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Sponges are now requested for their commercial, industrial and pharmaceutical

importance. This led to an increase in demand in the global markets with

uncontrolled and excessive harvesting pressure that, together with diseases

outbreaks, put wild populations at risk, with several habitats completely looted.

Aquaculture of sponge fragments poses an alternative to wild collection since

fragment regeneration is easy, cheap and efficient. We chose as subject of our

study Spongia anclotea, common to the tropical Western Atlantic, due to its high

request on the market for cosmetics, body care and pharmaceutical applications.

We set a low-cost sponge farmmade of cheapmaterials, thus affordable for local

communities, which did not require significant maintenance. The growth and

survival rate of 384 out of 2304 randomly chosen sponges have been

investigated over a 4-year period. At the end of the study, sponges increased

by an average rate of 380% ± 275% of their initial volume (with a maximum of

1480%) and 87.5% of sponges survived (death and detach during the whole

period were considered as mortality). Farmed sponges from our structure

resulted characterized by superior quality and shape compared to collected

wild individuals from the area and, after six years of cultivation (4 years of the

present study + 2 years of forecasted growth based on our findings), this

improved quality could yield higher profits (618 USD vs. 547 USD, respectively,

for a standard stock size). This experimental setup can be considered a good

alternative to sponge harvesting and a good economic opportunity for

developing countries.
KEYWORDS

Spongia anclotea, Spongia pertusa, sponge farming, aquaculture, growth,
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1 Introduction

Sponges (phylum Porifera) are a monophyletic (Wörheide et al.,

2012) group which is estimated to include over 9000 species in 852

genera (de Voogd et al., 2024).

Historically, since the era of the Roman Empire, a small fraction

of sponges, belonging to the order Dictyoceratida (family

Spongiidae), characterized by a high quality spongin skeleton due

to the almost total absence of spicules, great water retention,

elasticity and resistance to usage overtime, were harvested for

cosmetics in the Mediterranean Sea (Pronzato and Manconi,

2008; Ehrlich et al., 2018; Jesionowski et al., 2018). Recently,

sponges have been demonstrated to be usable and profitable in

various fields as biomedicine and pharmaceutical, due to the

discovery and applications of their secondary metabolites

(Faulkner et al., 1993; Amigó et al., 2008; Indraningrat et al.,

2016; Abdelaleem et al., 2020; Pawlik and McMurray, 2020),

biomonitoring and bioremediation, owing to their proficiency in

filtering sea water, removing and accumulating different classes of

pollutants (Patel et al., 1985; Olesen andWeeks, 1994; Hansen et al.,

1995; Philp, 1999; Perez et al., 2002, 2003, 2005; Milanese et al.,

2003; Cebrian et al., 2007; Santos-Gandelman et al., 2014; Orani

et al., 2018), and aquaculture, as both farmed target species or as

water filtration tool for bioremediation and reduction ecological

impacts of farming in integrated multi-trophic aquaculture systems

(IMTA) (Longo et al., 2016, 2020; Giangrande et al., 2020; Gökalp

et al., 2021; Aguilo-Arce et al., 2023). This increase in demand made

sponges a target organism in the global markets. While data before

1900 are not reliable for commercial sponges, a peak of 2 million

collected sponges was reported in 1902 (Sella, 1912) and demand in

the early 20th century was estimated at 30 tons/year. Wild sponges’

gathering increased over time with over 100 tons/year in England

and Germany in the 1930’s (Arndt, 1938), 200 tons per year in 1985

up to around 2000 tons in 2003 (FAO Fishery Information and Unit

(FAO-FIDI), 2005).

Since the end of the 20th century, new discoveries on

applications of sponges put these organisms under excessive

fishing pressure and, together with diseases outbreaks (Webster,

2007), wild populations become severely threatened and several

areas faced significant reduction in both sponge abundance and

species richness (Croft, 1990; Pronzato, 2003; Bertolino et al., 2017).

This situation led to an increase in sponge aquaculture efforts all

over the world, from the Mediterranean Sea to the Atlantic and

Pacific Ocean (Cahn, 1948; Storr, 1957, 1964; Croft, 1990; Handley

et al., 2003). Researchers tried to develop new farming methods

aimed at maximizing efficiency and reducing costs. Over time, the

effects of new farming techniques (such as cages, fences, tendales,

ropes, net pockets, spikes, and plastic pins (Duckworth et al., 2007;

De Caralt et al., 2010; Osinga et al., 2010; Zea et al., 2010; Page et al.,

2011; Betanzos-Vega et al., 2019)) on sponge growth, survival, and

secondary metabolites production were evaluated, alongside other

tests on integrated mariculture with the placement of sponges in

association with fish and mussels’ aquaculture systems (Gökalp

et al., 2019, 2021; Giangrande et al., 2020; Li et al., 2023). To date,

the accepted idea is that sponge aquaculture is species-specific, and
Frontiers in Marine Science 02
each farming strategy must be calibrated to the needs of the target

organism (Duckworth, 2009; Schippers et al., 2012). Currently, one

of the most common farming techniques is growing fragments

taken from natural individuals, taking advantage of the remarkable

regenerative ability of these organisms. This practice was first

adopted in the Mediterranean Sea (Cavolini, 1785, 1853), then it

spread to America, Asia and Oceania (Duckworth et al., 1997, 2007;

Louden et al., 2007). Aquaculture of sponge fragments gave new

opportunities to developing countries which were facing ecological

issues related to the past harvesting of natural individuals. In fact,

this fragment regeneration method has been demonstrated to be

simple, fast, inexpensive and efficient (Ayling, 1983; Duckworth,

2003). With proper protocols and conditions, a single individual

may be a “source” for multiple generations (Osinga et al., 1999;

Duckworth, 2001; Belarbi, 2003; Louden et al., 2007) thus shrinking

the need of natural donors (Duckworth, 2009). This evidence made

farming sponges a win-win choice for communities in developing

nations, since it does not require expensive technologies and tools, it

is easy to run, profitable and, ecologically speaking, it can decrease

the anthropogenic pressure on natural stocks (Yi et al., 2005;

Betanzos-Vega et al., 2019).

The genus Spongia is highly rated on the markets its specific

features related to personal care, including fine texture and water

absorption (Verdenal and Verdenal, 1987). The well-known Spongia

pertusa, now accepted as Spongia (Spongia) anclotea de Laubenfels &

Storr, 1958, is typical of the Atlantic Ocean coasts of America from

Florida to Brazil. This species was chosen due to its high market value

for cosmetics and body care and for the newly discovered

pharmaceutical applications of its secondary metabolites as both

antifungal agent against human pathogens and breast cancer CSC-

like cell proliferation inhibitors (Osinga et al., 1999; Tang et al., 2018,

2022; Tian et al., 2023). Thus, improved understanding of its biology

and physiology is fundamental for successful aquaculture farming. To

our knowledge, only one study by Oronti et al. (2012) did a short-

term preliminary investigation on growth and survival of S. anclotea

in the Bahamas. Our study is the first long term investigation to

address this species’ adaptability to farming. In this work, we aimed to

investigate S. anclotea regeneration and growth rates, together with

survival and detachment, in an experimental site at Cape Eleuthera,

Bahamas. Then, the productivity of the farm was estimated (in US $)

and the revenue made by selling farmed sponges was compared to the

profits made by selling similar size natural sponges collected from the

study area. This allowed us to evaluate the actual applicability and the

benefits of this farming system to help the economy of local

communities and alleviate the stress on natural sponges’ populations.
2 Materials and methods

2.1 Study site

The study took place in Cape Eleuthera Bay (Bahamas), near the

Cape Eleuthera Island School and Institute (Figure 1). The farm was

set in a dredged channel (3 m depth) 15 m far from the shore. The

area was chosen basing on a past pilot study (Oronti et al., 2012) in
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which Spongia anclotea farming at this location resulted in higher

growth rates and lower mortality compared to other sites in the

area, probably due to higher nutrient terrestrial runoff and weaker

wave energy and water turbulence. Furthermore, the vicinity to the

shore made setup, sampling and analyses much easier compared to

offshore areas.
2.2 Study setup

A total of 8 farming cells (A-B-C-D-E-F-G-H) were built in

November 2010 following the scheme reported in Figure 2, at a

depth of 3 m. Cell X was already present from the previous pilot

study (Oronti et al., 2012) and filled with older sponges, so it was

not considered in this study. Every cell involved 6 strands made of 5

modules 105 cm far from each other. To do so, 240 concrete blocks

(15 kg each) were deposited on the bottom, each presenting a

vertical iron bar (1 meters long, 19 mm diameter) where two

bitumen coated nylon twines were fixed at different heights (15

cm and 45 cm from the top of the bar) and pulled between bars of

the same strand.

The upper portions (2/3 of total volume) of donor sponges from

the area (estimated between 576 and 768 native individuals, explant

volume ranging between 450-600 cm3 per donor sponge) were cut

with a knife to obtain fragments, the remaining 1/3 were left sticked

to the substrate for recovery as suggested by Duckworth and

Battershill (2003). Sponge portions where then divided, ensuring

that at least a side had undamaged pinacoderm, into multiple

smaller sub-spherical fragments (usually 3-4 fragments per donor

sponge). During every processing step, sponges were always kept

underwater to avoid air exposition and minimize stress. Fragments
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were then tied with zip ties 15 cm apart from each other for a total

of 48 individuals per strand numbered as 1-24 up for the upper

thread and 1-24 down for the lower one. Strands orientation was set

parallel to the local water current to minimize hydrodynamic stress.

For growth analysis, due to the large number of samples, only

one randomly chosen strand per cell was processed for a total of

2304 samples (6 strands x 2 rows x 24 samples x 8 cells).

The experiment ran from 2010 to 2014. It began in November

2010 (setup and first measures) with subsequent measurements in

July 2011, January 2012, July 2012, February 2013 and September

2014. Dimensions were measured underwater with precision

calipers assessing the length of the three main axis of the sponges

(length, width, height: x, y, z). Volumes were calculated using the

ellipsoid as a reference shape (Formula 1), due to its similarity to

samples shapes.

Sponge (ellipsoid)    volume =
4
3
pxyz

Formula 1. Ellipsoid volume.

Growth rate expressed as a percentage was calculated as in

Formula 2.

Sponge   volume   growth   rate   %   =
Volume   tx − Volume   t0

Volume   t0 *100

Formula 2. Sponge growth rate. Volume at tx indicates the

volume of a sample measured at one of the five sampling times (t1-

t5), while volume at t0 represents the initial measurement of that

sample’s volume.

The survival rate was assessed considered death or detachment

of sponges as one, since both fates resulted as an individual lost for

final sale.
FIGURE 1

Study area. Red triangle indicates Spongia anclotea farm setup location at Cape Eleuthera, Eleuthera Island, Bahamas.
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2.3 Economic analysis

The total costs of initial setup and annual maintenance

comprising materials (concrete blocks, iron bars, bitumen coated

nylon twine, zip ties) and manpower (scuba diving preparation of

the structures, monitoring and sponge measuring) have been

assessed. At the end of the study, the quality and the market

value (wholesale price) of farmed sponges has been explored by

experts in the field from the Spugnificio Rosenfield sponge farm of

Muggia, Italy, which professional activities consist in importing

wholesale farmed or harvested sponges, processing and modelling

sponges to obtain highly requested spherical shapes and final resale.

The quality of sponges primarily depends on their skeleton shape

and texture. Wild sponges, which grow attached to the substrate,

develop irregular morphologies and textures that are less

commercially desirable. In contrast, sponges cultivated on

suspended lines, experiencing no spatial constraints, grow freely

in all directions resulting in more spherical shapes and

homogeneous texture, which are likely to be defined as 1st quality

and highly requested on the market. Last, potential profits for the

farmers (revenues minus costs) were estimated and compared with

mean profits made by selling collected wild sponges of similar size.

Two estimations were made, at t4 (3 years), where sponges reached

the commercial size and a forecasted t6 (4 years of the current study,

plus 2 years of forecasted growth based on our findings, assuming a

constant growth and the absence of potential stressful events), when

the farm productivity would be stable and settled. The number of

marketable sponges was estimated based on survived individuals at

t4. At t6, no difference in numbers was assumed, based on the

premise that in an operational farm (unlike our study, where dead/

detached sponges were intentionally not replaced) blank spaces are

constantly refilled, thereby minimizing the loss of individuals. We
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considered as revenue only the wholesale price of sponges,

excluding additional costs for buyers, as these were not relevant

to the study’s focus on the farm’s economic feasibility. Similarly, for

collected sponges, we decided to consider as profit the wholesale

price for buyers. We excluded the presence of significant additional

expenses for sponge fishers, since most of sponge collection in the

Caribbean is performed by “staff and hook” or apnea diving in

shallow waters with small artisanal boats as support, with almost

absent expenses and equipment. In the Bahamas, sponge collection

in rural local communities is a sporadic activity carried out by

fishermen. For this reason, the cost of the boat has not been

considered, as it is already covered by their main fishing

operations and does not represent an additional expense. Since

the study ended in 2014, prices were updated not by a simple

conversion of the past vs current global value of the dollar. We

investigated the current local value at the Bahamas of each

component for both costs and revenues and reported in

American dollars (USD).
2.4 Environmental variables from satellite
data and anomalies analysis

To provide a general overview of the physical conditions during

the experiment, we reported the seasonal variations and anomalies

of several environmental variables during the study period. Satellite

data of seawater temperature, chlorophyll-a, oxygen, salinity,

nitrates, phosphates, silicates and biomass for the experimental

site and timeframe were obtained from the product Global Ocean

Physics Reanalysis (doi.org/10.48670/moi-00021), dataset

“cmems_mod_glo_phy_my_0.083deg_P1D-m”, and the product

Global Ocean Biogeochemistry Hindcast (https://doi.org/
FIGURE 2

Scheme of the sponge farm. (A) details of a single unit of a strand (a full strand is made by 4 units). Two concrete blocks (cb) support two iron bars,
between which two nylon twines are pulled; 6 sponges (black circles) per twine at the two depths, up-low, are placed (24 on the complete strand).
(B) structure of a single cell made of six strands (1-6) viewed from above: dimensions approximately 4 x 5 meters in length and width, respectively.
(C) comprehensive map of the farm viewed from above, all cells (A–H) are shown. The left side is near the coastline while the right side is exposed
to open sea. The main water current in the area flows downwards.
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10.48670/moi-00019), dataset “cmems_mod_glo_bgc_my_

0.25deg_P1D-m”, on Copernicus Marine Service. Details are

described in Supplementary Data 1.

Temperature data (from 1987 to 2021) were analyzed using the

R package “heatwaveR” to assess Heatwaves “MHW” and Colds

Spells “MCS” during the study period, details of the protocol are

reported in Supplementary Data 2. Following the same procedure,

anomalies over 90th and under 10th percentile were also detected for

each other variable (in this case the climatology was calculated over

the 1993-2021 period due to limited extent of the available datasets).
2.5 Statistical analysis

Generalized Linear Mixed Models (GLMM) were run to

investigate statistical differences in growth rate among different

(1) rows (upper-lower), (2) position (1-24), (3) cells (A-H) and their

interaction with time (Supplementary Table 1). For (1), we set a

GLMM with growth rate as dependent variable, the interaction of

row and time as fixed factors, and sample id as random factor. For

(2), a GLMM was set with growth rate as dependent variable, the

interaction of position and time as fixed factors, and sample id as

random factor. For (3), a GLMM was set with growth rate as

dependent variable, the interaction of cell and time as fixed factors,

and sample id as random factor. To assess differences in survival

(death + detach) of sponges among rows, position, cells, three

binomial GLMM has been set with alive/dead organisms (as 0/1) as

dependent variable (Supplementary Table 1). As for growth rate,

the first model included the interaction of row and time as fixed

factors, and sample id as random factor. The second model included

the interaction of position and time as fixed factors, and sample id

as random factor. The third model included the interaction of cells

and time as fixed factors, and sample id as random factor. For all

models, pairwise comparisons (Tukey test) were run when

significant differences were found. The statistical models were

developed under the R statistical environment v.3.6.2 (R Core

Team, 2021) using package stats (R Core Team, 2021), lme4

(Bates et al., 2015) and emmeans (Lenth, 2023).
3 Results

A total of 384 sponges were analyzed 6 times during a 4 years

period for a total of 2304 measurements (1152 up and 1152 down)

(Figures 3B–F). Sampling intervals were November 2010, July 2011,

January 2012, July 2012, February 2013, and September 2014.
3.1 Growth and mortality analysis

The average sponge volumes increase rate at t5 measured 380%

± 275%, with the minimum individual value recorded in cell C

(-80%) and the highest record in cell D (1480%) (Table 1).

Analyzing the different part of our farming structure, no

differences in growth were observed between up and down rows
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of cells at every time interval and no differences were found between

the positions 1-24 on the two rows (Supplementary Table 1).

Considering the whole period t0-t5, no differences in growth rate

were observed between cells. At t5, differences were observed only

between cells C-D and C-G (Figure 4; Supplementary Table 1).

A total of 54 out of 384 sponges (14%) were lost to death or

detachment during the study, with no statistical differences between

rows, position, and cells (Figure 5; Supplementary Table 1).

As a personal observation of the authors, since t0, the sandy-

orange cut surfaces of the fragments were covered with regenerated

pinacoderm within a couple of weeks. We observed that the self-

cleaning capacity of the sponges, so evident in wild specimens

(Figure 3A), was initially weakened in the transplanted fragments,

which tended to be covered by both sediments and epibionts, and it

was recovered only one or two years after the start of culturing.

Interestingly, this restoration corresponded with the recovery of the

initially lost, probably due to cutting and transplantation, endobiont

organisms as worms, shrimps, etc. To date, the role of organisms

living inside sponges and the nature of their associations are still

under debate; if benefits for endobionts (food, shelter) are easier to

assess, the benefit for the sponge have not been determined

(Westinga and Hoetjes, 1981; Wulff, 2006; Martin and Britayev,

2018; Goren et al., 2021; Lira et al., 2024). Here, we could roughly

suggest, as a personal reflection based on qualitative observations, a

potential role of these organisms in cleaning the surface of sponges.
3.2 Environmental variables and anomalies

Heatwaves and Cold spells, together with Chl-a, oxygen,

salinity, nitrates, phosphates, silicates, biomass anomalies

calculated for the study period are reported in Figure 6 and

Supplementary Figure 1. The climatic conditions of the area have

been rather stable for each variable during the study without co-

occurring anomalies, with the exception of October/November

2012, during t3-t4, where an intense drop of temperature from

the 90th percentile down to a cold spell event (below 10th

percentile) took place. Concomitantly, a salinity anomaly below

the 10th percentile and anomalous peaks over the 90th percentile of

primary productivity and biomass in the area were observed. These

anomalies co-occurred with Hurricane Sandy, hitting the Bahamas

around the end of October 2012. Nitrates, phosphates and silicates

did not show any associated anomaly.
3.3 Economic analysis

Experts from the Spugnificio Rosenfield sponge farm of Muggia,

in the person of Elena Pesle, stated that sponges reached selling size

at t4 and defined their quality as first quality for the 80% of sponges,

the remaining 20% as second quality. Under their supervision, we

assessed the costs (all values reported were updated at 2023) for the

initial setup to $387 plus $15 for the annual maintenance activities

for a total of $432 at t4. Maintenance consisted mainly in checking

the structure integrity and the cleaning of ropes from fouling,
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activities that can be performed by farm operators on a monthly

basis, without the need of external experts and extra costs (Table 2).

A common stock of collected wild sponges at entry-level

commercial size, usually made by 50% first quality, 50% second

quality, is worth $1 per sponge, while a same size farmed high-

quality stock is worth about $2/2.5 per sponge. At t4, 348 out of 384

sponges survived and this number was used for the analysis. Based

on our results about growth and survival rate of farmed sponges, at a

hypothetical forecasted t6 (assuming a constant growth and the

absence of potential stressful events), profits made by Spongia

anclotea farmed individuals would exceed wild sponges’ collection

profits ($618 vs $547) (Table 3).
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4 Discussion

Marine sponges are a fundamental component of the benthic

ecosystem due to their abundance, function and services like shelter

provision (Herrnkind et al., 1997; Coppock et al., 2022),

bioremediation (Amato et al., 2024) and water filtration (Dayton

et al., 1974; Ayling, 1981; Costello and Myers, 1987; Maldonado

et al., 2012, 2017; De Goeij et al., 2013; Pawlik and McMurray,

2020). Commercially, sponges request is constantly increasing for

cosmetic, industrial, pharmaceutic applications and the supply from

natural populations, which are mainly located in developing

countries and put under excessive stress, is becoming increasingly
FIGURE 3

Experimental setup. (A) wild Spongia anclotea specimen, (B) t0, orange color indicates the fresh cutting surfaces, (C, D) overview of farming area and
a zoom on a detached individual at t1, (E) t4, (F) individuals at final sampling time t5.
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unable to support the demand. At the current state of the art,

farming sponges requires simple setups and cheap tools (Verdenal,

1990; Duckworth and Battershill, 2003; Page et al., 2005), which

could benefit local communities in developing countries who lack

large capitals to invest. For these reasons, in our study, we decided

to adopt a structure of sponge farming which potentially meets

these needs and can be assembled with simple materials (concrete

blocks, iron bars and nylon twines), involving low-cost processing

and maintenance while guaranteeing efficient sponge growth, as

already observed in multiple studies (Corriero et al., 2004; Friday,

2011; Çelik et al., 2011; Maslin et al., 2021; Bierwirth et al., 2022).

The two most important parameters in sponge farming are

growth and survival rates (Duckworth, 2009; Santiago et al., 2019;

Mohite et al., 2020; Ou et al., 2020). Looking at our results, no

significant differences in both growth and mortality were found for

the two depths, the position on the row, and cell. From a structural

point of view, these homogeneous results indicate our farm setup as

a strong and efficient farming environment where, at least for this

species, the different depths of farming do not affect sponges’

growth and so does the position on the twine or the position of

the cell. According to Duckworth et al. (2007) farmed sponges’

volume should increase by 100% per year in order to be considered

profitable. In our study, at t5 (4 years), the mean rate of volume

increase accounted for 380% (individual values ranged from a

minimum of -80% to a maximum of 1480%). This wide range of

results may be related to the variability in terms of state of health,

resistance, and resilience among the numerous donor individuals.

Within donor sponges, some individuals could have been already in

suffering health condition, or they could be less genetically gifted,

leading to a shrinkage in volume over time, while others, more

suited for growth, exhibited the highest values. However, compared

to other taxa, records about sponge growth and shrinkage rates in

literature are scarce and limited to a few species (Ayling, 1983;

Barthel, 1986; Hoppe, 1988; Garrabou and Zabala, 2001;

Duckworth et al., 2007; De Caralt et al., 2010; Osinga et al., 2010;

Zea et al., 2010; Page et al., 2011; Padiglia et al., 2018; Gökalp et al.,

2019; Li et al., 2023). Moreover, within this deficiency of data,

farmed sponge growth has been demonstrated to be species specific,

highly variable [from negative growth (Hoppe, 1988; De Caralt

et al., 2008; Page et al., 2011; Di Camillo et al., 2012), to 2000%

increase per year (Pronzato and Manconi, 2008; Page et al., 2011;
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Schippers et al., 2012)] and easily influenced by several factors like

seasonality, water temperature, water transparency and currents

(Barthel and Theede, 1986). Thus, a clear picture of growth

performance in relation with different farming techniques is not

available (Corriero et al., 2004). The only study on Spongia anclotea

was carried out by Oronti et al. (2012), which reported a growth rate

of 6.2 cm3/month over a three year period. We recorded a better

growth rate (11.28 cm3/month), but it should be considered that the

smaller initial size of sponge fragments in Oronti et al. (2012) may

have influenced the velocity of growth. Within the genus Spongia,

Çelik et al. (2011) investigated line-farmed Spongia officinalis

specimens and registered growth rates of 5-17% in two years. Our

farming system of S. anclotea from Cape Eleuthera resulted in better

performance. Environmental factors, like seasonal variations of

water temperature, were demonstrated to potentially influence

sponge growth. In locations with marked seasonality like

temperate areas, growth is higher during the warmer season

(Handley et al., 2003; Kelly et al., 2004; Page et al., 2005).

Similarly, studies in Australia found a positive relationship

between growth rates and temperature (Duckworth et al., 2007).

Other research works, on the contrary, found no effect of

seasonality on sponges’ growth (Ayling, 1983; Hoppe, 1988; Costa

et al., 2015). Being the Bahamas in a semi-tropical area, the

temperature range in our study area may be too limited to affect

sponge growth rate significantly or S. anclotea may be one of those

species which are not particularly affected by the variations of water

conditions. However, during t3 - t4, a drop in growth was observed

in some farm cells. At that time, a long cold spell took place at Cape

Eleuthera, caused by the impact of Hurricane Sandy on the area,

potentially slowing down the growth of sponges. Considering the

scarcity of studies on sponge growth, our results could help to fill

this gap in sponge science.

In aquaculture, another important issue is mortality of

organisms since it means a complete loss of time and money

invested. In our study, mortality was limited, only 54 out of 384

sponges died (or have been lost) during the study. Verdenal (1990)

stated that a good farm should yield about 90% of survival of

organisms per year. Our farming system accounted for a final 86%

in a 3-year span, thus being in line with the standard. This result is

noticeable if compared with survival rates reported in literature,

which ranged from 0 to 100% of survival across different farming

methodologies and species (Osinga, 2010; Gökalp et al., 2019, 2020;

Bierwirth et al., 2022). Oronti et al. (2012) recorded a 12.5%

mortality rate for S. anclotea in three years of farming. The higher

mortality (14%) we observed may be due to the longer duration of

our study. For S. officinalis, Çelik et al. (2011) reported a survival

rate of 82-85% of specimen farmed with a similar line technique to

the one we adopted. Due to the absence of existing literature data on

S. anclotea, we were unable to determine if our results on growth

and survival represent just the intrinsic growth rate of this species or

if they are influenced by the farming methodology and location. In

our farm, most of lost sponges were due to detach. Sponge death

was observed only during the first 12-18 months after

transplantation. We decided for scientific purposes to not add

new sponges on blank spaces but, in a context of economic
TABLE 1 Sponge growth summary.

time Mean
volume

sd.
Volume

Mean
% increase

sd.
%

t0 149.40 56.09 0 0

t1 205.28 83.58 38% 35%

t2 321.15 145.71 119% 77%

t3 388.82 174.513 167% 99%

t4 442.96 230.20 209% 150%

t5 668.57 355.94 380% 275%
Comparison of mean and standard deviation of Volume and Growth rate at each
time interval.
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activities, it would be quite easy to fill the holes with new sponges

collected in the area (sometimes detached sponges are still in the

vicinity of the cells) and maintain the farm fully operational.

Another key factor for both growth and survival rates is the

hydrodynamics of the area. Growth rates of farmed sponges were

shown to increase with current flow (Wilkinson and Vacelet, 1979),

which provides more food particles, until it becomes strong enough to

cause physical damage to sponge tissues (Duckworth et al., 1997;

Bannister et al., 2007). Duckworth (2003) found that individuals of

Latrunculia wellingtonensis farmed in areas with strong water motion

grew three times bigger compared to areas with weak currents.

Conversely, in area where strong currents cause excessive

suspension or where weak currents deposit large amounts of

particles, sponges may be buried, with detrimental effects on their

ability to filter water and, consequently, on their survival (Reiswig,

1971; Osinga et al., 2001; Gökalp et al., 2020). During our study,

damage by strong currents and increased suspension caused by

Hurricane Sandy could justify the weak growth observed during t3

– t4. Plus, the registered peak of Chl-a (most probably an algal bloom),

may have additionally impaired the filtering capacity of sponges

leading to an even stronger state of stress. Except for the potential

acute impact of the hurricane, no other evidence of the effect of

hydrodynamics were observed since sponge growth and mortality in
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different cell positions, and consequent different exposure to currents,

did not show clear picture of potential interactions. This suggest, on

one hand, that S. anclotea may be tolerant to average currents and

suspension, and, at the same time, that the choice of the area

(nearshore and not affected by strong currents and waves) and the

design of the sponge farm were proficient for this species. Thus, this

confirm that finding a proper location and plan a smart farm design is

a key factor to maximize the overall efficiency and productivity.

The following step of this study was assessing the commercial

quality of the farmed sponges. Experts from the Spugnificio

Rosenfeld sponge farm of Muggia stated that most of the sponges

were over the minimal commercial size already at time t4 and that

about 80% of them were defined as first quality sponges, the

remaining 20% as second quality. At t4, the overall estimated

profit for farmers for 348 sponges was $264, while a standard

stock of natural harvested sponges (usually made by 50-50 of 1st

and 2nd quality sponges) is usually worth $348. On a longer time

scale, 6 years, the profitability of our farm exceeded the standard

stock at same sponge volume ($618 vs $547). It must be considered

that the time needed to reach commercial size and the consequent

t6 could be easily reduced by using initial fragments of larger size.

Here, being a pilot study, we chose to obtain 3-4 small fragments for

donor sponge. Just starting from fragments of double the size would
FIGURE 4

Growth analysis. Growth (log scale) of S. anclotea for each farming cell (A–H) at different time intervals (t0-t5).
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cut the farming time in half with consequent economic benefits for

producers and avoiding issues with mortality at smaller sizes.

As a conclusion, our results suggest this farming system as a

valid alternative to harvested sponges since its profitability in the

short/mid-term is higher. In addition to the economic and

commercial aspects, our results are also significant from an

ecological perspective since finding new sources of sponges, like

aquaculture, could be a key tool to reduce stress on their

populations. Furthermore, the presence of open-sea sponge farms,

acting as high-density reproduction areas, could provide a

significant amount of fragments, propagules and larvae for the

surrounding regions, thus favoring the restocking of wild
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populations affected by fishing pressure and natural mortality

events (Leong and Pawlik, 2010; Pawlik, 2011). On the other

hand, long-term farming could increase the risk of confined in-

situ reproduction with consequent genetic degradation over time

impairing their fitness and survival (Pérez-Portela et al., 2014). Plus,

the high density of individuals could favor the outbreak of sponge

diseases, predators and parasites, as observed worldwide in different

species and locations (Webster, 2007; Maldonado et al., 2010; Page

et al., 2011; Wulff, 2012; Choudhury et al., 2015), that could then

spread and harm wild populations.

Further studies are needed to test the efficiency of this farming

technique in the long term both on S. anclotea and other
FIGURE 5

Mortality analysis. (A) boxplot of detached/dead individuals for each time interval, (B) boxplot of detached/dead individuals for each farming Cell, (C)
total number of detached/dead individuals for each farming Cell.
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FIGURE 6

Environmental factors anomalies. Red line is the observed value of the variable, green indicates the climatology, blue and purple line indicates the
90th and 10th percentile for each variable. (A) Temperature, (B) Chlorophyll-a, (C) Oxygen and (D) Salinity. Dotted lines are time intervals t1-t5. Black
arrow indicates the arrival of Hurricane Sandy at the study site.
TABLE 2 Economic assessment.

Cell setup costs

Building materials

Number Cost tot. US $

Blocks 30 79.2

Iron bars 30 88

Nylon twine 1 8.8

Ziptie 300 11

Manpower 1 person 2 days 200

Total costs ($) 387

Annual maintenance 15
F
rontiers in Marine Scienc
e
Building and maintenance costs for the whole farm setup (expressed in US Dollars).
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TABLE 3 Economic analysis.

Profit Farmed vs Harvested Sponges

T4 (3 years) T6 (6 years)

Cost of farmed stock 432 477

Price paid by buyers for farmed sponges 696 1095

Price paid by buyers for
harvested sponges

348 547

Profit farmed 264 618

Profit harvested 348 547
Cost, sell value and profit (Sell value – Cost) for 348 farmed and harvested sponges at t4 (time
where legal size of farmed sponges is reached) and forecasted t6 (time where profits of farmed
sponges overtake harvested sponges profit).
frontiersin.org

https://doi.org/10.3389/fmars.2025.1519832
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Motta et al. 10.3389/fmars.2025.1519832
commercially important sponge species. This would allow to obtain

a clearer picture of all the potential benefits, both economic and

ecological, or unexpected detrimental effects, on the ecosystems and

economy of local communities all over the world.
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