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(Latimeria spp.) habitat
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Global Mountain Diversity and Center for Macroecology, Evolution, and Climate, Section for
Biodiversity, Globe Institute, University of Copenhagen, Copenhagen, Denmark
Introduction: Discoveries of coelacanth populations off the East African coast

and in the Indo-Pacific warrant an analysis of their potential distributions, but the

necessary tools to model and project their distributions in 3 dimensions

are lacking.

Methods: Using occurrence records for the West Indian ocean coelacanth,

Latimeria chalumnae, we produced 3D and 2D maximum entropy ecological

niche models and projected them into the habitat of the Indonesian coelacanth,

Latimeria menadoensis. We gauged each model’s success by how well it could

predict L. menadoensis presences recorded from submersible observations.

Results: While the 2D model omitted 33% of occurrences at the most forgiving

threshold, the 3D model successfully predicted all occurrences, regardless of

threshold level.

Discussion: Incorporating depth results in improved model accuracy when

predicting coelacanth habitat, and projecting into 3 dimensions can give us

insights as to where to target future sampling. This 3D modelling framework can

help us better understand howmarine species are distributed by depth and allow

for more targeted conservation management.
KEYWORDS
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Introduction

There is likely no more famous example of a Lazarus taxon than the coelacanth

(Actinistia). The unique clade has captured the attention of researchers and piqued the

public’s interest for nearly ninety years since its rediscovery. Coelacanths are a lineage of

Sarcopterygian (lobed-fin) fishes that date back to the early Devonian (Johanson et al., 2006;
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Clement et al., 2024) and together with dipnoans are considered

closely related to the common ancestor of tetrapods. They were often

referred to as the “missing link” between the marine environment and

the tetrapod land invasion. Initially believed to have gone extinct in

the late Cretaceous, an extant specimen, subsequently named

Latimeria chalumnae, was discovered off the mouth of the

Chalumna river in South Africa in 1938 (Smith, 1939). A second

specimen would not be found until 1952 (Smith, 1953), off Anjouan

in the Comoros, where it appears much more abundant than it is off

the South African coast (Fricke et al., 2011). A second species,

Latimeria menadoensis, was discovered in 1997 off Sulawesi in

Indonesia- over 8,000 km from L. chalumnae’s presumed range

(Pouyaud et al., 1999). There have since been L. chalumnae

captures off Tanzania, Kenya, Mozambique, and Madagascar.

Population genetic analysis suggests there are two distinct

populations off the Comoros, as well as somewhat smaller,

genetically differentiated populations off South Africa and Tanzania

(Lampert et al., 2012). Kadarusman et al. (2020) have also found

molecular evidence for the existence of two distinct L. menadoensis

populations off Indonesia. The ever-widening range of L. chalumnae

and the discovery of a second species suggests habitat suitable for

coelacanths may be more prevalent than previously thought, and that

there may yet be undiscovered populations.

Species distribution modelling is used for understanding both

extent of ranges and where to sample further for new populations.

For coelacanths, past work has used 2D modelling approaches to

make predictions of distributions for both species. In particular,

Owens et al. (2012) produced global maps of potential coelacanth

habitat, relying on the GARP and MaxEnt algorithms to generate

models from 8 L. chalumnae records and 2 L. menadoensis records.

Coro et al. (2013) later produced models of coelacanth distributions

based on 21 records, simulated absences taken from an expert

model, and artificial neural networks. Both groups projected their

models onto the Indo-Pacific, the native range of L. menadoensis,

and predicted similar suitable habitat concentrated between

Sumatra, Borneo, and Southeast Asia.

While these initial efforts have informed coelacanth

distributions, 3D models of coelacanth distributions have not yet

been applied. L. chalumnae off the Comoros is observed to spend

much of the day resting in volcanic caves around 200 m from the

surface. At night, they regularly dive to 500 m where temperatures

are lower and oxygen levels are higher (Fricke and Hissmann,

2000). Estimates based on gill surface-area to body size ratios

suggest that L. chalumnae cannot tolerate temperatures above

26°C as there is not enough dissolved oxygen to meet their

respiratory demands (Froese and Palomares, 2000). Very few

individuals have been recorded in caves where temperatures

exceed 25°C (Fricke et al., 2011). Therefore, a model based on

surface data, where temperatures regularly exceed the estimated

physiological tolerance for coelacanths, is less likely to accurately

predict their distribution than one built using environmental data

taken from the depths at which individuals have been recorded. A

model generated using only information at the bottom would also
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likely be misleading, as sediment and slope in these environments

are not suitable for L. chalumnae’s preferred volcanic caves below

400 m (Fricke et al., 2011). 2D models in marine environments

often must either compress or neglect information which might be

relevant because everything must be analyzed as a singular layer. A

3D model would allow for one to use the actual environmental

values at the depth at which occurrences are recorded, and could be

projected back onto multiple layers to create a 3-dimensional

picture of suitable habitat.

Despite the clear need for a 3D modelling framework (Melo-

Merino et al., 2020), implementations remain uncommon. Bentlage

et al. (2013) provided an example approach for creating 3D ENMs

(Ecological Niche Models) for helmet jellyfish, Periphylla periphylla,

though with limited depth information. Freer et al. (2020) compared

2 and 3 dimensional ENMs of 10 species of lanternfish around

Antarctica using MaxEnt, but the analysis was limited to 7 depth

slices. Owens and Rahbek (2023) demonstrated the importance of

using environmental data associated with the depth at which a species

is recorded to predict suitable habitat for luminous hake,

Steindachneria argentea. They trained GLM models using variables

from the surface only, from the benthos only, and from the full depth

column, and found that each resulted in different model outputs with

the full depth column providing the best assessment of ecological

niche and distribution. In instances where it is important to correctly

assess both niche and distributions to address questions about marine

systems, and there is evidence that 2D models are insufficient, 3D

models could prove useful.

In this paper, we present a pipeline for generating a three-

dimensional ENM for L. chalumnae as a test case for future use on

other marine species. Here, we define a 2D model as that which takes

environmental information from a single XY plane- in our case, this

is a layer where variables are averaged across the coelacanth’s depth

range. The 2D model is also only projected back on to that singular

XY plane. We define a 3D model as that which pulls environmental

information at the X, Y, and Z coordinate where an individual was

recorded, uses a background drawn across all accessible depth layers,

and can be projected back onto each depth layer to create a 3D

representation of suitable habitat. We aim to 1. Assess the accuracy of

2D versus 3Dmodels for an empirical example; 2. describe coelacanth

suitable habitat in 3 dimensions in the Mozambique channel and the

Indo-Pacific; and 3. identify potential areas of interest in which

researchers should direct their attention when searching for further

coelacanth populations. We use the voluModel R package developed

by Owens and Rahbek (2023) and introduce new functions we

developed here that allow greater flexibility in modelling choices to

create 3 dimensional models with the commonly used MaxEnt

algorithm (Phillips et al., 2006). We examine the outputs of a

traditional two-dimensional ENM of L. chalumnae using a single

layer of averaged environmental variables versus a three-dimensional

ENM using environmental values at the depths at which individuals

are recorded. We then project both models onto the natural range of

the Indonesian coelacanth, L. menadoensis, to test each model type’s

efficacy in predicting the presence of the second species.
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Methods

Initial assembly of occurrence records

We used an inventory published in Smithiana in 2011 detailing

every known coelacanth occurrence for both species documented by

the Coelacanth Conservation Council (CCC) as the basis for our

records (Nulens et al., 2011).We also used records from an additional

inventory of catches specific to Madagascar from 2021 (Cooke et al.,

2021). The CCC assigns each capture event a unique CCC number,

and this could be cross referenced with the records available via GBIF

and OBIS by date. For records lacking coordinate information in

GBIF or OBIS, we used the locality, distance from the shore, and

depth details in the inventory entry to georeference coordinates for

the occurrence in QGIS. We recorded the georeference error as the

radius of the associated locality in meters. Because the inventory only

held 3 records for L. menadoensis, we supplemented this data using a

paper published on ROV field surveys of the species performed by

Iwata et al. (2019).We georeferenced coordinates for the sites listed in

the paper using QGIS. Ultimately, we assembled longitude, latitude,

and depth coordinates for 107 L. chalumnae records and 33 L.

menadoensis records. Due to L. chalumnae’s critically endangered

status, raw occurrence coordinates will not be made public. Data can

be made available upon request in the interest of reproducibility. The

identifiers and localities of records used in modelling and validation

can be found in the supplement (Supplementary Tables 3, 4).
Environmental data

We assembled data for temperature (Locarnini et al., 2019a),

salinity (Zweng et al., 2019), apparent oxygen utilization, dissolved

oxygen, percent oxygen saturation (Garcia et al., 2019a), density

(Locarnini et al., 2019b), conductivity (Reagan et al., 2019), silicate,

phosphate, and nitrate concentrations (Garcia et al., 2019b) for the

summer and winter seasons at the 1 degree resolution from the NOAA

2018World Ocean Atlas (Boyer et al., 2019). Unlike some surface-only

datasets, WOA data are organized into depth slices. Preliminary

Maxent models with a single linear feature class using all of the

available variables averaged across depths revealed that nutrients

(silicate, phosphate, and nitrate) and oxygen (oxygen utilization,

dissolved oxygen, percent oxygen saturation) contributed little to

model predictions. We subsequently excluded these from the analysis

in order to use the summer and winter temperature, salinity, density,

and conductivity variables at the finer ¼ degree resolution. NOAA

WOA depth slices are not equal-depth but become coarser with depth;

slices are recorded in 5 meter increments from 0 to 100 meters, by 25

meter increments from 100 meters to 500 meters, and by 50 meter

increments from 500meters to 1000meters. We capped our maximum

depth at 800 m, as we believed this would provide an adequate buffer

from the deepest occurrence record (611 m) (Supplementary Table 3),

resulting in a total of 43 depth slices.

Because L. chalumnae is known to prefer rocky habitats and use

volcanic caves and crevices for shelter (Fricke et al., 1991) we also

included slope data for the region of interest. We calculated slope in

each pixel at each WOA depth slice from the 1 arc minute ETOPO1
Frontiers in Marine Science 03
bedrock bathymetry layer (Amante and Eakins, 2009) using terra::

terrain() (Hijmans, 2024). Finally, we pulled data for northerly and

easterly current velocities for June and December given by the

Global Ocean Physics Analysis and Forecast provided by the E.U.

Copernicus Marine Service (https://doi.org/10.48670/moi-00016).

L. chalumnae is considered a slow swimming drift hunter, and so

would be influenced by currents when foraging (Hissmann et al.,

2000). These data were organized as above into the same depth

slices. For the 2D models, pixel values for each variable were

averaged across depth slices from the surface to 800 m to produce

a singular mean layer.
Occurrence data cleaning and
final assembly

Given that most of these records were manually curated, many

traditional cleaning steps were not required. To prepare the records

for 3D modelling, we ensured each occurrence had a unique

longitude, latitude, and depth coordinate, and removed

coordinates with a georeference error greater than 20 km.

Downsampling is a necessary step in ENM in order to account

for potential sampling bias. The depth values were indexed to the

closest associated depth slice in the environmental data above, and

we used a raster from the environmental data set with the desired

resolution (¼ degree) and voluModel::downsample() (Owens and

Rahbek, 2023) in order to thin the records per depth slice, ensuring

that there would only be one record per voxel. The process was

similar for the 2D data set, based on longitude and latitude

information without depth data. Similarly, we removed

duplicates, excluded points with a georeference error greater than

20 km, and downsampled the records using spThin::thin() (Aiello-

Lammens et al., 2015). After cleaning and thinning, 58 occurrence

records were available for 3D modelling, and 41 records were

available for 2D modelling for L. chalumnae. For L. menadoensis,

17 records were available for 3D validation, and 9 records were

available for 2D validation. As expected, more points are lost in 2D

modelling than 3D, as points with the same latitude and longitude

but different depths are counted as different occurrences, while in a

2D setting those points are counted as duplicates. A plot of the

cleaned records with their associated depth values for L. chalumnae

(Figure 1A) and L. menadoensis (Figure 1B) are shown in Figure 1.
Accessible area

For the 3D analysis, we needed to find an appropriate distance

with which to buffer the area covered by the points on each depth

slice to delimit the accessible area. we used depth slices at 150 and

200m. These were the only depth slices with 7 or more occurrence

records. We created 4 different training regions by generating an

alpha hull polygon around the occurrence points (voluModel::

marineBackground(); Owens and Rahbek, 2023) and buffering it

by 4, 6, 8, and 10 times the area covered by occurrence points

(proportional size in equation below). We buffered the area

covering the points by a distance given by this equation:
frontiersin.org
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Buffer  Distance   =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Proportional   Size  �  Total  Area

p
 −  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Total  Area

p

2

We then ran a simple maxent model (1 linear feature class and 1

regularization multiplier) for each slice and each polygon size and

pulled the polygon size which produced the model with the lowest

AICc: 4 times the area of the points. We then applied this size and

used voluModel::marineBackground() to produce an accessible area

polygon for each of the 43 depth slices. For each depth slice, we used

the occurrences on the slice, as well as those on the slices directly

above and below it, as the basis for calculating the buffer in order to

create vertical connectivity. We used the same process in order to

delineate the accessible area for the 2D model, only using all of the

points in order to create a single, all-encompassing 2-

dimensional polygon.
Model production

We first interpolated the environmental rasters on a by depth

layer basis to increase data coverage where reporting was sparse,

such as at deeper depths. We did this at each depth slice for every

variable except for the slope, since lack of data coverage was not an

issue. We accomplished this using voluModel::interpolateRaster().

We then cropped the environmental spatRaster stacks to the

accessible area corresponding to their depth slice. We generated a

list of 1,000 background points at each depth slice for 43,000

background points in total. We extracted the environmental

variable values at the presence and background coordinates to

run preliminary maxent models for variable selection. Starting

with all of the environmental variables under consideration

(summer and winter temperature, density, salinity, and

conductivity, northerly and easterly current velocity in December

and June, and slope) we ran a simple maxent model (one linear
Frontiers in Marine Science 04
feature class with a regularization multiplier of one) and removed

the variable with the lowest permutation importance. We repeated

this process until either the Variance Inflation Factor (VIF), a

measure of multicollinearity, was less than 10, or until there were

only 4 remaining environmental variables. This selection process

was adapted from a method used by Abbott et al. (2022). Limiting

the number of variables and removing redundant variables reduces

overfitting and increases statistical power when presence data are

sparse (Sillero and Barbosa, 2021). Ultimately, the slope, Northerly

current velocity in December, winter conductivity, and summer

temperature were selected as the final suite of variables. We wrote a

function in R, maxent_3D(), which could run maxent models of

varying parameter sets using a dataframe of environmental variable

values extracted at the presence and background coordinates across

all depth slices. We tested 4 different feature classes (L, Q, LQ, and

LQH) with 4 regularization multipliers for a total of 16 models, the

results of which are presented in the supplement (Supplementary

Table 1). We used a kfold partition scheme with 5 folds for model

validation. We selected the model with the lowest AICc for

thresholding, and examined the specificity (the proportion of

background correctly predicted as absent) and True Skill Statistic

(TSS) at sensitivity values (the proportion of presences correctly

predicted as present) of 0.99, 0.95, 0.9, 0.85, 0.8, and 0.75 (Table 1).

We used the equation for TSS originally given by Allouche et al.

(2006) but down-weighted sensitivity by ⅔ for a final equation of:

TSS   =   (
2
3
� sensitivity)   +   specificity  −   1

This was done because the ratio of background to presence is

generally larger in 3D analyses than for ENMs produced in 2D.

Downweighting sensitivity is a means to tune the model in order to

reduce model over-commission, thus predicting more of the
FIGURE 1

Occurrence records colored by depth of capture for (A) L. chalumnae and (B) L. menadoensis..
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background as absence. This tuning produced more realistic results

than using equal sensitivity and specificity. Additionally,

Wunderlich et al. (2019) found that under a variety of modeling

scenarios, TSS loses its discriminatory ability as the total number of

cells in the analysis increases and species prevalence (ratio of cells

where species truly exists to total number of cells) decreases.

Increasing the background increases the propensity of false

presence and true absence, which can make the specificity - 1

term approach zero, consequently overvaluing the sensitivity term.

Given that adding the vertical axis to the analysis greatly increased

the background and therefore the total number of cells, we

considered downweighting sensitivity a reasonable approach.
Frontiers in Marine Science 05
The 2D models were produced in a similar fashion as that

outlined above. We generated a background of 10,000 points inside

of the delineated accessible area, then ran a simple maxent model

with a linear feature class and one regularization multiplier using

the full list of environmental variables via ENMeval::ENMevaluate()

(Kass et al., 2021). We repeated this process, each time removing the

variable with the lowest permutation importance, until the VIF was

less than 10. Ultimately, summer density, summer conductivity,

winter conductivity, the Easterly current in June, the Northerly

current in June, the Easterly current in December, the Northerly

current in December, and the slope were selected as the

environmental variables for the final 2D models. We tested 3
TABLE 1 The results of thresholding and independent validation using observed L. menadoensis occurrences.

Sensitivity 2D Specificity 3D Specificity 2D TSS 3D TSS 2D Omission
Rate

3D Omission
Rate

0.99 0.91 0.49 0.24 -0.19 0.33 0

0.95 0.94 0.83 0.24 0.14 1 0

0.90 0.94 0.86 0.23 0.16 1 0

0.85 0.94 0.93 0.22 0.20 1 0

0.80 0.95 0.95 0.21 0.21 1 0

0.75 0.97 0.95 0.21 0.20 1 0
The sensitivity, specificity, and TSS refers to the 2D and 3D models projected into their original accessible area, while the omission rate refers to the proportion of L. menadoensis presences
predicted as absent by the thresholded model when projected into the Central Indo-Pacific. The 0.95 sensitivity value produces the highest 2D TSS, while the 0.8 sensitivity value produces the
highest 3D TSS. The highest sensitivity threshold for the 2D model only omits 33% of L. menadoensis presences, while every other sensitivity value omits all 9 presences. No sensitivity threshold
for the 3D model omits any of the 17 L. menadoensis presences.
FIGURE 2

(A) map of suitable habitat for L. chalumnae predicted by the 2D model. A value of 1 indicates high suitability, while a value of 0 indicates low
suitability. (B) The thresholded presence of L. chalumnae predicted by the 2D model at the 0.95 sensitivity value. Labels include abbreviated
country names.
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different feature classes (L, LQ, and LQH) with 3 regularization

multipliers for a total of 9 models, the results of which can be seen in

the supplement (Supplementary Table 2). We selected the model

with the lowest AICc for thresholding, this time using the

traditional formulation of the TSS given by Allouche et al. (2006):

TSS   =   sensitivity   +   specificity  −   1

We thresholded at the same sensitivity values as the 3D analysis,

the results of which can be seen in Table 1.
Independent model validation using
L. menadoensis

In order to assess the effectiveness of each model to predict the

presence of the second coelacanth species, L. menadoensis, we cropped

the associated environmental variables at each depth slice to a region

over the central Indo-Pacific, extending from 90 to 150 degrees East and

30 degrees South to 30 degrees North.We then projected the best model

for L. chalumnae onto this region and thresholded at the 0.99, 0.95, 0.9,

0.85, 0.8, and 0.75 sensitivity values. We recorded the omission rate of

the empirically observed L. menadoensis at each sensitivity value. This
Frontiers in Marine Science 06
process was the same for the 2D model, except that the environmental

variables in the projected extent were averaged from the surface down

to 800m. The results can be seen in Table 1.We also conducted aMESS

(Multivariate Environmental Similarity Surface) analysis in 2D and 3D,

and we constructed 3D models using L. menadoensis occurrence

records in order to project back into the Mozambique channel, where

L. chalumnae is found. The goals of MESS analyses and reciprocal

projections were to both understand how different environments were

between model training and model projection and to further test model

projection results. The outcomes of both of these analyses can be found

in the supplement. These analyses were performed in R version 4.3. The

code repository for this project can be found at https://github.com/

EmmalineSheahan/Coelacanth_3D.
Results

For the 3D analysis, the linear, quadratic, and hinge (LQH)

feature class combination with a regularization multiplier of 2 had

the lowest average AICc (-5681.20) across the 5 training and testing

folds, and was subsequently the model selected for thresholding and

projecting (Supplementary Table 1). Every parameter combination
FIGURE 3

A bivariate chloropleth plot of L. chalumnae suitable habitat predicted by the 3D model. Blue indicates depth, while pink indicates suitability. The
darker the blue, the deeper the depth, and the darker the pink, the greater the suitability.
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produced a relatively high training and validation AUC, with the

lowest values- a training AUC of 0.80 and a validation AUC of 0.76-

belonging to the model with a quadratic feature class and a

regularization multiplier of 4. For the 2D analysis, the linear,

quadratic, and hinge (LQH) feature class combination with a

regularization multiplier of 3 had the lowest AICc (394.23) across
Frontiers in Marine Science 07
the 5 validation folds, and this was the model selected for

thresholding and projecting (Supplementary Table 2). The

training and validation AUC values varied minimally across

parameter combinations, with the lowest values- a training AUC

of 0.88 and a validation AUC of 0.87- belonging to the model with a

linear feature class and regularization multiplier of 1.
FIGURE 4

Plots of suitable L. chalumnae habitat by depth thresholded at the 0.8 sensitivity value, with abbreviated country names for South Africa and the
Comoros. (A) is a 2D map of the area of interest from South Africa to Somalia, where the orange line at latitude -12.125 intersects the Comoros and
corresponds to the two plots in the column below the orange line, and the purple line at latitude -27.125 intersects the Kwa-Zulu Natal and
corresponds to the two plots in the column below the purple line. The first two plots below the colored lines depict thresholded coelacanth suitable
habitat by depth in green while grey corresponds to either land or the benthos, in (B) the Comoros and off of (C) the Kwa-Zulu Natal. The final two
plots depict temperature by depth at a given longitude in (D) the Comoros and off of (E) the Kwa-Zulu Natal. The temperature is about 5 degrees
lower and the thermocline begins roughly 50 m shallower off the Kwa-Zulu natal compared to the Comoros.
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The 0.80 sensitivity value produced the highest TSS (0.21) for

the 3D analysis and was thus selected for thresholding (Table 1). We

used the 0.95 sensitivity value to threshold the 2D model, as this

produced the highest TSS (0.24). While specificity increased with

decreasing sensitivity for both the 3D and 2D analyses, this trend

was much more pronounced for the 3D analysis, where specificity

was 0.48 at the 0.99 sensitivity value and increased to 0.95 at the

0.75 sensitivity value, as compared to the 2D analysis, where the

specificity ranged from 0.91 to 0.96. This may be an artifact of

the far higher proportion of background to presence in the 3D

model versus the 2D model.

The 2D model predicts generally high suitability around the

coastlines of Madagascar and the African continent from Northern

South Africa to Southern Somalia, as well as around the Comoros,

Seychelles, and other surrounding islands (Figure 2). The 3D model

displays much more restricted suitable habitat in the XY plane, with

much of it concentrated around Madagascar, the Comoros,

Mozambique, Tanzania, and southern Kenya (Figure 3). This

suitability increases in scale and scope at depths ranging from 100

to 300 meters, and the thresholded plot displays a great deal of

connectivity between depth slices (Figure 4B). The 3D model

predicts a much lower proportion of suitable habitat in shallower

surface waters, an expected result given known coelacanth depth

preferences. Thresholded plots of the 3D model on a per depth slice

basis can be found on Figshare (10.6084/m9.figshare.28232696).

When projected onto the central Indo-Pacific, the 2D L.

chalumnae model predicts a great deal of largely disjointed

swaths of suitable habitat, namely between Vietnam and Brunei,

along the Northwestern coast of Australia, the Eastern coast of the

Philippines, the Western coast of Sumatra, and Western Papua

(Figure 5). With the exception of Western Papua, none of the areas

are particularly close to Sulawesi or Biak, where L. menadoensis is
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known to occur, and may reflect commission error. The model does

not predict suitable habitat around Sulawesi, the location of the

initial discovery of L. menadoensis and many of its subsequent

sightings (Erdmann, 1998).

While the projected 3Dmodel appears to predict suitable habitat in

the surface waters of Southern China and Taiwan, this is likely due to

the influence of cooler temperatures. It also predicts suitable habitat in

the Gulf of Thailand, off the Southern coast of Vietnam, along the

coasts of Indonesia, the Philippines, and Papua New Guinea, and off

the Northwestern coast of Australia (Figure 6). The majority of this

suitable habitat is between 100 and 400 m, with a notably high degree

of suitability in the Philippines between 150 and 250 m. Thresholded

plots of the 3D model projected over the Indo-Pacific on a per depth

slice basis can be found on Figshare (10.6084/m9.figshare.28232735).

When projected into the habitat of L. menadoensis, the 2D

model failed to predict any of the species’ recorded presences except

at the 0.99 threshold, where it still omitted 33% of occurrences

(Table 1). By contrast, the 3D model counts every L. menadoensis

record as a presence, regardless of threshold value. A MESS analysis

conducted between the study area in the Mozambique channel and

the Indo-Pacific found little environmental difference on a per

depth slice basis, suggesting a low risk of extrapolation

(Supplementary Figures 3, 4).
Discussion
A key result of our work is that the 2D vs 3D analyses were

strikingly different, showing that the depth at which environmental

variables are drawn for a given presence greatly impacts model

output. Owens and Rahbek (2023) also found similar outcomes
FIGURE 5

(A) Predicted habitat suitability of the 2D L. chalumnae model projected into the Indo-Pacific, where the sister taxon L. menadoensis resides. (B) The
2D L. chalumnae model projected into the Indo-Pacific and thresholded at the 0.95 sensitivity value. Labels include abbreviations for Northern
Sulawesi and Biak Island.
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using a different approach, building models focused on surface,

benthos or across depths. Our analysis averaged environmental

variables from the surface down to the 800 m accessible buffer

depth, and 2D and 3D model outputs still disagreed. While it’s

plausible that averaging data across depths or relying only on

surface or benthos values may not create such a discrepancy for a

species whose depth range is greatly restricted or across an

environment which is fairly homogeneous by depth, this presents

a problem when using 2D ENMs for species with a wider depth

preference or which vertically migrate, like the coelacanth. One

should note that in the case of the coelacanth, these species appear

to be associated with steep slope regions of the benthos. It is

therefore possible that a 2D ENM using information from the

bottom at a very fine resolution could also capture niche

characteristics. However, such 2D environmental data that is
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presently available is too coarse to capture environmental changes

with depth along a steep slope. In general, given these limitations,

we anticipate that determining distributions for species more

associated with the seabed may still benefit from 3D modelling.

In addition to the lack of agreement between model types, the

2D model performed worse than the 3D one, failing to predict any

L. menadoensis presence in the Indo-Pacific, except at the most

forgiving threshold value (Figure 7), compared to the latter’s ability

to accurately predict all 17 occurrences, regardless of threshold

value (Figure 8). This suggests that, in the case of the coelacanths,

using the full depth range of a species to build an ENM and

projecting that ENM back into 3 dimensions is essential for

determining targeted areas for further sampling of either species.

While the above argument assumes a degree of niche conservatism,

this is a common assumption for allopatric species, as it is a species’
FIGURE 6

The thresholded 3D model projected into the Indo-Pacific focused over Sulawesi and Biak at each depth slice where an L. menadoensis occurrence has
been recorded. Green indicates areas of predicted presence at the 0.8 sensitivity value, and the purple points are recorded L. menadoensis presences. Labels
include abbreviations for Northern Sulawesi and Biak Island.
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inability to adapt to new environmental conditions which prevents

gene flow after a vicariance event (Wiens, 2004). Further, very little

morphological differentiation has been noted in comparative

analyses between the two species (Meunier et al., 2008; Holder

et al., 1999). The extent of morphological similarity was so great in

the years immediately following the L. menadoensis discovery,

researchers were uncertain if the two were truly distinct species

until their genetic divergence was confirmed (Pouyaud et al., 1999).

While a divergence time of 30-40 million years (Inoue et al., 2005) is

long enough for significant ecological differentiation to occur, Iwata

et al. (2019) observed L. menadoensis in the same 15-20°C

temperature range as the L. chalumnae individuals observed by

Hissmann et al. (2006) and Fricke et al. (1991) off of South Africa

and the Comoros. A spatial analysis of niche equivalency or

background similarity could further quantify the degree of niche

conservatism between the two species, but such analyses typically

rely on ENMs as inputs. Robust infrastructure for constructing

three-dimensional ENMs and performing such tests for 3D model

outputs would also pave the way for the deployment of such

analyses in three-dimensional environments.

Further information about L. chalumnae distributions not used in

the models above supports the validity of the 3D models. In particular,

submersible expeditions off the Comoros between depths of 160 and

550 m (Fricke and Hissmann, 2000) document sightings around caves

off the Southwest coast of Grand Comore, where individuals spent the

majority of the daytime around volcanic caves between 160 and 250 m.

Three large individuals tracked by acoustic transmitters were observed

diving up to 550 m at night while hunting (Hissmann et al., 2000). The

3D model also predicts suitable habitat concentrated around the

Comoros between 100 and 600 m (Figure 4B). L. chalumnae has
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also been sighted off the East coast of South Africa in the iSamangaliso

Marine Protected Area on three submersible expeditions between 2002

and 2004, notably at depths roughly 100 m shallower than where they

are often found in the Comoros (Hissmann et al., 2006). The 3Dmodel

predicts some suitability near the marine protected area close to the

border with Mozambique at depths between 65 and 275 m, a result

consistent with the depth ranges at which L. chalumnae has been

observed in that area (Figure 4C). A live coelacanth photographed off

the KwaZulu-Natal coast at a depth of 69 m in 2019 seems to support

the idea that L. chalumnae has more suitable habitat off of South Africa

in shallower waters, possibly because the thermocline separating warm

surface waters from colder temperatures occurs at a much shallower

depth (Fraser et al., 2020). As can be seen in Figure 4, temperatures do

not dip below the coelacanth tolerance limit of 25°C in the Comoros

until around 200 m (Figure 4D), while temperatures are already much

lower at 50 m off Kwa-Zulu Natal (Figure 4E). The 3D model also

predicts suitable habitat off the Southern cape between Capetown and

Gqeberha at depths between 60 and 90 m; however, no specimens have

ever been recorded that far south perhaps due to dispersal limitations.

The 3Dmodel also predicts a fairly consistent line of connectivity from

Northern South Africa to Southern Somalia beginning at 100 m and

fragmenting at 200 m, suggesting a possible area across which

individuals of different African populations could potentially traverse.

The model, however, suggests limited connectivity between the African

continent, the Comoros, and Madagascar.

Presently, L. menadoensis has only been recorded off of Northern

Sulawesi, Biak Island, and off West Papua (Kadarusman et al., 2020).

While the model does predict connectivity between Biak and the

intervening North Maluku Island beginning at 60 m, there is never a

direct line of connectivity between North Sulawesi, North Maluku, and
FIGURE 7

The 2D model projected into the Indo-Pacific and focused over Sulawesi and Biak island. Green indicates areas of predicted presence at the 0.95
sensitivity value, and the purple points are recorded L. menadoensis presences.
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Biak. This raises the question of how the two sighting localities are

connected, if at all - it is of course possible that the Sulawesi and Biak

individuals belong to disjunct populations. An indirect ring of

connectivity does form between Sulawesi and Biak through the

islands of the Banda Sea at around 100 m, and this also connects to

suitable habitat around the Lesser Sunda Islands and the Philippines.

The islands of the Philippines from Luzon to Mindanao are predicted

to host Coelacanth suitable habitat largely between 100 - 250 m and

remains connected to Sulawesi throughout that depth range. The line

of connectivity at this depth range even extends to theWestern coast of

Indonesia, again via the Banda Sea, as well as along the Northern

Coasts of Papua and Papua New Guinea (Figure 6). Considering there

is a very well-known ring of volcanic activity fromWest Sumatra to the

Bismarck archipelago, as well as along the Lesser Sunda Islands where

the Eurasian plate meets the Australian plate (Figure 9A), it is possible

that the volcanic caves coelacanths prefer as daytime shelter are present

in these areas of predicted suitability. The majority of suitable habitat is

between 100 and 250 m (Figure 9B), and though the preferred

temperature conditions of the coelacanth are restricted to a much

narrower depth range in this area than in the Comores, between 75 and

250 m (Figure 9C), it is nonetheless habitable in the depth slices where

the model predicts suitability. Given the predicted connectivity at the

100 - 250 m depth range and the relative proximity to North Sulawesi
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and Biak, these areas seem to be themost plausible localities in which to

search for possible L. menadoensis populations.

3D ENM is not without its challenges with regard to both

calibration and validation. One particular issue is the greatly

increased background compared to traditional 2D models. On the

plus side, increased background often provides a broader set of

environments for sampling, which can help model calibration.

However, this greater background means that diagnostic metrics

such as true skill scores converge towards sensitivity, thus weakening

the metric’s discriminatory power (Wunderlich et al., 2019). This

should be taken into account both during thresholding and model

evaluation, either by appropriately adjusting TSS, or perhaps by using

a metric more robust to changes in background size. Freer et al.

(2020) used AUC, AICc, and TSS in order to quantify performance

between 2D and 3D models, and while in their case they concluded

that 2D modelling performed best, one should be wary about the

applicability of these metrics when comparing the two modelling

types. Additionally, AUC is context dependent to the input data of

the model due to the representativeness effect (Jiménez-Valverde,

2022). For the same model, AUC can differ depending on how

suitability values are distributed, which will likely differ between 2D

and 3D. While AUC may inform performance between models

trained and tested on the same data, it is not advisable as a
FIGURE 8

A bivariate chloropleth plot of suitable habitat predicted by the 3D L. chalumnae model when projected into the Indo-Pacific.
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discrimination metric between models trained on different datasets,

as is the case when comparing 2D and 3D models.

While incorporating the depth axis into ENM construction and

projection clearly enhances predictive success compared to

traditional 2D modelling, the accuracy of these models could be
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further augmented by incorporating information relating to

physiological and demographic processes. In particular,

coelacanths are not able to survive in high water temperatures,

are reliant on caves, and have low dispersal ability. Mechanistic or

process-oriented modelling involving physiological and dispersal
FIGURE 9

An example of L. chalumnae suitable habitat projected onto the Indo-Pacific. (A) is a map of the area of interest from Southeast Asia to Australia, where the
orange line at latitude -7.625 corresponds to the following two plots. (B) depicts L. chalumnae suitable habitat by depth thresholded at the 0.8 sensitivity
value in green, while grey corresponds to land or benthos. (C) is a plot of temperature by depth at a given longitude. The thermocline begins around 75 m,
and suitable temperature conditions appear to drop off between 200 and 300 m, resulting in a shallower depth range than can be seen in the Comoros.
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parameters may be necessary for more accurate predictions of

potential new coelacanth populations, though these techniques

also often require data which at present may be incomplete,

especially at depth in marine systems. Depth-structured eDNA

sampling would also be a useful supplement for such models, as

the quick deterioration rate of eDNA in marine environments is

advantageous to species detection (McCartin et al., 2022). Oliver

et al. (2024) developed coelacanth specific primers which

successfully detected coelacanth eDNA south of Jesser canyon in

the iSamangaliso marine protected area. Seeing as these primers can

amplify both species while excluding non-coelacanth fish, they

could be deployed in areas predicted to be suitable by 3D ENMs

as independent model validation.

ENMs which incorporate depth are necessary to make accurate

predictions of suitable habitat in marine environments for species like

the coelacanth. While traditional 2D models may be viable for species

with restricted depth ranges, one is unlikely to accurately capture the

suitable habitat of species with wide depth distributions without

accounting for environmental variability along the vertical axis.

Enhanced scale resolution of environmental data at the bottom may

correct this issue for species like the coelacanth which inhabit steep

slopes, but this kind of precision is not currently available. It is

subsequently vital that infrastructure exists to investigate and project

species distributions in the third dimension to properly understand

marine community dynamics, patterns of biodiversity, biogeography

and speciation, and areas of conservation concern. This infrastructure

will become increasingly relevant as commercial operations expand

into the deep sea and conservationists reevaluate how reserves are

delimited regarding depth (Jacquemont et al., 2024). As in the case of L.

chalumnae and L. menadoensis, 3D modelling can give us a more

detailed and accurate idea of where to look for further occurrences, as

well as what areas may be of conservation interest.
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