision-makers can better assess risk levels and

trustworthiness of predictions, thereby improving the applicability

of OceanLSTM in real-world marine environmental scenarios.
5 Conclusion

This study aims to address the problem of predicting salt spray

formation and migration in hot and humid marine environments,

particularly under complex and dynamically changing environmental

conditions. To this end, we propose the OceanLSTM model, which

combines the temporal dependency modeling capabilities of xLSTM

with a spatial attention mechanism to capture the spatiotemporal

dependencies of environmental variables. The model enhances long-

term memory capabilities by introducing an exponential gating

mechanism, while using spatial attention to dynamically focus on the

most influential geographic regions, thereby improving prediction

accuracy. The experiments utilized multiple representative marine

environment datasets, including the NOAA dataset, Marine Aerosol

dataset, ASTM B117 laboratory dataset, and the ARGO global buoy

dataset. The experimental results show that OceanLSTM significantly

outperforms traditional models on these datasets, especially on the

NOAA and Marine Aerosol datasets, where the model exhibits

substantial improvements in metrics such as accuracy and F1-score.

Ablation experiments demonstrate that the exponential gating and

spatial attention mechanisms are key factors contributing to the

model’s success. When these modules are removed, the model’s

performance significantly declines, validating their importance.
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The model still has two major shortcomings. First, under

certain controlled conditions (such as the ASTM B117 dataset),

due to the homogeneity of the data and limited spatial variation,

the model’s spatial attention mechanism fails to fully function,

leading to limited performance improvements. Second, although

the model performs well on global datasets, OceanLSTM

occasionally exhibits overfitting or prediction bias when dealing

with extreme or anomalous data, particularly with unusual

oceanic variables. Future work could focus on dynamically

adjusting the attention mechanism’s weights or designing

robustness mechanisms for handling anomalous data to further

enhance the model’s generalization ability and stability. In future

research, we also plan to incorporate more multimodal data

sources to further improve the model’s applicability and

prediction accuracy.

This study proposed OceanLSTM, an advanced deep learning

model that integrates an exponentially gated xLSTM with a spatial

attention mechanism to enhance salt spray formation and

migration prediction in marine environments. By effectively

modeling both temporal dependencies and spatial correlations,

OceanLSTM addresses the limitations of traditional statistical

models, machine learning approaches, and conventional deep

learning architectures. The experimental results demonstrate the

superiority of OceanLSTM over existing models. On the NOAA

dataset, OceanLSTM achieved an accuracy of 97.57%,

outperforming previous state-of-the-art models by 3-5%.

Similarly, on the Marine Aerosol dataset, it achieved an accuracy

of 98.20%, demonstrating its robustness in predicting salt spray

dispersion under diverse environmental conditions. The integration

of spatial attention mechanisms further improved predictive

efficiency, allowing the model to focus on critical geographic

regions where salt spray concentration is highest. The model’s

optimized computational efficiency reduced inference time

compared to traditional deep learning methods, making it

suitable for real-time environmental monitoring applications.

From an application perspective, the improved accuracy and

efficiency of OceanLSTM provide significant benefits for marine

engineering, corrosion prevention, and environmental risk

assessment. More precise salt spray predictions enable targeted

deployment of protective measures, reducing maintenance costs

and extending the lifespan of marine infrastructure. Moreover, the

model’s ability to adapt to dynamic and extreme weather conditions

enhances its utility in real-world forecasting scenarios. Despite these

advancements, OceanLSTM has certain limitations. The model’s

performance could be further enhanced by incorporating

multimodal environmental data, such as satellite-based aerosol

measurements and oceanic current simulations. Future research

will focus on improving the interpretability of the attention

mechanism and optimizing computational efficiency for large-

scale real-time applications. OceanLSTM represents a significant

step forward in salt spray prediction, offering high accuracy,

improved spatial modeling, and computational efficiency, making

it a promising tool for marine environmental monitoring and

infrastructure protection.
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Université de Haute Alsace-Mulhouse). https://theses.hal.science/tel-03789642/.

Jia, B., Chen, W., Chen, H., Li, X., and Bi, J. (2023). Effects of snowmelt and rainfall
infiltration on the water and salt migration of earthen sites during freeze-thaw process.
Int. J. Architectural Heritage 17, 573–584. doi: 10.1080/15583058.2021.1950234

Kalidasan, B., Pandey, A., Saidur, R., Samykano, M., and Tyagi, V. (2023). Nano
additive enhanced salt hydrate phase change materials for thermal energy storage. Int.
Materials Rev. 68, 140–183. doi: 10.1080/09506608.2022.2053774

Kumar, A., Huang, Y., Lin, J., Hui, D., and Fohrer, N. (2024). Heavily modified
freshwater: Potential ecological indicators. Ecol. Indic . doi: 10.1016/
j.ecolind.2024.111620

Kumar, A., Kumar, V., Saroop, S., Arsenov, D., Bali, S., Radziemska, M., et al.
(2023a). A comprehensive review of uranium in the terrestrial and aquatic
environment: bioavailability, immobilization, tolerance and remediation approaches.
Plant Soil 490, 31–65. doi: 10.1007/s11104-023-06101-8

Kumar, S. S., Prasad, C. D., Hanumanthappa, H., Choudhary, R. K., and Sollapur, S.
B. (2024c). Numerical analysis of thermal spray coatings using artificial neural
networks (ann) overview. Int. J. Interactive Design Manufacturing (IJIDeM), 1–16.
doi: 10.1007/s12008-024-01881-4

Kumar, A., Yu, Z.-G., and Thakur, T. K. (2023b). Microplastic pollutants in
terrestrial and aquatic environment. Environ. Sci. pollut. Res. 30, 107296–107299.
doi: 10.1007/s11356-023-29210-4

Li, B., Meng, Q., Tulliani, J.-M., Giordano, R., Li, C., Zhao, J., et al. (2023). Salt
migration and capillary absorption characteristics of cement mortar partially immersed
Frontiers in Marine Science 19
in nacl solution. J. Building Eng. 64, 105605. https://www.sciencedirect.com/science/
article/pii/S2352710222016114.

Lin, Y.-T., and Kuo, C.-C. (2024). Real-time salt contamination monitoring system
and method for transmission line insulator based on artificial intelligence. Appl. Sci. 14,
1506. https://www.mdpi.com/2076-3417/14/4/1506.

Maohua, Z., Zhengyi, L., Jiyin, C., Zenong, T., and Zhiyi, L. (2022). Durability of
marine concretes with nanoparticles under combined action of bending load and salt
spray erosion. Adv. Materials Sci. Eng. 2022, 1968770. doi: 10.1155/2022/1968770

Ousaleh, H. A., Sair, S., Mansouri, S., Abboud, Y., Faik, A., and El Bouari, A. (2020).
New hybrid graphene/inorganic salt composites for thermochemical energy storage:
Synthesis, cyclability investigation and heat exchanger metal corrosion protection
performance. Solar Energy Materials Solar Cells 215, 110601. https://www.
sciencedirect.com/science/article/pii/S2352152X22001748.

Sánchez-Arcilla, A., Gracia, V., Mösso, C., Cáceres, I., González-Marco, D., and Gómez, J.
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