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The use of hyperspectral satellite missions opens new opportunities for

integrated approaches to the study of phytoplankton communities. The Baltic

Sea, with its distinct mixture of marine and freshwater characteristics, is a natural

laboratory for understanding marine ecosystems. In this study, we analyzed a

dataset from the Baltic Sea containing simultaneous phytoplankton pigment

concentrations and absorption spectra. We applied spectral derivative analysis

and unsupervised machine learning techniques to identify the unique statistical

relationships among phytoplankton pigments and inherent optical properties.

The statistical analysis of the absorption spectra provides the basis for a predictive

model to assess pigment concentrations from optical measurements.

Additionally, we compare our results to know assessment methods, such as

Gaussian spectral decomposition, that link the spectral analysis with

phytoplankton pigment content. This study investigates the potential of

statistical, data-driven analytical approaches in the development and validation

of models for retrieving phytoplankton community composition. The integration

of these findings with existing research contributes to the advancement of

remote sensing capabilities for monitoring marine ecosystems in the Baltic Sea.
KEYWORDS

inherent optical properties, phytoplankton pigments, spectral decomposition, bio-
optics, Baltic Sea
1 Introduction

The Baltic Sea, connected to the North Sea and the Atlantic Ocean via the Skagerrak, is

a shallow intra-continental shelf sea with an average depth of 52 meters. It has low salinity

and significant land-derived substance inflows (Blanz et al., 2005), resulting in optical

properties distinct from those of ocean waters (Meler et al., 2017, 2018, 2020, 2023;
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Woźniak et al., 2022). Phytoplankton, the main producers of

organic matter in this marine ecosystem, form the basis of marine

life. Extensive research has studied the taxonomic structure of

phytoplankton communities in the Baltic Sea (Wasmund and

Uhlig, 2003, 2008; Olli et al., 2011; HELCOM, 2018).

In our previous study (Canuti and Penna, 2024), we used various

statistical analyses and machine learning techniques to assess the

composition of the phytoplankton community in the Baltic Sea from

a phytoplankton pigment dataset. This investigation included a

dataset of 273 samples, ensuring sufficient spatio-temporal

representation across different regions of the Baltic Sea, including

the central and northern Baltic Proper, the Gulf of Gdansk, the Gulf

of Finland, and the Bothnian Sea (Figure 1). In the present study, we

investigate phytoplankton pigment concentrations and spectral

coefficients (i.e., light absorption spectra) and the relationship

between optical properties and the dominant phytoplankton

community (Anderson et al., 2008; Sun et al., 2022).
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The deployment of hyperspectral satellite such as the German

Environmental Mapping and Analysis Program (EnMAP, Guanter

et al., 2015) and the Italian Precursore IperSpettrale of Missione

Applicativa (PRISMA, Candela et al., 2016) as well as the launch of

the NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE,

Meister et al., 2024) mission, opens new possibilities for an

integrated approach to phytoplankton studies. Several studies

have focused on modeling or parameterizing light absorption by

phytoplankton indirectly through diagnostic pigment analysis

(DPA) and categorizing phytoplankton into phytoplankton

functional types (PFT) and phytoplankton size classes (PSC)

(Vidussi et al., 2001; Uitz et al., 2006, Brewin et al., 2010; Hirata

et al., 2011; Mouw et al., 2017). IOCCG (2014) discusses various

approaches to identify phytoplankton size structure from satellite

data, and explores the potential for developing algorithms to

remotely determine the contribution of different PFTs in water

bodies. The use of biomarker pigments as representative of
FIGURE 1

Spatial distribution of the sampling points in the years 2004-2008 color corresponds to dominant species present according to the network-
community classification (NCA) in Canuti and Penna (2024).
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individual taxa, such as fucoxanthin (Fuco) for diatoms, has become

a common method to infer phytoplankton community

composition. However, this approach represents a simplification

of the ecological and biochemical reality. While fuco is

predominantly associated with diatoms, it is also present in other

taxa such as haptophytes and some raphidophytes. This overlap

limits the ability to accurately assign pigment concentrations to

specific groups, thereby introducing potential biases and

uncertainties into assessment of phytoplankton diversity and their

use as proxies for individual taxa. Nevertheless, the PFT concept is

relevant to the study of ecological and biogeochemical processes,

particularly in model studies, as it helps to understand the role of

phytoplankton in global cycles of key chemical elements and

primary production. However, these methods are not effective for

the Baltic Sea, which is an optically complex water body (Meler

et al., 2020).

Due to significant freshwater inputs, the upper layer of the

Baltic Sea contains a notable amount of chromophoric dissolved

organic matter (CDOM), making CDOM absorption the dominant

optical factor both in open water and along coastal regions.

Particularly in the southern Baltic Sea, the inflow of large rivers

contributes to increased optical variability (Harvey et al., 2015).

CDOM is responsible for a significant fraction of the absorption of

ultraviolet (UV) and blue spectral light in the ocean (Nelson and

Siegel, 2013). Previous studies have explored the relationship

between phytoplankton structure and CDOM content, correlating

measurements of CDOM with phytoplankton composition (Barrón

et al., 2014).

The phytoplankton absorption coefficient is a critical parameter

in several applications, such as pigment biomass remote sensing or

light attenuation in the ocean (Chase et al., 2013, 2017). The pattern

of absorption spectrum is influenced by factors such as chlorophyll

a concentration, algal species, cell size, and changes in pigment

composition, including accessory pigments such as chlorophyll b

and c, carotenoids, and phycobiliproteins. Similar to the

chemotaxonomic characterization of Baltic Sea phytoplankton

communities, which depends on diagnostic pigments (Schlüter

et al., 2000; Stoń-Egiert and Ostrowska, 2022), the available

models for retrieving phytoplankton biomarker pigments

composition from absorption spectra for the Baltic Sea have

focused on the southern Baltic Sea (Ficek et al., 2004; Kowalczuk

et al., 2005). However, a significant research gap remains in the

study of the wider Baltic basin. Additionally, most algorithms for

interpreting remote sensing data in marine and oceanic

environments are unsuitable for the Baltic Sea and lead to

significant errors due to its unique characteristics (Meler

et al., 2020).

This study aims to assess data analysis methods to investigate

the relationship between phytoplankton pigment composition

determined by high-performance liquid chromatography (HPLC)

technique and optical properties throughout the Baltic Sea. The

spectral dataset was subjected to different analysis techniques,

including hierarchical cluster analysis (HCA) and principal

component analysis (PCA). The results of the spectral analysis are

compared with those of the corresponding phytoplankton pigment
Frontiers in Marine Science 03
dataset studied previously (Canuti and Penna, 2024). Derivative

analysis was applied to the pigmented absorption spectra dataset to

obtain a predictive model for assessing the phytoplankton

biomarker pigments from optical data. The proposed predictive

model was then compared with the Gaussian spectral

decomposition model (Hoepffner and Sathyendranath, 1991,

1993, Ficek et al., 2004; Chase et al., 2013) to evaluate the

advantages and limitations of different approaches in a complex

water basin such as the Baltic Sea.
2 Materials and methods

2.1 Field dataset

The dataset for the Baltic Sea was collected during six ocean

color validation campaigns conducted in May and September 2004,

April 2005, July 2006, August 2007, and August 2008. These

campaigns focused primarily on the summer period, which is

characterized by the dominance of filamentous cyanobacteria.

However, they also included periods with low phytoplankton

standing stock, typically from mid-May to mid-June, and the

autumn diatom bloom. The first three campaigns covered the

southern Baltic Sea, the Gulf of Gdansk, and the Pomeranian Bay,

while the latter three campaigns focused on the northern Baltic

Proper, the Gulf of Finland, and the Bothnian Sea (Figure 1). The

complete Baltic Sea dataset (BA) comprises 273 stations.

Seasurface temperature (SST) and salinity were measured using

the SBE 911 CTD (conductivity, temperature, depth) system

(SeaBird, Alifax, USA). Water samples were collected at a surface

depth of 1 m using a Niskin bottle and pre-filtered through a 150

mm mesh (Karte l , Germany) . F i l ters for HPLC and

spectrophotometric absorption measurements (GF/F filters, F 25

mm, 0.7 mm pore size, Whatmann, Germany) were pre-conditioned

under constant mild vacuum (not exceeding 0.5 bar), flash-frozen in

liquid nitrogen, and subsequently stored at -80°C. Additionally, 150

ml of water samples were filtered in the field (GSWP filters, F 47

mm, 0.22 mm pore size, Whatmann, Germany) and stored at 4°C in

amber bottles until analysis.
2.2 Phytoplankton pigments dataset

Phytoplankton pigments were quantified at the Joint Research

Centre of the European Commission (JRC) using the HPLCmethod

described in Canuti (2023). The data set was subjected to quality

control including participation in inter-laboratory exercises

(Hooker et al., 2010; Canuti et al., 2016).

Of all the quantified pigments, those found below the detection

limit in more than 95% of the stations were excluded from the

study, as were redundant pigments (e.g., monovinyl chlorophyll

already included in TChl a). The remaining eighteen pigments were

the focus of the present study: 19’-hexanoyloxyfucoxanthin (Hex),

19’-butanoyloxyfucoxanthin (But), alloxanthin (Allo), Fuco,

peridinin (Perid), diatoxanthin (Diato), diadinoxanthin (Diad),
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zeaxanthin (Zea), total chlorophyll b (TChl b), chlorophyll c1 + c2

(Chlc1c2), chlorophyll c3 (Chlc3), total chlorophyll c (TChl c),

neoxanthin (Neo), violaxanthin (Viola), prasinoxanthin (Pras),

lutein (Lut), a,b-carotene + b,b-carotene (Caro), and total

chlorophyll a (TChl a). The composition of the total chlorophylls

is described in Supplementary Table S1 (Supplementary Material).

The photoprotective carotenoids, PPC, were defined as the sum of

Caro, Zea, Allo, and Diad, while the phosynthetic carotenoid, PSC,

was considered as the sum of Hex, Fuco, But and Peri.

In the use of phytoplankton pigments for categorizing

phytoplankton into community and functional types, we referred

to Supplementary Table S1, that was derived from Jeffrey et al.

(1997); Seppälä (2009) and Roy et al. (2011).
2.3 Absorption coefficient dataset ap(l)

Similar to the HPLC analysis, the absorption coefficient, ap(l),
was quantified at the JRC.

The method used to determine the absorption coefficient, ap(l),
was a modified protocol of Tassan and Ferrari (1995).

Transmittance–reflectance measurements were performed using a

Perkin Elmer 950 (Perkin Elmer, USA) equipped with a 150 mm

integrating spectralon sphere (Labsphere, USA). To calculate the

absorption coefficients from the optical density, ODs(l), an

appropriate correction must be applied to compensate for the

elongation of the optical path due to multiple scattering in the

material collected on the filter. This is achieved by using the

dimensionless path length amplification factor, the b-factor,
which converts the measured optical density of particles collected

on the filter, ODs(l), to the optical density of these particles in

solution, ODsus(l), (Mitchell, 1990) (Equation 1). The b-factor
formula for the T-R method used in the present work is:

ODsus(l) = 0:719 OD1:2287
s (1)

The coefficient of light absorption by all suspended particles was

then calculated using the formula (Equation 2):

ap(l) = (ln (10) · ODsus(l))=l (2)

where l [m] is the hypothetical optical path in solution,

determined as the ratio of the volume of filtered water to the

effective area of the filter. The discrimination due to the

pigmented, aph(l), and the non-pigmented, aNAP(l), fractions of

the particle absorption coefficient, is obtained by bleaching the

sample on the filter by adding a solution of sodium hypochlorite

(NaClO, Merck, Germany) as an oxidizing agent. The filter

depigmentation is obtained by placing the filter horizontally

against a filter holder (PALL, USA) and adding 1 mL of a 3.3%

vol. of NaClO (4% active Cl) in Milli-Q water solution as a

bleaching agent. In the original method, the distinction between

the pigmented fraction, aph(l), and the non-pigmented fraction,

aNAP(l), of the particle absorption coefficient was monitored

visually. In the modified protocol, the depigmentation process

was monitored with a radiometer measurement (FieldSpec FS

VNIR, Analytical Spectral Devices, USA) and a light source
Frontiers in Marine Science 04
(Schott halogen fiber optic lamp, type 6423FO, Philips, Germany)

between 300 and 1000 nm. The disappearance of the reflectance

peak corresponding to TChl a at 675 nm was considered evidence of

complete depigmentation. The bleaching process was monitored

using the VNIR software (AnalyticalSpectral Devices, USA) (Canuti

and van der Linde, 2006).
2.4 Chromophoric dissolved organic
matter and suspended particulate matter
dataset

Additionally, the dataset includes matched samples of

suspended particulate matter (SPM) concentrations and the

spectra of the light absorption coefficient of CDOM, ag(l).
CDOM and SPM samples were analyzed at the JRC.

Concentrations of SPM [g m-³] were determined by the

gravimetric method combined with the loss-on-ignition

technique. 47 mm GF/F filters were pre-combusted at 450°C for

4.5 h, rinsed in 1 liter of pure deionized water, and dried at 75°C for

2.5 h. After 4 hours in a desiccator, the filters were weighed and

labeled using an analytical balance (Sartorius, Germany, precision

0.001 mg). In the field, depending on the concentration of

suspended particles, 150 to 1500 mL of seawater was filtered

through the filters, which were then rinsed with 30 mL of

deionized water to remove surface salts and stored at -20°C until

analysis. In the laboratory, the filters were thawed and dried at 75°C

for 2.5 h, kept in a desiccator for 4 h, and then reweighed to

determine the SPM value.

The ag(l), (m-¹) measurement was carried out in the spectral

range of 350 and 750 nm in a double beam double ray

spectrophotometer (Perkin Elmer, USA), measuring the

sample against double distilled water as a reference, using 100

mm optical path length quartz cuvettes. The optical density OD

(l) was converted to CDOM absorption by multiplying OD(l)
by 2.303 and then dividing by the path length l (m) (Mannino

et al., 2019).
2.5 Methods in data analysis

2.5.1 Statistical analysis of the phytoplankton
pigments dataset

The phytoplankton pigment dataset was subjected to statistical

analysis to evaluate the pigment distribution in the different

campaigns. In our previous study (Canuti and Penna, 2024), we

applied a hierarchical clustering analysis (HCA) and a multivariate

analysis (Principal Component Analysis, PCA), together with

community partitioning by networkcommunity detection analysis

(NCA), to the pigment dataset. These statistical analyses aimed to

assess the phytoplankton community in the Baltic Sea in an

alternative approach to widely used chemotaxonomic approaches,

such as CHEMTAX (Mackey et al., 1996) or PFTs analysis. Here,

the results of HCA and PCA applied to the pigments dataset were

used in the organization and interpretation of the absorption

coefficient dataset analysis.
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2.5.2 Spectral decomposition of the absorption
coefficient dataset

The spectral decomposition was applied with the aim of

evaluating the agreement between our proposed predictive model

(see section 2.5.4) and the Gaussian decomposition approach. To

analyze the absorption coefficient, ap(l), dataset, we applied the

Gaussian spectral decomposition proposed by Chase et al. (2013)

and originally applied to AC-S (WetLabs, USA) data. The Chase

et al. (2013) decomposition has shown a small residual error (0.001

m-1), comparable to other Gaussian decompositions (Huping et al.,

2019). In an attempt to use an algorithm not specialized for the

southern Baltic Sea, we prefer the model of Chase et al. (2013)

model to Ficek et al. (2004). In our study, we used the measured

aNAP(l) value instead of approximating it with an exponential

function, as in the original work of Chase et al. (2013). The initial

wavelengths for the decomposition were those proposed by Chase

et al. integrating the previous work of Hoepffner (1991, 1993) and

Bricaud et al. (2004, 2007) (Table 1). To determine the optimal set

of functions to approximate the decomposition, we used a

leastsquares minimization (cost function, in Equation 3, Python3)

to compare the reconstructed curve with the original curve:

c2 =o720
l=410

ap(l) − (o12
i=1 agauss(li) exp −0:5 l−li

si

h i2n o� �
+ aNAP(li)

� �
s 2
SD(l)

(3)

where ap(l), is the measured particle absorption, agauss(li) is the
magnitude of the i-Gaussian function, li is the center wavelength of

the i-Gaussian function, si, is the width of the Gaussian. The

equation is normalized by the standard deviation of the measured

absorption spectra at each wavelength s 2
SD(l). Following the

approach of Chase et al. (2013), we identify correlations at

specific wavelengths between HPLC pigments and Gaussian

amplitude functions by checking the Spearman’s rank correlation

coefficient. We then performed a linear regression analysis (least-

square best fit) between the HPLC pigment concentration, assumed

as a reference value, and the phytoplankton peak absorbance values,

agauss(li): the fit was calculated individually for each log-normalized

pigment (pigj) and absorbance peak according to the Equations 4

and 5:

log10(agauss(li)) = Aij + Bij*log10(pigj) (4)

The pigment concentration can be solved from the previous

equation as:
Frontiers in Marine Science 05
pigj = agauss(li)=exp*(Aij)
� �1=Bij (5)

Aij and Bij describe the relation between the jth pigment, pigj,

derived from the absorption spectra and the HPLCj

corresponding pigments.
2.5.3 Statistical and derivative analysis of
absorption coefficient dataset

The correlation between aph(l) (the absorption coefficient of

pigmented particles) and changes in the phytoplankton community

composition and abundance has been studied extensively (Bricaud

et al., 2004, 2007, Chase et al., 2013). It is well known that the

presence of different accessory pigments, such as diagnostic

pigments found in different species, and differences among

phytoplankton groups can influence the spectral characteristics of

aph(l) (Ciotti et al., 2002; Bricaud et al., 2004).

In our examination, we will consider both aph(l) and the

chlorophyll specific absorption coefficient of phytoplankton a*ph
(l). The choice to also investigate a*ph(l) was based on the

consideration that the package effect and the proportion of

accessory pigment compositions are two major factors influencing

the changes in the pattern and magnitude of a*ph(l). In addition, in

the previous analysis of the HPLC pigment dataset, all the pigments

were normalized against the ubiquitous TChl a. Consideration of

a*ph(l) allowed us to compare the results of our derivative analysis

and clustering more coherently with previous findings. We then

considered the Pearson correlations (R) among spectral

wavelengths, in particular those related to aph(l), aph’(l) and

aph”(l) (where the prime signs indicate the first and second

spectral derivatives). We repeated the exercise for the a*ph(l),
a*ph’(l) and a*ph”(l). Overall, we expected strong correlations

among the pigment concentrations and the absorption spectra at

all wavelengths, based on the previous findings by Catlett and Siegel

(2018). Catlett observed significant multicollinearity problems in

the analysis of the correlation between the pigments and a*ph(l),
which could lead to an ill-conditioned model. To address this, a

derivat ive transformation was appl ied to reduce the

multicollinearity across different wavelengths.

Following the methodology outlined by Catlett and Siegel

(2018) and Teng et al. (2022), we used derivative analysis to

identify meaningful absorption characteristics and explore their

associations with phytoplankton pigments and community

structure. We focused on the spectral range between 400 and 750
TABLE 1 Center wavelengths of Gaussian functions used for the spectral decomposition as in Chase et al. (2013).

pigment(s) TChl a +
TChl c

TChl a TChl b +
TChl c

TChl b PPC PSC TChl c TChl a TChl c TChl b TChl a

peak
locations [nm]

409 437 457 467 491 527 585 620 639 658 678

peak std. dev [nm] 17 13 12 14 17 15 17 15 15 15 13

s std. dev. [nm] ± 3.8 ± 1.9 ± 1.9 ± 2.8 ± 1.7 ± 2.5 ± 2.6 ± 2.9 ± 1.4 ± 1.5 ± 0.6
fron
PPC, Caro + Zea +Allo +Diad; PSC, Hex + Fuco + But +Peri. PPC = photoprotective carotenoids = Caro + Zea +Allo +Diad; PSC = phosynthetic carotenoids = Hex + Fuco + But +Peri.
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nm, considering both the first derivative spectra, aph’(l) and

a*ph’(l) Equation 6, and the second derivative spectra, aph”(l)
and a*ph”(l) Equation 7:

a
0
ph(l) =

aph(l + Dl) −  aph(l − Dl)
2*Dl

; 

a∗
0

ph(l) =
a*ph(l + Dl) −  a*ph(l − Dl)

2*Dl

(6)

a
00
ph(l) =

aph(l + Dl) + aph(l − Dl) − 2*aph(l)
Dl2 ; 

a∗
00

ph (l) =
a*ph(l + Dl) + a*ph(l − Dl) − 2*a

*
ph(l)

Dl2

(7)

We applied a finite band separation (i.e., Dl) of 1 nm at the

second order. To mitigate the effect of noise on our analysis, we

implemented a noise reduction technique (Teng et al., 2022; Catlett

and Siegel, 2018). In signal processing, we used the Savitzky-Golay

filter to reduce signal noise and enhance the signal trend

smoothness (Tsai and Philipot, 1998). This filter (Python3,

svgolay) computed a polynomial fit for each running spectral

window, employing a polynomial degree of 2 in our case and a

window size of 15 nm. Before performing derivative analysis, we

applied the smoothing filter to the spectral data to optimize the

linear relationships between selected pigments and their respective

absorption maxima, which were identified in the second

derivative spectra.

2.5.4 Empirical orthogonal function model to
assess pigment concentrations from optical
measurements

We developed and evaluated a novel model to predict pigment

concentrations in biological samples using the distinct correlation

patterns observed between pigments and aph(l), aph’(l), a*ph(l) and
a*ph’(l). Ideally, the model could be used to assess pigment

concentrations from continuous optical measurements. To

identify relevant features and reduce dimensionality, we used

PCA for finding patterns in the data and transform them into a

set of orthogonal variables called principal components. We will

refer to this as an Empirical Orthogonal Function (EOF) model to

avoid confusion with the PCA analysis of the HPLC

pigment dataset.

The EOF analysis on the absorption dataset determines the

wavelengths that most effectively capture the variance within the

dataset. Here, we called X the absorption matrix, where each row

(M) corresponds to an observation and each column (N)

corresponds to a wavelength. The pigment dataset was

represented by the matrix Y of dimensions MxP, where each row

(M) represents an observation and each column (P) represents the

concentration of pigments.

The matrix X was then subjected toa Singular Value

Decomposition (SVD) to derive the EOF modes:

X ¼ USVT ,  where xij =ok=l, Nuikskvkj (8)
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In this equation, V is an N × N matrix containing the

absorption data, U is an M × N matrix containing the principal

components, S is an N × N matrix containing the singular values

along the diagonal, and k represents the index of the EOF mode

(with a length of N). We used a general linear model to forecast

pigment concentrations (log-transformed), Equation 9 for each

pigment, denoted as yp. This model used a subset of principal

components (PCs), represented asU, as covariates (Equation 8). We

used both aph(l) and a*ph(l) as well as aph’(l) and a*ph’(l) PC

decompositions, and in the case of a*ph(l) we also considered a

linear regression with the non-log-transformed value of the

pigments (Equation 10). The multiple regression model took the

form:

log(yp) = a + b1 u1 + b2 u2 +⋯+bn un (9)

yp = c + d1 u1 + d2 u2 +⋯+dn un (10)

Here, log(yp) represented the log(10) transformed

concentration of pigment p, while u1, u2 … un represented the

leading n PC scores of U. The model incorporated an intercept a

and regression coefficients b1, b2,…, bn. When the log-transformed

pigment values were used as the target, a concentration of 0.00001

mg m-³ was added to all values. When the non-log -transformed yp
concentration of pigment p, was used, the model intercept is

denoted c and the regression coefficients d1, d2,…, dn.

To define the subset of PCs, we excluded all those with standard

deviations less than or equal to 0.0001 times the standard deviation

of the first component. We then used multiple linear regression

(MLR) to build predictive models using selected principal

components. Stepwise feature selection, implemented through

ordinary least squares (OLS) regression, facilitated the iterative

inclusion and exclusion of features based on statistical

significance. This process aimed to optimize model performance

by selecting the most informative features, defining the number of n

for each prediction. The selection of the best linear models was

based on minimizing the Akaike Information Criterion (AIC).

Once the optimal linear model was identified, the significance of

the included terms was assessed by measuring the change in AIC

(DAIC) when each term was removed.

Hence, we assumed that principal components explaining a

larger proportion of the variability would be the first 100 principal

components of a*ph(l) or of a’*ph(l), aph(l) and a’ph(l), thus
containing all the relevant information for modelling all

pigments. To evaluate the robustness of this assumption, we

performed cross-validation using 10, 25, 50, 100, and 200

principal components in the model formulation, respectively. The

PCs with values too close to noise were excluded from the model.

We tested this sensitivity using six distinct biomarker pigments:

TChl b, Fuco, Peri, Allo, Zea and Peri. To evaluate the robustness

and generalization of our models, we performed cross-validation

with 500 permutations. This involved randomly splitting the data

into training and test sets multiple times and calculating the Root

Mean Squared Difference (RMSD) for each permutation. Scatter

plots with logarithmic scales were generated to visualize the
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relationship between predicted and observed values, providing

insight into the model’s predictive accuracy.

Metrics for the modelled a*ph(l), a’*ph(l), aph(l) and a’ph(l),
such as the coefficient of determination (R²), root mean square

difference (RMSD), slope (S) and intercept (a) of the linear

regression were derived from the log predicted values, log(yp
P),

compared to the log observed pigment concentration data, log(yp).

Conversely, metrics a such as mean percent difference (MPD),

percent bias (PB), and median percent difference (MDPD) were

always computed based on non-log-transformed pigment

concentrations.

RMSD =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N
i=1½log (yPp ) − log (yp)�2

r
(11)

MPD =
100
N oN

i=1½(ypp − yp)=yp� (12)

MDPD = median(100  
(yPi,p − yVi,p)

yVi,p
) (13)

Where yVi,p is the observed pigment concentration for

observation i, yPi,p is the predicted pigment concentration for

observation i and N is the number of observations.

In evaluating the models, we performed cross-validations with

500 permutations to rigorously assess their performance. This

process involved iteratively partitioning the dataset into training

(Xtrain) and (Xval) test subsets to endure robustness in model

evaluation. In the first approach, the data was randomly split into

two subsets, with 80% of the data used for model fitting/training,

including Xtrain, and the remaining 20% was used for prediction

validation, including Xval. In the second approach, we isolated a

specific campaign as the training dataset and fine-tuned the method

on the remaining data. From each permutation, we calculated the

RMSD and its variation coefficient, providing insight into the

prediction accuracy and consistency across different data splits.

To gain a visual understanding of model performance, we

generated scatter plots with logarithmic scales. These plots

allowed us to observe the relationship between predicted and

original values, providing a graphical representation of the

model’s predictive ability. Additionally, regression lines,

representing the relationship between predicted and observed

values were superimposed on the scatterplots. These lines were

accompanied by R-squared values, providing a quantitative

measure of the goodness of fit of the models.
3 Results

3.1 Variability and clustering of the dataset

Our dataset was examined in terms of variability. The key

statistical data highlighting the variability within our dataset are

summarized in Table 2; Figure 2 (Table 2; Figure 2). It is noteworthy

that the yellow substance shows a high variation in the whole

dataset. The range of TChl a varies from a concentration typical of
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oligotrophic water (0.272 mg m-3) to concentration characteristic of

eutrophic conditions (60.222 mg m-3). In our dataset, Peri, the

diagnostic pigment representing the dinoflagellate community,

exhibited the highest range of concentration variation: the range

was from the instrumental limit of detection to 21.395 mg m-3

reached in the BA03 campaign (Supplementary Material, Table S2).

The salinity varies from 7.83 to 1.70 PSU. The maximum and

minimum values were recorded in the BA03 campaign (Southern

Baltic), while for the other campaigns the salinity value was always

higher than 2.3 PSU (Supplementary Material, Table S2). The

concentrations of Hex, But, Peri, and Zea contained several null

values, which may later affect the model, as the computation was

based on few measurements. It is important to point out that a

dataset with such extreme variability (where key features have a CV

greater than 100%) can make it difficult to build a stable model. This

level of variability can lead to an ill-conditioned model, where small

changes in the input data cause large, unpredictable changes in the

output, reducing reliability and accuracy of the model.

We considered the different contributions to light absorption at

412 and 443 nm from detritus, CDOM and plankton and their

relation with environmental variable: temperature and salinity

(Figure 3). All stations showed a relevant light absorption (higher

than 60%) from the dissolved organic matter. The light absorption by

phytoplankton, aph was less than 50% for most of the points: the

highest relative absorption was found in the BA03 campaign in the

southern Baltic Sea in April (Supplementary Material, Table S2). The

largest contribution to the total light absorption wasmade by CDOM:

52% ± 20%. ag is more dominant in the Bothnian Sea (BA06), where

the ternary plot shows a strong clustering toward the CDOM-rich

end, consistent with high terrestrial input from surrounding rivers,

while the contribution of aNAP was the lowest (less than 20% for all

the stations) (Supplementary Material, Table S2). In contrast, the

southern Baltic (BA01-BA03) exhibits a more balanced distribution

among phytoplankton aph, ag and detrital material aNAP, reflecting a

more mixed optical regime with a significant phytoplankton

contribution. The Gulf of Finland and the Northern Baltic Proper

(BA4, BA5) show higher variability, likely driven by episodic riverine

inputs and hydrodynamic mixing events. The environmental

conditions further support these findings. The inverse relationship

between salinity and ag confirms that CDOM originates primarily

from terrestrial sources, with the highest concentrations found in the

low-salinity waters of the Bothnian Sea and Gulf of Finland while the

Southern Baltic shows lower ag values at higher salinity (~6-7 PSU),

indicating moremarine-influenced waters with less terrestrial CDOM

input. Phytoplankton absorption aph, on the other hand, follows

seasonal trends, with higher values occurring in cooler waters during

the spring months (BA01, BA03), indicative of phytoplankton

blooms. Late summer campaigns (BA02, BA05) show a shift

toward higher CDOM absorption, likely due to increased riverine

discharge and organic matter degradation. The spectral dependency

of optical properties, evident in the shifts from 412 nm to 443 nm,

suggests variability in phytoplankton composition and CDOM

characteristics. The ternary plot patterns align with these trends, as

campaigns with high aph, correspond to periods of active

phytoplankton growth, while those with dominant ag reflect
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enhanced CDOM inputs. Overall, the separation of data points across

different campaigns underscores the diverse optical regimes within

the Baltic Sea, shaped by riverine influence, seasonal biological

productivity, and basin-specific hydrodynamic conditions.

Both methods, HCA and PCA analyses, were used to analyze the

relationships between different pigments across various

phytoplankton groups, highlighting distinct subgroups and their

correlations (Figure 4). The HCA analysis of the Baltic (BA)

pigment dataset (HCApig) identified five distinct phytoplankton

pigment groups. Marker pigments helped to identify specific

phytoplankton groups. The orange cluster (haptophytes,

nanoflagellates) included pigments such as Hex, TChl c3, Pras, and

Diad, which are typically found in haptophytes and nano-sized

phytoplankton. Pigments such as Allo, Caro, and Lut fell into the

Green Cluster (green algae, dinophytes, cryptophytes) representing a

mix of pigments found in green algae, dinophytes, and cryptophytes.

The presence of peri, often specific to dinophytes, strengthened the

grouping of this taxonomic class. The red cluster (micro/pico,

diatoms, eukaryotic/cyanobacteria) consisted of the pigments Fuco,

TChl b, and Zea, indicating different phytoplankton size classes, with

Fuco representing diatoms, and Zea and TChl b representing

picoeukaryotes. PCA on the normalized phytoplankton pigment

concentrations highlighted spatiotemporal variations in the BA
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dataset. The four leading PCA modes together explained 67.4% of

the variability. Mode 1 showed a strong positive correlation with

dinoflagellates and cryptophytes, and a negative correlation with

green algae and cyanobacteria. Mode 2 correlated positively with

diatoms and haptophytes, while Mode 3 had strong correlations with

green algae and nanofraction pigments. Mode 4 discriminated

diatoms from other groups, especially in the Gulf of Finland. The

PCA results recalled some aspects of the HCA, such as the dominance

of diatoms in certain campaigns. The HCApig was shown here to see

how well it matched the clustering of the absorption

spectra (HCAspectra).
3.2 Spectral decomposition of the
phytoplankton absorbance

The spectral decomposition approach gave a reliable

representation of the pigment composition (Chase et al., 2013;

Hoepffner and Sathyendranath, 1991, 1993, Ficek et al., 2004),

however, it presented the limit of omitting some DPA pigments

without considering carotenoids and xanthophylls individually. The

omitted pigments included Peri, Allo and Zea that were the DPA of a

representative phytoplankton population commonly found in the
TABLE 2 Summary statistics for the entire data set: the pigments and the pigments sum concentrations and the spectral at specific absorption (ag
(443), aph(443)), coefficient of variation (CV%), mean and range (max-min).

Quantity Average CV% max min
No. stations
under LOD

TChl a [mg m-3] 5.107 159.0 60.222 0.272 –

TChl b [mg m-3] 0.347 154.2 6.932 0.014 –

TChl c [mg m-3] 0.469 218.3 8.67 LOD 2

Fuco [mg m-3] 0.640 217.5 15.544 0.028 –

Zea [mg m-3] 0.234 86.4 1.495 0.012 –

Peri [mg m-3] 0.676 345.2 21.395 LOD 48

Allo [mg m-3] 0.415 148.4 4.332 LOD 1

Diato [mg m-3] 0.034 178.7 0.427 LOD 62

Hex [mg m-3] 0.026 209.3 0.4 LOD 162

But [mg m-3] 0.005 270.1 0.099 LOD 192

PPC [mg m-3] 1.419 151.2 17.568 0.07

PSC [mg m-3] 1.346 245.0 26.812 0.037

PSP [mg m-3] 7.269 172.9 96.918 0.343

DP [mg m-3] 2.342 168.3 31.113 0.128

ag(443) [m
-1] 0.370 55.1 1.599 0.138

aph(443) [m
-1] 0.191 128.8 2.028 0.023

SPM [g m-3] 1.524 106.9 12.875 0.32

SST [°C] 12.8 40.8 20.7 3.4

Salinity [PSU] 6.18 22.82 7.83 1.70
The number of stations where the compound was below the limit of detection (LOD) is given in the last column.
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Baltic ecosystem. In our dataset, the Gaussian decomposition of aph at

the selected wavelengths (Table 1) produced residuals within ± 0.001

m-¹ for all stations (Figure 5), confirming its robustness for most

pigments. The pigments were correlated with different agauss as in

Chase et al. (2013). The linear regression emphasized the relationship

between pigment concentrations and their absorption characteristics

for the selected wavelengths (Figure 6): strong linear fit indicated that

Gaussian decomposition estimated well the pigment.

The Table 3 reported Spearman’s rank correlation coefficients

(r2s) and correlation coefficients R2 along with the coefficients A and

B determined by the Equation 4 described in section 2.5.2. The

coefficients Aij and Bij describe the relation between the j-th

pigment, pigj, derived from the absorption spectra and the HPLCj

corresponding pigments, providing insight into the effectiveness of

our model in predicting pigment concentrations. The Gaussian

decomposition at wavelengths 437 nm and 620 nm, show high

correlation with TChl a obtained by HPLC: we obtained a r2s of 0.90

and an R2 values of 0.92 between for the agauss at 437 nm and TChl a

and we had r2s of 0.84 and R2 of 0.88 for agauss 620 nm and TChl a.

These correlations indicated a strong relationship between HPLC

concentrations and optical measurements at these wavelengths. At

678 nm, the correlation of TChl a and agauss was slightly lower but

still substantial, with r2s of 0.80 and R2 of 0.82. For TChl b, we
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considered the agauss at 467 and 557 nm: the correlation was weaker

with respect what we had with TChl a. TChl b exhibited an r2s

values of 0.60 at 467 nm and 0.77 at 557 nm, and R2 values of 0.65

and 0.84, respectively. At 557 nm The sum of TChl b and TChl c

showed a better correlation with the agauss than TChl b alone

(Table 3). TChl c had r2s values of 0.64 (R2 = 0.64) at agauss 585

nm and of r2s of 0.48 (R2 = 0.44), at agauss 639 nm, showing

moderate correlations. For the pigments PPC and PSC, the

correlations were relatively strong with r2s values of 0.81 and 0.64

and R2 values of 0.86 and 0.75, respectively. The coefficients A and B

vary, indicating different degrees of sensitivity and offset in the

corre lat ion. Regarding the aggregated pigments , the

photoprotective carotenoids (PPC) correlated better (0.81) than

the photosynthetic carotenoids (PSC, 0.64), i.e. in the range of TChl

b. It should be noticed that the PSC included the fuco, a pigment

that was ubiquitous present in the dataset.
3.3 Correlation of phytoplankton pigments
with CDOM and absorption spectra

Correlation analyses were carried out to determine the

associations between the data series of each inherent optical
FIGURE 2

Boxplot of pigment concentrations in the Baltic Sea on a logarithmic scale. Each box represents the distribution of pigment concentrations (mg m-3)
measured across sampling stations. The x-axis uses a log10 scale to highlight differences in magnitude among pigments. Outliers are displayed as
individual points beyond the whiskers.
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property (IOP) and the first four amplitude functions (AFs)

representing various phytoplankton communities, as determined

by PCA analysis of the HPLC pigment datasets. The AF values were

used as proxies for these communities. The inclusion of different

optical properties in our analysis provided a more comprehensive

understanding of the relationships between pigments and optical
Frontiers in Marine Science 10
properties. Correlations with CDOM absorption values were

computed for the first four modes (Figure 7). Modes 1 and 4,

associated with dinoflagellates and diatoms, showed positive

associations with ag(l). Conversely, the other modes did not

show significant correlations with ag(l). The aph(l) correlation

with the PCA results was significant in the case of the first mode,
FIGURE 3

Multivariate analysis of absorption properties ag, aph and aNAP at 412 nm and 443 nm and in relation to environmental parameters (temperature and
salinity). Top row: Ternary plots showing the relative contributions of different absorption coefficients. Middle and bottom rows: Scatter plots
illustrating the variations in absorption coefficients as functions of temperature and salinity across different oceanographic campaigns (BA1–BA6).
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i.e. the mode associated with predominantly dinoflagellates. The

AFs included in the analysis are derived from the analysis of the

pigment to TChl a ratio.

Further insights were gained by analyzing aph’(l) and aph”(l),
and the distinct spectral relationships between the concentrations of

selected biomarker pigments and values within specific wavelength

intervals (Figure 8) . The same exercise was repeated for the a*ph’(l)
and a*ph”(l) (Figure 9). The pigments were grouped into the

following categories based on the outcomes of the HCApig

analysis: (a, e) dinoflagellates, (b, f) chlorophytes, (e, f)

haptophytes, and (d, h) diatoms and picoplankton. It is

noteworthy that Lut and Diato were omitted – for clarity in the

representation-, although they showed analogous patterns to the

chlorophytes (b, f) and haptophytes pigments, respectively.

The HCA spectra clustering analysis was conducted to explore the

relationships between pigment concentrations and spectral absorption

features across different wavelength intervals. Using Ward’s HCA and

Euclidean distance, the clustering was applied to the first and second

derivatives of the phytoplankton absorption coefficients (aph
’(l) and

aph
”(l)) collectively referred to as HCAspectra (Supplementary Material,

Figure S1). This approach allowed for the identification of distinct

clusters that represent groups of pigments based on their spectral

behavior. To maintain consistency with the HCApig results, a distance

threshold of 5 was used, producing four clusters for both aph
’(l) and

aph
”(l). The HCAspectra resulting clusters showed that Fuco grouped

with Allo, Peri, and Caro, despite Fuco forming a distinct cluster in the

pigment-based HCApig, analysis. The overall clustering pattern

highlighted consistent pigment distributions, particularly in the
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largest cluster, between the first and second derivatives. The number

of clusters obtained for HCAspectra was four for both aph
’(l) and aph”(l),

and the pigment distribution among the biggest cluster was consistent

between aph
’(l) and aph

”(l). In Figure 10 we reported the correlation

between the pigments and the spectra following the clusters obtained

from the HCAspectra analysis for aph
’(l) and aph

”(l). We repeated the

exercise for the a*ph(l) and in Figure 11 we reported the correlation

between the pigments and the spectra following the clusters obtained

from the HCAspectra analysis for a*ph
’(l) and *aph

”(l): the number of

clusters obtained in these case were five for the first derivative, and

three for the second derivative.
3.4 Proposed EOF-model to assess
pigment concentrations from optical
measurements

The purpose of this study was to develop a model for

phytoplankton pigment concentrations based on spectra derived

from the absorption coefficient, with the aim of assessing pigment

levels by optical measurements using characteristic correlation patterns

between pigments and aph(l). We tested aph(l), a’ph(l), a*ph(l) and
a*ph’(l) versus pigment concentrations and log-transformed

concentrations. The pigments included in the analysis were all the

DPA: Peri, Allo, Fuco, Zea, TChl b, TChl c1c2 and Hex. These

pigments were the bio-markers that were associated with specific

phytoplankton groups and commonly used in phytoplankton

pigments analysis. The performance metrics for MLR models
FIGURE 4

HCApig dendrogram (left) and PCA biplots (right) of phytoplankton pigment ratios to TChl a for the Baltic dataset. In the HCApig (left figure), the major
pigment communities (micro-, nano- and pico-phytoplankton) were identified based on a linkage distance cutoff of 1.0 (red dashed line). The
proposed phytoplankton cell size classes for each group are shown in brackets. In the right figure, the loadings corresponding to the principal
component (PC) modes are shown in panels (a-d) for the Baltic dataset. The pigment order was the same as in the HCA analysis, to facilitate
comparison. The mode number was shown above each plot, together with the percentage of variance explained by that mode. The loadings were
color coded according to the main taxonomic groups: blue for cyanobacteria-pico, red for diatoms-micro, orange for green algae-nano, green for
haptophytes-dinoflagellates-nano, and orange for euglanophytes-nano.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1518057
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Canuti and Penna 10.3389/fmars.2025.1518057
predicting pigment concentrations using PC regression with the first

100 PCs were shown (Table 4). The optical metrics evaluated included

aph(l), aph’(l) and a*ph’(l), with metrics comprising the coefficient of

determination (R²), RMSD, and RMSD coefficient of variation (RMSD

CV%) from cross-validation with 500 permutations. Fuco models

performed differently for different metrics. The aph(l) model

achieved an R² of 0.645 with an RMSD mean of 0.3 and an RMSD

CV% of 11, indicating moderate accuracy and consistent performance.

Improved results were seen with the aph’(l) model, which had an R² of

0.739 with similar RMSD mean and CV% values. However, the

a*ph’(l) model showed slightly lower performance with an R² of 0.47

and the highest RMSD CV%. For Zea, the aph(l))model showed an R²

of 0.391, an RMSD mean of 1.1, and an RMSD CV% of 7.4, reflecting

lower accuracy and variability. The aph’(l) model offered a modest

improvement with an R² of 0.45, and similar RMSD mean and CV%

values. The a*ph’(l) model achieved an R² of 0.45, showing modest

performance. For Allo, the aph(l) model had an R² of 0.541 with an

RMSDmean of 0.4 and a higher RMSD CV% of 25. The aph’(l) model

improved to an R² of 0.56 but also had a higher RMSD CV%. In
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contrast, the a*ph’(l) model had a lower R² of 0.38, an RMSD mean of

0.23, and a significant RMSD CV% of 43.15, indicating considerable

variability. The TChl b models showed good performance. The aph(l)
model had an R² of 0.716, with an RMSD mean of 0.3 and an RMSD

CV% of 20.5. The aph’(l) model showed similar efficacy with an R² of

0.714. The a*ph’(l) model performed best with an R² of 0.79, the lowest

RMSD mean, and CV%, indicating superior predictive accuracy. For

Hex, the aph(l) model achieved an R² of 0.624 with an RMSDmean of

0.9 and an RMSD CV% of 9.8. The aph’(l) model had a slightly lower

R² of 0.603 with similar RMSD mean and CV% values. The a*ph’(l)
model showed improved performance with an R² of 0.67, better RMSD

mean, and CV%, reflecting improved accuracy. The Peri models

varied, with aph(l) yielding an R² of 0.44, an RMSD mean of 1, and

an RMSD CV% of 8.3. The aph’(l) model had similar R² and RMSD

mean, with a slightly higher RMSD CV%. The a*ph’(l) model had an

R² of 0.47, a lower RMSD mean but a higher CV%, indicating variable

performance. The TChl c1c2models were particularly effective. The aph
(l) model had an R² of 0.58, an RMSD mean of 0.4, and a higher

RMSD CV% of 31.5. The aph’(l) model performed similarly
FIGURE 5

Observed absorption spectra (in blue), best Gaussian fitting (in grey) and the fitted curves (in orange dashed lines) for the BA01_12 station, and
(bottom plot) the residual between observed and fitted spectra (in red).
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performance with a slightly better mean RMSD. The a*ph’(l) model

stood out with an R² of 0.87, the lowest RMSD mean, and CV%,

reflecting superior predictive ability. Finally, the aph(l) model for But

showed lower performance with an R² of 0.36, an RMSD mean of 0.8,

and an RMSD CV% of 8.1. The aph’(l) model had comparable R² and

RMSDmean, with a slight increase in RMSDCV%. The a*ph’(l) model

was less effective, with an R² of 0.27, a higher RMSD mean, and a low

RMSD CV%. Overall, the models showed variable performance for

different pigments and optical metrics. The highest accuracy and lowest

variability were observed for TChl c1+c2 using a*ph’(l), while pigments

such as Zea and But showed lower prediction accuracy. These findings
Frontiers in Marine Science 13
highlight the importance of selecting appropriate principal

components and optical metrics to optimize model performance in

predicting pigment concentrations.

In the Baltic Sea, the chlorophyll c is not representative of any

phytoplankton community, while Allo, Fuco, Zea and TChl b are.

Based on this consideration, the most promising outcomes were

achieved when using aph’(l) and using log-transformed pigment

concentration as the target (see Figure 12). It is worth noting that

the model showed better performance in the southern Baltic Sea, as

demonstrated during validation with the isolation of a specific

campaign (data not shown here). The model derived from aph’(l)
FIGURE 6

HPLC-measured chlorophyll, photoprotective carotenoids (PPC) and photosynthetic carotenoids (PSC) concentrations (on the y-axis) compared to
the magnitudes of Gaussian peak absorption (on the x-axis) at eight distinct wavelengths. The continuous line represents the best-fit linear
regression on the logarithmic transformations of both datasets.
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performed better than from a*ph’(l) both for the Fuco (0.`74 against
0.47) and the Allo (0.56 against 0.38) and closely for Zea (0.45 in

both models) and TChl b (0.71 and 0.79), while the model with

a*ph’(l) had a better regression for the TChl c1c2 (0.87 vs 0.59 for

the aph’(l) model).

While the Gaussian decomposition detected TChl b absorption

primarily at 658 nm and 457 nm, our model identified additional

significant correlations for TChl b at 440 nm, 600 nm, and 660 nm.

These results suggest that our approach, using aph’(l) and its first

derivatives, captures a broader spectral representation of TChl b

absorption. Similarly, for TChl c, Gaussian decomposition
Frontiers in Marine Science 14
highlighted peaks at 415 nm, 430 nm, 480 nm, and 665 nm, but

our model found important correlations at additional wavelengths,

particularly around 575-590 nm and 600 nm, broadening the

understanding of TChl c’s spectral absorption.

A variability for Allo demonstrated correlation coefficients

across the visible spectrum (Figure 13). Significant correlations

were seen in the 450-500 nm and 600-650 nm wavelength ranges,

as indicated by the narrowing of the 95% confidence intervals (CI).

These regions likely corresponded to absorption peaks associated

with the carotenoid structure of Allo suggesting that these

wavelengths are essential for accurate prediction Allo

concentrations. The narrow confidence intervals in these areas

reinforced the model’s consistency in capturing the relevant

spectral signals. In the case of But, correlation coefficients

hovered close to zero across most of the spectrum, with minor

dips in the 450-550 nm range. The wide C.I. reflected significant

uncertainty in these predictions, indicating that the absorption

features of But were either weakly represented in the aph’(l)
-based model or confounded by signals from other pigments.

This result showed the poor performance for But (see Figure 12),

with an R² of 0.34.

For Fuco, stronger correlations emerged, especially in the 500-

550 nm and 620-680 nm ranges, which matched the known

absorption features of Fuco. The tight C.I. around these

wavelengths suggested high model confidence in predicting Fuco

concentrations. The strong response at around 540 nm, a significant

Fuco absorption peak, underlined the significant influence of pigment

on the high performance of the model (R² = 0.74). Hex showed

similar trend to But, with minimal correlation across the spectrum,

small peaks in the 400-450 nm range and slight variations around

650-700 nm suggesting some wavelength influence. However, the

wide C.I. and relatively flat response indicate that the model struggles
TABLE 3 Correlations between HPLC pigment concentrations at ten
different agauss wavelengths.

Pigment
[mg m-3]

Wavelength (l) r2s R2 A B

TChl a 437 0.90 0.92 0.63 -1.24

TChl a 620 0.84 0.88 0.63 -1.94

TChl a 678 0.80 0.82 0.56 -1.43

TChl b 467 0.60 0.65 0.44 -1.08

0.03*TChl b +
0.07*TChl c

557
0.77 0.84 0.53 -0.31

TChl c 585 0.64 0.64 0.28 -1.28

TChl c 639 0.48 0.44 0.19 -1.62

PPC 491 0.81 0.86 0.59 -0.95

PSC 527 0.64 0.75 0.38 -1.24
Correlation values are Spearman’s rank correlation coefficient (r2s) and correlation coefficient
(R2). A and B are coefficients determined by Equation 4, section 2.5.2.
* is a mathematical operator and stays for "multipying", can be omitted
FIGURE 7

Average absorption properties and their correlation with the first four modes derived from the PCA analysis for (a, c) phytoplankton absorption, aph
(l); (a’, c’) phytoplankton absorption ratio to TChl a, a*ph(l); (b, d) CDOM absorption, ag(l). In c, c’ and d the 95% confidence interval (CI) is shown by
the black dashed line.
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to predict Hex accurately, consistent with the lower R² (0.60). This

suggested that the absorption signature of Hex was not well captured

by the aph’(l)-based model. For Peri, notable correlation peaks

appeared in the 450-500 nm and 650-700 nm regions,

corresponding to Peri’s characteristic carotenoid absorption in the
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blue-green spectrum. These peaks were accompanied by narrower

confidence intervals, indicating a reliable model fit in these bands.

However, the model’s overall predictive accuracy was moderate (R² =

0.44), and broader variability suggested some difficulty in isolating

Peri’s signal from others, leading to a higher RMSD (1.1). TChl b
FIGURE 8

Correlations of selected phytoplankton pigments with aph
’(l) and aph

”(l) grouped as the results of the HCApig analysis ((a–d) for aph
’(l) and (e–h) for

aph
”(l)). The dashed and dotted black lines indicate the magnitude of the significant correlation coefficients at 95% and 99% confidence, respectively.
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exhibited strong correlations in the red region (600-700 nm),

particularly around 650-675 nm, where chlorophyll b had its key

absorption peak. The model’s high performance for TChl b (R² =

0.71) was reflected in the narrow confidence intervals at these

wavelengths, indicating their importance in accurately predicting
Frontiers in Marine Science 16
TChl b concentrations. Minor peaks also appeared in the 450-500

nm region, reflecting additional absorption by TChl b in the blue

range. For TChl c, the correlation plot showed scattered peaks,

particularly around 450-500 nm and 650-700 nm, which matched

with the absorption features of TChl c. However, the broader, more
FIGURE 9

Correlations of selected phytoplankton pigments with a*ph
’(l) and a*ph

”(l) group as the results of the HCApig analysis [(a–d) for a*ph
’(l) and (e–h)

a*ph
”(l)]. The dashed and dotted black lines show the magnitude of significant correlation coefficients at 95% and 99% confidence, respectively.
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variable confidence intervals suggested a lower level of confidence in

these predictions, probably due to overlapping signals from other

pigments. This was consistent with the moderate performance for

TChl c (R² = 0.59). Finally, Zea showed a flatter correlation pattern,

with weak but noticeable peaks in the 450-500 nm range and a less
Frontiers in Marine Science 17
distinct response in the 600-650 nm region. The broad C.I. suggested

high uncertainty, consistent with the low R² value (0.45) in Figure 12.

This indicates that Zea’s absorption characteristics were difficult to

distinguish, contributing to the challenges in modeling Zea

concentrations accurately.
FIGURE 10

Correlations of selected phytoplankton pigments with aph
’(l) and aph

”(l) grouped as the results of the HCAspectra ((A–D) for aph
’(l) and (E–H) for

aph
”(l)). The dashed and dotted black lines show the magnitude of the significant correlation coefficients at 95% and 99% confidence, respectively.
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4 Discussion

The present study examined the surface phytoplankton

community distribution in the Baltic Sea, derived from IOPs and
Frontiers in Marine Science 18
HPLC datasets covering different seasons and different areas of the

Baltic Sea.

The high variations in these results were in agreement with the

findings on previous pigments and absorption dataset analysis

representative of the Southern Baltic (Woźniak et al., 2022; Meler

et al., 2018, 2020). The variability expressed as coefficients of

variation (CV%, defined as the ratio of the standard deviation to

the average value) in Meler et al. (2020) was of 163% for the TChl a

(here 159%) and of 137% for aph at 440 nm (here of 128.8% for aph
at 443 nm). Notably, the yellow substance exhibits high variation

throughout all the dataset, in agreement with the finding of Harvey

et al. (2015). Meler et al. (2023) in a study dedicated to the Southern

Baltic and the Gulf of Gandsk found that the average contribution

of aph was 29% ± 14%, while for the detritus it was 19% ± 9% and, in

agreement with our findings, the greatest contribution to the total

light absorption was made by CDOM: 52% ± 20%.

Our data-driven statistical analyses on the absorption coefficient

dataset identified distinct taxonomically defined phytoplankton

communities in the Baltic Sea, characterized by five biomarker

pigments: diatoms (Fuco), dinoflagellates (Peri), cryptophytes

(Allo), green algae (TChl b) and cyanobacteria-pico-plankton

(Zea). As already addressed in the introduction to this study, the

use of biomarker pigments as representative of single taxa (i.e., Fuco

for the Diatoms, while Fuco contributes to different taxa) is

a simplification.

The unsupervised statistical techniques used in the data

analysis were applied to both the HPLC pigment dataset and the

absorption coefficient dataset. The analysis of the CDOM

coefficient showed that the ag(l) attributed to non-living

particles was found to be consistently more pronounced when

microplankton groups dominated the phytoplankton community,

as observed in Modes 1 and 4. This finding was consistent with

previous observations (Barrón et al., 2014). This can be explained

by the higher production of detrital organic matter by larger

microplankton, such as diatoms and dinoflagellates, which tend

to have shorter life cycles and faster sinking rates, leading to an

accumulation of non-living organic particles in the water column.

These particles contributed to the CDOM pool and enhance the ag
(l) signal. For Modes 2 and 3 corresponding to the phytoplankton

community composition with a predominant nanoplankton

fraction, there were no significant correlations observed at any

wavelength. This suggested that there were no significant

relationships between the non-living portion of the absorption

spectrum during periods when nanoplankton were dominant.

Smaller phytoplankton, such as cyanobacteria and haptophytes,

generally have slower sinking rates and lower production of

particulate organic matter, resulting in a less pronounced CDOM

signal. Similarly, the aph(l) was correlated with the 4 PCA modes.

A remarkable correlation between aph(l) and Mode 1 was observed

in the spectral ranges of 400–500 nm and 660–685 nm, which

coincided with the regions of highest TChl a absorption. However,

the correlation with other modes was less significant. The a*ph(l)
on the other hand, showed a strong negative correlation with the

first and second Modes: the trend was more pronounced with

respect to ag(l) and aph(l).
FIGURE 11

Correlations of selected phytoplankton pigments with a*ph
’(l) and

a*ph
”(l) group as the results of the HCAspectra [(A–E) for a*ph

’(l))and
(F–H) for a*ph

”(l)]. The dashed and dotted black lines show the
magnitude of significant correlation coefficients at 95% and 99%
confidence, respectively.
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TABLE 4 Diagnostic pigments MLR model for PCs regression of aph(l), aph’(l) and a*ph’(l).

Diagnostic
Pigment

aph(l) aph’(l) a*ph’(l)

R² RMSD mean RMSD (CV%) R² RMSD mean RMSD (CV%) R² RMSD mean RMSD (CV%)

Fuco 0.645 0.3 11 0.739 0.3 11.4 0.47 0.2 11.51

Zea 0.391 1.1 7.4 0.455 1 7.4 0.45 0.78 7.45

Allo 0.541 0.4 25 0.56 0.3 26.8 0.38 0.23 43.15

TChl b 0.716 0.3 20.5 0.714 0.3 21.6 0.79 0.2 12.8

Hex 0.624 0.9 9.8 0.603 0.9 11.2 0.67 0.6 9.6

Peri 0.44 1 8.3 0.442 1.1 9.3 0.47 0.79 10.2

TChl c1c2 0.58 0.4 31.5 0.592 0.4 31.9 0.87 0.1 32.1

But 0.36 0.8 8.1 0.361 0.8 8.4 0.27 0.6 0.7

For all the models were considered the first 100 PCs: coefficient of determination (R²), root mean square difference (RMSD mean) and RMSD coefficient of variation from cross-validation (500
permutations) were shown.
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Furthermore, based on Catlett & Siegel previous work (2018),

we explored the relationships between pigments and absorption

spectra and their derivatives, extending the approach to a*ph(l).
This modeling approach was found to be effective, as it exploited the

covariance among DPA pigments, as well as their correlations with

more common pigments and their corresponding absorption

patterns. This approach differs from conventional methods, which

typically assume that the abundances of distinct taxa are not

correlated and that pigment ratios remain constant within a given

dataset. The application of this modeling approach can be used in

conjunction with the discrete approach applied to the HPLC

database. The correlation with pigments aph’(l), aph”(l), a*ph’(l),
and a*ph”(l), were analyzed in relation to the results obtained by

HCApig (Catlett and Siegel, 2018; Sun et al., 2022) and HCAspectra.

The analysis of the obtained correlation suggested that aph’(l) were
a*ph’(l) of significance in the identifying consistently the biomarker

pigments distribution in the Baltic and were taken in consideration

when developing the EOF model. This analysis was preliminary t.o

the application development of an EOF model, adapted from EOF

of Bracher et al. (2015), to reconstruct biomarker pigments

composition from hyperspectral optical observations. Among the

analysis conducted on the spectral dataset, the Gaussian

decomposition was also included to compare the results of the

EOF model in predicting the different phytoplankton pigments

considered in the present study.

Among the model compared in the present study, the EOF

model emerged as best performer in predicting the biomarker

pigments distribution in the Baltic, by incorporating first

derivative spectral absorption. Results from the EOF model

performance scatterplots showed varying degrees of success in

predicting pigment concentrations based on the first derivative of

absorption coefficient, aph’(l). Pigments like Fuco and TCh b

showed strong predictability indicating a strong linear

relationship between the observed and predicted values. On the

other hand, pigments like But and Zea shown weaker correlations

suggesting more uncertainty in their predictions. The RMSD and

cross-validation error (RMSD CV%) showed some pigments (e.g.,

Fuco) with low error rates, while others (e.g., Peri) had higher
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RMSE values, indicating potential limitations in the model

performance for certain pigments. Our model found correlations

at the 440, 600, and 660 nm wavelengths with TChl b and the first

derivatives aph’(l), whereas the Gaussian decomposition considers

the main TChl b contributions at 658 nm and 457 nm. For TChl c,

our model finds the main correlations at 415, 430, 480, 575-590,

600, and 665 nm, which was partially consistent with the results of

the Gaussian decomposition. The main contribution of EOF model

was to find correlations at specific wavelengths for other pigments

such as Allo, Fuco, Zea, and Peri, which were missed by the

Gaussian decomposition as it did not consider carotenoids as

individual pigments but only as groups (i.e., PPC, PSC). By

transforming the original data into a set of orthogonal principal

components, EOF captures the most significant variance while

integrating information from multiple wavelengths while

correlation-based methods (such as The Gaussian decomposition)

relied on specific wavelengths and show variable performance. At

least, is note warty to add that the EOF model presented here used a

more extensive dataset than the Bracher et al. (2015), that captured

spatial and seasonal variability over multiple years. The spatial

variability and the optical complexity of the Baltic Sea required a

dataset that could cover different campaigns, multiple years and

seasons. The present dataset used for the development of the

method fulfilled this requirement. This, associated with the

analysis of the model robustness, made the proposed model

suitable for application in this complex basin of Baltic Sea.
5 Conclusion

This study investigates the distribution of phytoplankton

communities in the Baltic Sea, using in situ datasets of IOPs and

HPLC pigments. Using data-driven statistical analyses, the study

identifies five key biomarker pigments representing distinct

phytoplankton communities: diatoms (Fuco), dinoflagellates (Peri),

cryptophytes (Allo), green algae (TChl b), and cyanobacteria-

picoplankton (Zea). Although using these biomarker pigments as
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proxies for individual taxa is a simplification, they provide valuable

insights into phytoplankton community structure.

Unsupervised statistical methods were applied to both the

HPLC pigment and absorption coefficient datasets, suggesting

that non-living particles, ag(l), were more pronounced when

microplankton dominated the community, while this correlation
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was absent when nanoplankton were dominant. Moreover, the

absorption coefficient, aph(l), was strongly correlated with specific

modes of the phytoplankton biomarker pigments, particularly in

the spectral regions of 400–500 nm and 660–685 nm, highlighting

their relevance for understanding TChl a absorption. The

correlation between the spectral datasets and its derivatives with
FIGURE 12

Scatterplots of original data against the model in logarithmic scales for the MLR based on aph’(l) PCs for diagnostic pigments. The equations of
regression lines, along with R-squared values, were shown.
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the pigment datasets was also investigated, to evaluate whether the

development of a model should incorporate the derivative to better

represent the phytoplankton biomarkers. A key contribution of this

study is the development of a model to reconstruct phytoplankton
Frontiers in Marine Science 21
biomarker pigments composition from hyperspectral optical data,

extending the EOF model of Bracher et al. (2015) with first

derivative analysis. The EOF model provided robust correlations

at specific wavelengths for pigments such as TChl b, TChl c, Allo,
FIGURE 13

Correlation coefficient between the model based on the first derivative of the absorption coefficient aph’(l) and individual pigment concentrations
across different wavelengths.
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Fuco, Zea, and Peri, allowing higher prediction accuracy, especially

for Fuco and TChl b representative of diatoms and green algae

communities respectively. In our study we found the EOF model

outperforming the correlation-based methods in predicting

pigment concentrations, particularly when using aph’(l) and

added information on pigment not resolved by the Gaussian

decomposition approach, such as Fuco.

In conclusion, this study presents a comprehensive framework

for modeling phytoplankton biomarker pigments composition in

the Baltic Sea using IOPs data in conjunction with an HPLC

matching dataset. The results highlighted the value of advanced

statistical and optical modeling approaches, such as EOF model

with aph’(l), in describing the phytoplankton dynamics and

providing more accurate predictions of pigment concentrations.

This method shows promise for further application in other

optically complex basins and contributes to a deeper

understanding of phytoplankton dynamics in response to

environmental change.
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