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Development of species
identification techniques for
anguillid eels using species-
specific genetic markers
Eun Soo Noh1*, Chun Mae Dong1, Hee Jeong Park1,
Eun Mi Kim2, Hyo Sun Jung1, Hee Jeong Kong1

and Young Ok Kim1

1Biotechnology Research Division, National Institute of Fisheries Science, Busan, Republic of Korea,
2Research Planning Division, National Institute of Fisheries Science, Busan, Republic of Korea
The decline in eel resources, coupled with the challenges of morphological

identification and the rise of illegal trade, highlights the urgent need for accurate

species identification techniques. To address this, a multiplex PCR assay was

developed, targeting the mitochondrial Cytochrome b gene. Species-specific

primers were designed and their efficacy validated through single PCR. The

multiplex PCR conditions were then optimized to enable the simultaneous

amplification of five major eel species. This assay exhibited high accuracy,

specificity, and sensitivity, successfully identifying all five species even when

DNA concentrations were low. This multiplex PCR assay offers a rapid and cost-

effective solution for eel species identification, with the potential to significantly

bolster eel conservation efforts. By enabling accurate species identification, it can

help combat illegal trade and support the sustainable management of

eel resources.
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1 Introduction

Anguillid eels (often called freshwater eels), with their wide global distribution, hold

significant ecological and economic importance (Jacoby et al., 2015). Their unique

catadromous life cycle, coupled with their high economic value as a delicacy in East

Asian countries like Korea, Japan, and China, has led to intense fishing pressure and

concerns about their sustainability (Tsukamoto and Arai, 2001; Yuan et al., 2022). Eels are

catadromous fish, meaning they migrate from freshwater to saltwater to spawn (Tsukamoto

and Arai, 2001). The hatched larvae then embark on a long journey back to rivers, aided by

ocean currents, where they mature into adults (Durif et al., 2022). This complex life cycle

poses a significant challenge for effective eel resource management.
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In recent years, eel resources have been rapidly declining due to

a combination of factors, including overfishing, habitat destruction,

marine pollution, climate change, and dam construction

(Drouineau et al., 2018). This decline has raised international

concerns, underscored by the listing of the Japanese eel (Anguilla

japonica) as an endangered species on the International Union for

Conservation of Nature (IUCN) Red List in 2014, and the European

eel (A. anguilla) in 2020 (Jacoby and Gollock, 2014; Pike et al.,

2020). These circumstances necessitate urgent and concerted efforts

to effectively manage and conserve eel resources (Jacoby et al., 2015;

Righton et al., 2021). The IUCN Red List, while providing crucial

information on species status, does not inherently possess

regulatory mechanisms. However, it serves as a critical foundation

for conservation efforts, including the implementation of

international agreements such as the Convention on International

Trade in Endangered Species of Wild Fauna and Flora (CITES).

CITES plays a vital role in regulating international trade in

endangered species, including Anguillid eels, to ensure their

survival. The accurate identification of eel species is essential for

CITES implementation, particularly for monitoring trade, enforcing

regulations, and preventing illegal trafficking. The morphological

identification of eel species, particularly challenging at the glass eel

stage, has led to serious problems such as illegal fishing and

smuggling, as well as origin fraud (Stein et al., 2016; Alonso and

van Uhm, 2023). These issues not only pose significant obstacles to

eel resource management but also disrupt the ecological balance,

further increasing the risk of extinction for some species (Stein et al.,

2021). This problem extends beyond glass eels to eel products in the

food industry, where mislabeling and species substitution can occur

(Goymer et al., 2023). Accurate species identification is crucial for

combating fraud and ensuring the legality and sustainability of the

eel trade. In this respect, DNA analysis can be a valuable tool for

identifying the species and origin of eel products, contributing to

the conservation efforts and responsible management of eel

resources (Noh et al., 2018).

Therefore, the development of accurate and rapid eel species

identification techniques is crucial for the sustainable use and

conservation of eel resources. However, most existing eel species

identification techniques have limitations. Single PCR assays can

only identify one species at a time, while methods such as real-time

PCR or PNA probe assays involve high costs, complex procedures,

and the need for skilled personnel and expensive equipment (Sezaki

et al., 2005; Itoi et al., 2005; Noh et al., 2018). While semi-multiplex

PCR has been employed for eel species identification, it has been

observed to produce non-specific amplification in addition to

species-specific identification (Fahmi et al., 2013). These

limitations hinder both the field applicability and the efficiency of

eel species identification.

This study aimed to address these challenges by developing a

multiplex PCR assay capable of accurately and efficiently identifying

five commercially important eel species imported into Korea:

Japanese eel (A. japonica), American eel (A. rostrata), Indonesian

shortfin eel (A. bicolor pacifica), European eel (A. anguilla), and giant

mottled eel (A. marmorata) (Noh et al., 2018). These eels are

imported both live and as processed fisheries products. Live eels,
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primarily glass eels, are imported for aquaculture purposes, while

processed fisheries products include various forms such as fresh,

frozen, and processed eels. The developed assay utilizes markers that

specifically bind to and amplify species-specific regions within the

mitochondrial Cytochrome b (Cytb) gene (Minegishi et al., 2005).

This approach offers several advantages, including simplicity,

cost-effectiveness, and easy visualization of results through gel

electrophoresis (Matsunaga et al., 1999). Therefore, the findings

of this study are expected to have broad applicability in various

fields related to eel resource management and conservation,

including on-site eel species identification, quarantine inspection

of imported eels, authenticity verification of eel products, and the

prevention of illegal fishing and trade (Gill, 2007; Espiñeira and

Vieites, 2016), ultimately contributing to the establishment of a

science-based management system for the sustainable use and

conservation of eel resources, the maintenance of ecological

balance, and the effective implementation of international

regulations like CITES.
2 Materials and methods

2.1 Gene sequence acquisition and
primer design

In this study, mitochondrial Cytb gene sequences for five eel

species (A. japonica, A. rostrata, A. bicolor pacifica, A. anguilla, and

A. marmorata) were obtained from the NCBI GenBank database

(Supplementary Table S1). Multiple sequences per species were

collected to account for intraspecific genetic variation. The obtained

sequences were aligned using MegAlign Pro v17.3.0 software

(DNASTAR Lasergene, Madison, WI, USA), and interspecific

sequence differences were analyzed to identify species-specific

regions using DnaSP v5.10.01 software (Librado and Rozas,

2009). Based on these regions, a universal reverse primer (binding

to all five eel species) and species-specific forward primers were

designed, with special consideration given to placing the species-

specific nucleotide variations at the 3’ end of the primers to enhance

specificity (Kang et al., 2015). Primer design also considered

specificity, amplicon size, Tm value, and avoidance of secondary

structure formation to enhance PCR efficiency and species

identification accuracy (Dieffenbach et al., 1993). The designed

primers were synthesized by Genotech Corporation (Seoul, Korea).
2.2 Sample collection and DNA extraction

Muscle tissues were obtained from 42 eel samples, with up to 10

individuals per species, from the National Institute of Fisheries

Science’s Fisheries Bio-Resources Storage (Busan, Korea) (Table 1).

Each individual was an accurately identified adult specimen to

ensure the reliability of the results. The collected tissue samples

were incubated with 8M TNES-UREA solution and Proteinase K at

37°C for 12 hours for protein digestion and cell lysis (Chomczynski

and Sacchi, 1987). Genomic DNA was then extracted using the
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phenol-chloroform extraction and ethanol precipitation methods

(Wasko et al., 2003). The purified DNA was quantified and its

purity assessed using a NanoPhotometer N60 (IMPLEN, Munich,

Germany). Only high-quality DNA samples, free of PCR inhibitors,

were used for further experiments. The purified DNA samples were

stored at -20°C until further use.
2.3 Single PCR and validation

To validate the specificity and sensitivity of the designed primers,

single PCR amplifications were conducted using genomic DNA

samples from each eel species. Single PCR is a technique to amplify

a specific target DNA sequence using a single pair of primers.

Gradient PCR was performed to determine the optimal annealing

temperature for species-specific primer binding. The annealing

temperature was systematically varied across a range of 50-65°C in

a single PCR reaction. PCR reactions were prepared using a 2X PCR

master mix (iNtRON Biotech, Seoul, Korea) according to the

manufacturer’s instructions. A typical PCR master mix contains

Taq DNA polymerase, dNTPs, MgCl2, and reaction buffer. Each

PCR reaction contained 1 mL of template DNA, 1 mL of each primer

(10 pmol), 10 mL of 2X PCR master mix, and 7 mL of distilled water,

resulting in a final volume of 20 mL. The PCR amplification was

performed using an VeritiTM thermal cycler (Applied Biosystems,

CA, USA) under the following conditions: an initial denaturation at

94°C for 7 minutes, followed by 34 cycles of denaturation at 94°C for

30 seconds, annealing at 50-65°C (gradient) for 30 seconds, and

extension at 72°C for 1 minute, with a final extension at 72°C for 7

minutes. Amplified PCR products were visualized on a 1.5% agarose

gel and imaged using a GelDoc Go system (BioRad, Hercules, CA,

USA). Subsequently, the PCR products were finally verified by

sequencing analysis. Sequencing was performed using an ABI

3730XL DNA Analyzer (Applied Biosystems, Foster City, CA,

USA), and the species were identified using NCBI BLAST (https://

blast.ncbi.nlm.nih.gov/Blast.cgi).
2.4 Multiplex PCR and validation

PCR amplicon sizes for each eel species were confirmed, and

multiplex PCR conditions (primer concentration and annealing

temperature) were optimized stepwise to ensure efficient and

specific amplification. The PCR reaction mixture contained
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template DNA, five species-specific primer sets, and a commercial

PCR master mix. PCR products were visualized by gel

electrophoresis (1.5% agarose gel) and stained with Loading star

(DyneBio, Daejeon, Korea). The initial primer concentration was

set at 0.3 mL (10 pmol) per primer and was adjusted based on the

amplification results to achieve optimal conditions. The annealing

temperature was optimized to ensure the specific binding of all five

primers. To determine the sensitivity of the selected primer sets,

DNA samples from each eel species were diluted to concentrations

of 10 ng/mL, 1 ng/mL, 0.1 ng/mL, and 0.01 ng/mL, and then analyzed

under the optimized conditions. The PCR conditions for this

analysis were identical to those used in the single PCR.
3 Results

3.1 Mitochondrial Cytb gene sequence and
haplotype analysis

Analysis of the complete 1,140 bp mitochondrial Cytb gene

sequences from a total of 281 individuals representing five eel

species (obtained from NCBI GenBank) revealed that each species

possessed various haplotypes, with 276 nucleotide variations

observed across all individuals. While there was variation within

each species, distinct sequence differences were consistently

observed between species, allowing for clear differentiation. The

Japanese eel (A. japonica) exhibited 30 haplotypes, including seven

that were unique sequence variations. The American eel (A.

rostrata) had 29 haplotypes, including four that were unique

sequence variations. The Indonesian shortfin eel (A. bicolor

pacifica) exhibited 26 haplotypes, including 14 that were unique

sequence variations. The European eel (A. anguilla) had 48

haplotypes, including two that were unique sequence variations.

Finally, the giant mottled eel (A. marmorata) had 97 haplotypes,

with seven unique sequence variations.
3.2 Primer design and single PCR validation

Based on the identified species-specific sequence variations, a

universal reverse primer and species-specific forward primers were

designed. Species-specific primers were designed based on the

identified unique sequence variations, prioritizing A. anguilla,

which exhibited the fewer unique variations. The primer for A.
TABLE 1 Anguilla species specimens used in this study.

No. Species Number of samples Specimen accession number

1 Anguilla japonica 10 NFRDI-FI-TS-0073097~0073106

2 Anguilla rostrata 2 NFRDI-FI-TS-0077939~0077940

3 Anguilla bicolor pacifica 10 NFRDI-FI-TS-0075207~0075216

4 Anguilla anguilla 10 NFRDI-FI-TS-0073157~0073166

5 Anguilla marmorata 10 NFRDI-FI-TS-0073247~0073256
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anguilla was designed to target a T nucleotide at position 329 bp (A

in other species) at its 3’ end. Next, a primer for A. rostrata was

designed, targeting a C nucleotide at position 510 bp (T in other

species). Subsequently, the A. marmorata-specific primer was

designed to target a T nucleotide at position 654 bp (C in other

species). For A. japonica, the primer targeted a C nucleotide at

position 115 bp (T in others), and finally, the primer for A. bicolor

pacifica targeted an A nucleotide at position 789 bp (C or T in other

species). A universal reverse primer was also designed to bind to a

conserved region in the mitochondrial genome downstream of the

Cytb gene, ensuring its compatibility with all five eel species

(Table 2, Figure 1).
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To validate the specificity and sensitivity of the designed

primers, single PCR amplifications were conducted using genomic

DNA samples from each eel species. Single PCR is a technique to

amplify a specific target DNA sequence using a single pair of

primers. Gradient PCR was performed to determine the optimal

annealing temperature for species-specific primer binding. The

annealing temperature was systematically varied across a range of

50-65°C in a single PCR reaction. Gradient PCR analysis revealed

that an annealing temperature of 62°C resulted in species-specific

binding and amplification for all selected primers. Single PCR

assays using these primers on DNA samples from each species

yielded PCR amplicons of the expected sizes (Japanese eel: 1,119 bp,
TABLE 2 List of species-specific genetic markers based on sequence variations.

Primer name Target species Sequence (5’ to 3’) Tm(°C)

Ajap-115 Anguilla japonica (F) TTTTGGCTCTCTCCTAGGAC 63

Aros-510 Anguilla rostrata (F) TGAGGGGGCTTTTCAGTC 65

Abip-789 Anguilla bicolor pacifica (F) CCCGGCAAATCCTATAGTA 61

Aang-329 Anguilla anguilla (F) TTTACTACGGCTCATACCTTTACAT 63

Amar-654 Anguilla marmorata (F) CGACGCGGACAAAATT 60

Auni-1213 Universal (R) AGCGCTAGGAAGAATTTTAATC 60
A. japonica  (MH050933.1) G G C T C T C T C C T A G G A C T A T G C C T T A T T T C G C A A A T C C T T A C

A. rostrata  (KJ564203.1) . . . . . . . . T . . . . . . T . . . . T . . . . . . . . A . . . . . . . . . . .

A. bicolor pacifica  (AP007237.1) . . . . . . . . . . . . . . . T . . . . T . . . . . C . . A . . . . . . G . . . .

A. anguilla  (KJ564227.1) . . . . . . . . T . . . . . . T . . . . T . . . . . . . . A . . . . . . . . . . .

A. marmorata  (AP007242.1) . . . . . . . . . . . . . . . T . . . . . . . A . . C . . A . . . . . . A . C . .

A. japonica  (MH050933.1) T A C G G C T C A T A C C T T T A C A A A G A A A C A T G A A A C A T C G G A G T

A. rostrata  (KJ564203.1) . . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . T . . . . .

A. bicolor pacifica  (AP007237.1) . . . . . A . . . . . T . . . . . T . . . . . . . . . . . . . . . . . . . . . . .

A. anguilla  (KJ564227.1) . . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . . . T . . . . .

A. marmorata  (AP007242.1) . . . . . T . . . . . T . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A. japonica  (MH050933.1) A T C T G A G G A G G C T T C T C A G T T G A C A A C G C C A C A T T A A C C C G

A. rostrata  (KJ564203.1) . . . . . . . . G . . . . . T . . . . . C . . . . . . . . . . . . . . G . . . . .

A. bicolor pacifica  (AP007237.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C . . . . . . .

A. anguilla  (KJ564227.1) . . . . . . . . G . . A . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A. marmorata  (AP007242.1) . . T . . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . . . .

A. japonica  (MH050933.1) A C T G A A C T C T G A C G C A G A C A A G A T C C C A T T T C A C C C T T A T T

A. rostrata  (KJ564203.1) . T . A . . . . . C . . . . . . . . . . . A . . . . . . . . C . . . . . A . . . .

A. bicolor pacifica  (AP007237.1) . T . A . . . . . C . . . . . . . . . . . A . . . . . . . . C . . T . . A . . C .

A. anguilla  (KJ564227.1) . T . A . . . . . C . . . . . . . . . . . A . . . . . . . . C . . . . . A . . C .

A. marmorata  (AP007242.1) . T . . . . . . . C . . . . . G . . . . . A . . T . . . . . C . . . . . A . . C .

A. japonica  (MH050933.1) C C C C T G C A A A T C C A A T A G T C A C C C C A C C A C A C A T C A A G C C A

A. rostrata  (KJ564203.1) . . . . . . . . . . C . . . . . . . . T . . T . . . . . . . . . . . . . . . . . .

A. bicolor pacifica  (AP007237.1) . . . . G . . . . . . . . T . . . . . A . . . . . . . . . . . . . . . . . . . . .

A. anguilla  (KJ564227.1) . . . . G . . . . . . . . . . . . . . T . . T . . G . . . . . . . . T . . . . . .

A. marmorata  (AP007242.1) . . . . A . . . . . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . .

770 780 790 800 810

630 640 650 660 670

490 500 510 520 530

310 320 330 340 350

100 110 120 130 140

FIGURE 1

Species-specific sequence variations in the mitochondrial Cytb region of Anguilla species.
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European eel: 910 bp, American eel: 722 bp, giant mottled eel: 576

bp, Indonesian shortfin eel: 444 bp), confirming primer specificity

(Figure 2). Sequencing of these amplicons confirmed their identity,

with each sequence perfectly matching that of the corresponding

target species.
3.3 Multiplex PCR for eel
species identification

To optimize the assay for simultaneous identification of all five

eel species, optimal conditions were explored by mixing all five

primers together. Based on the optimal temperature of 62°C

determined in single PCR, the primer concentration was

gradually increased from a minimum of 0.3 µl (10 pmol) to

ensure clear interpretation of PCR amplification results. It was

found that A. bicolor pacifica and A. marmorata required

approximately three times higher primer concentrations than

other species. In a final reaction volume of 20 µl, the optimal

primer concentrations were determined to be 0.3 µl (10 pmol) for A.

japonica, A. rostrata, and A. anguilla, and 1 µl (10 pmol) for A.

bicolor pacifica and A. marmorata (Table 3). The optimized

multiplex PCR conditions yielded clear results, allowing for the

successful differentiation of all five eel species (Figure 3).

Furthermore, when DNA from all five eel species was mixed

and analyzed, the species-specific PCR products were clearly

separated on a 1.5% agarose gel, with no interference or cross-

reactivity. The assay accurately identified all 42 eel samples (up to

10 individuals/species) based on expected amplicon patterns.

Sensitivity evaluation using diluted DNA samples showed

successful detection of all five species even at 0.1 ng/µL,

confirming the robustness of the method (Figure 4).
4 Discussion

This study successfully developed a multiplex PCR assay for

accurate identification of five major eel species. Through the

analysis of mitochondrial Cytb gene sequences and identification

of species-specific sequence variations, a set of primers was designed

that enable precise identification of these five eel species within a

single PCR reaction. The assay demonstrated high specificity and
Frontiers in Marine Science 05
sensitivity, overcoming the limitations of single PCR assays and the

high cost/complexity of real-time PCR or PNA probe assays. This

represents a significant advancement in the field of eel species

identification, particularly considering the challenges associated

with morphological identification, especially at the glass eel stage.

The use of the mitochondrial Cytb gene as a genetic marker

aligns with previous research demonstrating its effectiveness in

species discrimination due to its high variability and maternal

inheritance (Sezaki et al., 1999; Aoyama et al., 2001; Fahmi et al.,

2013; Noh et al., 2018). A multiplex PCR system based on species-

specific primers was established, and a comprehensive analysis of

the complete Cytb gene sequences available in public database was

conducted to identify species-specific sequence variation for primer

design. This approach offers several distinct advantages over

existing methods, including its simplicity, cost-effectiveness, and

straightforward visualization of results through gel electrophoresis,

rendering it highly suitable for field applications and resource-

limited settings (Kim et al., 2023).

This assay can simplify and aid monitoring and enforcement

efforts, particularly in combating illegal fishing and trade of

endangered species (Jaser et al., 2021). Specifically, this assay can

directly support the implementation of CITES by providing a

reliable tool for monitoring international trade in Anguillid eels.

By enabling accurate species identification, it can help to detect

illegal trafficking, ensure that trade is conducted in accordance with

CITES regulations, and prevent illegal fishing and smuggling of

glass eels, thereby safeguarding valuable eel resources. Moreover,

this assay can contribute to the establishment of science-based

management system for sustainable eel resources by providing

accurate species identification data for monitoring populations,

assessing genetic diversity, and informing conservation strategies.

Furthermore, the assay’s ability to verify the authenticity of eel

products enhances consumer confidence and promotes fair trade

practices, which are crucial for sustainable eel aquaculture and

market regulation (Espiñeira and Vieites, 2016).

Beyond its immediate impact on eel conservation, this study

highlights the power of molecular tools in addressing critical

challenges in biodiversity conservation and resource management.

The development of similar multiplex PCR assays for other taxa,

particularly those facing threats from overexploitation or illegal

trade, could significantly enhance our capacity for effective

monitoring and enforcement. While this study focused on five
FIGURE 2

Results of single PCR amplification using species-specific primers for five Anguilla species.
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commercially important eel species in Korea, the assay’s applicability

could be expanded in future research by incorporating primers for

additional species, particularly those that are threatened or play

crucial ecological roles. This would enhance the assay’s utility for

broader biodiversity monitoring and conservation efforts. Moreover,

the integration of this assay with emerging technologies like
Frontiers in Marine Science 06
environmental DNA (eDNA) analysis and portable sequencing

platforms could further revolutionize our approach to biodiversity

assessment and conservation (Cho et al., 2016; Farley et al., 2018).

Further improvements could involve simplifying DNA

extraction procedures, potentially through the use of commercial

kits or non-invasive sampling methods such as collecting DNA with

swabs or eDNA, and refining primer design for even faster and

more efficient analysis (Mason and Botella, 2020). The development

of portable, field-deployable devices such as microfluidic platforms

that integrate DNA extraction and multiplex PCR analysis would

greatly enhance the assay’s on-site utility for rapid species

identification and monitoring (Khodakov et al., 2021).
5 Conclusion

This study presents a significant advancement in eel resource

management and conservation by developing a multiplex PCR

assay capable of rapid and accurate identification of five major eel

species. The design of species-specific primers based on the

mitochondrial Cytb gene ensures high specificity and sensitivity,

overcoming the limitations of existing methods. In particular, the

accurate identification of species at the glass eel stage can prevent

illegal fishing and smuggling, contributing to the establishment of

a scientific management system for the sustainable use of

eel resources.
FIGURE 3

Results of multiplex PCR amplification using species-specific primers for five Anguilla species.
TABLE 3 Optimized multiplex PCR reaction composition.

Component Volume (µl)

Template DNA 1.0

Forward primer 2.9

Ajap-115 (0.3)

Aros-510 (0.3)

Abip-789 (1.0)

Aang-329 (0.3)

Amar-654 (1.0)

Reverse primer 1.5

Auni-1213 (1.5)

2X PCR master mix 10.0

Distilled water 3.6

Total 20
FIGURE 4

Sensitivity evaluation of the multiplex PCR assay for five Anguilla species using different DNA concentrations (10 ng/µL, 1.0 ng/µL, 0.1 ng/µL, and
0.01 ng/µL).
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The approach developed in this study has the potential to be

applied to the conservation and management of not only eels but

also other endangered or overfished species. Future expansion of

the assay’s scope and technological improvements are expected to

make even greater contributions to the field of biodiversity

conservation and resource management.
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