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Underwater images segmentation is essential for tasks such as underwater

exploration, marine environmental monitoring, and resource development.

Nevertheless, given the complexity and variability of the underwater

environment, improving model accuracy remains a key challenge in

underwater image segmentation tasks. To address these issues, this study

presents a high-performance semantic segmentation approach for underwater

images based on the standard SegFormer model. First, the Mix Transformer

backbone in SegFormer is replaced with a Swin Transformer to enhance feature

extraction and facilitate efficient acquisition of global context information. Next,

the Efficient Multi-scale Attention (EMA) mechanism is introduced in the

backbone’s downsampling stages and the decoder to better capture multi-

scale features, further improving segmentation accuracy. Furthermore, a

Feature Pyramid Network (FPN) structure is incorporated into the decoder to

combine feature maps at multiple resolutions, allowing the model to integrate

contextual information effectively, enhancing robustness in complex underwater

environments. Testing on the SUIM underwater image dataset shows that the

proposed model achieves high performance across multiple metrics: mean

Intersection over Union (MIoU) of 77.00%, mean Recall (mRecall) of 85.04%,

mean Precision (mPrecision) of 89.03%, andmean F1score (mF1score) of 86.63%.

Compared to the standard SegFormer, it demonstrates improvements of 3.73% in

MIoU, 1.98% in mRecall, 3.38% in mPrecision, and 2.44% in mF1score, with an

increase of 9.89M parameters. The results demonstrate that the proposed

method achieves superior segmentation accuracy with minimal additional

computation, showcasing high performance in underwater image segmentation.
KEYWORDS

underwater images, semantic segmentation, attention mechanism, feature
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1 Introduction

Oceans, often called the “sixth continent”, represent Earth’s

largest ecosystem, covering approximately 71% of the planet’s

surface. Oceans are rich in resources such as oil, natural gas, sea

salt, and marine life, all of which are crucial for sustainable

development and play pivotal roles in science, economy, and

ecology (Chen et al., 2022). Ocean exploration is essential for the

sustainable development of marine resources and advancing the

marine sciences. However, the complexities and unknown hazards

of the underwater environment significantly limit human

exploration, resulting in a heavy reliance on Autonomous

Underwater Vehicles (AUVs). Equipped with a range of sensors

and visual systems, AUVs autonomously capture underwater

images and data, assisting humans in conducting underwater

exploration tasks (Bogue, 2015).

Image segmentation is essential for AUV underwater

exploration, as it precisely distinguishes objects and regions in

images, enabling AUVs to more effectively identify marine life,

seabed features, and man-made objects (such as shipwrecks and

pipelines), thereby supporting underwater exploration, resource

development, environmental protection, and military applications

(Abdullah et al., 2023). Nonetheless, underwater image

segmentation faces numerous challenges. Unlike land images,

underwater images often suffer from lower quality due to factors

such as scattering of light in seawater, uneven lighting, color

distortion, and water turbidity (Islam et al., 2020b). Additionally,

current underwater image datasets are limited in scope, often

containing few classes, such as fish and background, resulting in a

scarcity of multi-class underwater image datasets. These factors

cause traditional image segmentation methods to perform poorly in

underwater scenes, with insufficient accuracy and stability to meet

real-world demands. Consequently, improving image segmentation

performance in underwater environments has become a crucial

research focus in both academia and industry.

In recent years, the rapid growth of deep learning has

accelerated the application of image segmentation across diverse

domains, fostering the development of foundational models. In

2015, Shelhamer et al. introduced the Fully Convolutional Network

(FCN) (Long et al., 2015), originally leveraging the VGG model

(Simonyan and Zisserman, 2014) as a backbone, with later

iterations incorporating other convolutional networks such as

ResNet (He et al., 2016). This model facilitated end-to-end

training by supporting pixel-level classification, significantly

advancing semantic image segmentation. Subsequently, Chen

et al. developed the DeepLab series (v1, v2, v3) (Chen et al., 2014,

2017a, 2017b), achieving substantial progress in segmentation

accuracy by employing techniques such as dilated convolution

(Yu and Koltun, 2015) and Conditional Random Fields. However,

these models have some limitations, such as the fixed receptive field

of FCN and the high computational cost of the DeepLab series

restrict their generalization capabilities. U-Net (Ronneberger et al.,

2015), a classic encoder-decoder structured model, uses skip

connections to enhance segmentation performance, and is widely

applied in areas like image analysis. However, U-Net’s performance
Frontiers in Marine Science 02
in underwater image segmentation remains suboptimal, particularly

in its limited feature extraction ability within complex backgrounds.

Subsequent models, such as SegNet (Badrinarayanan et al., 2017)

and DeepLabv3+ (Chen et al., 2018), improved performance in

specific applications but still faced limitations in receptive field size,

which can lead to neglect of important features and affect overall

performance. In recent years, the proposal of the Transformer

(Vaswani et al., 2017) model has injected new vitality into image

segmentation techniques. In 2020, Dosovitskiy et al. introduced the

Vision Transformer (Dosovitskiy et al., 2020), which divides images

into patches, divides images into patches. In 2021, Liu et al.

proposed the Swin Transformer model (Liu et al., 2021),

specifically designed for computer vision tasks. By leveraging

shifted windows and self-attention, it addressed the unique

challenges of applying Transformers to vision tasks, making it a

general backbone model, especially successful in image

classification and object detection. SegFormer (Xie et al., 2021)

represents a new generation of Transformer-based segmentation

models, striking an effective balance between accuracy and

efficiency with its Mix Transformer backbone and lightweight

decoder. However, there is still room for improvement in

segmentation performance for underwater tasks due to challenges

posed by complex environments and image quality issues.

With the advancement of underwater target research and the

rapid progress of deep learning across various fields, underwater

image segmentation has increasingly garnered widespread

attention (Ma et al., 2021; Wang et al., 2022). In recent years,

numerous researchers have proposed semantic segmentation

models and image enhancement methods tailored for underwater

environments. For instance, Wang et al. developed a discriminative

underwater image enhancement method empowered by large

foundation model technology (Wang et al., 2025), which

represents the pioneering application of large foundation

model technology to empower underwater image enhancement.

Khekare et al. used a machine learning technique that combines

histogram equalization and manual white balance for underwater

image enhancement (Khekare et al., 2024). Islam et al. noted

that underwater images contain visual content significantly

different from land images, and that, at the time, publicly

available underwater datasets for training and evaluating semantic

segmentation models were scarce. Consequently, they manually

annotated and released the SUIM dataset for multi-class

underwater semantic segmentation, and proposed two versions of

the SUIM-Net model (Islam et al., 2020a). Based on the SUIM

dataset, their model demonstrated effective semantic segmentation

performance, but it lacked in structural optimization. The first

version of SUIM-Net exhibited limited feature representation in

complex scenes, which could lead to accuracy decline. Although the

second version adopted VGG-16 for feature extraction, its

computational cost increased significantly with high-resolution

images, leading to slower inference speeds. Zhang et al. proposed

the WaterBiSeg-Net model (Zhang et al., 2024) to improve the

performance of the marine debris segmentation tasks by

introducing a multi-scale information enhancement module and a

boundary information extraction method, but the model is poorly
frontiersin.org
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stabilized in scenarios with high background interference. Liu et al.

improved the segmentation accuracy of underwater images by

introducing an unsupervised color correction module into the

DeepLab v3+ model, but the method is deficient in feature fusion,

which makes it difficult to make full use of multi-scale features (Liu

and Fang, 2020). Particularly when dealing with irregularly shaped

or low-contrast targets, the segmentation results remain

suboptimal. Kim et al. enhanced the localization function by

adding an attention mechanism to a parallel semantic

segmentation network (Kim and Park, 2022), which improved the

performance of the model, but still lacked deep structural

optimization, resulting in limited effectiveness when dealing with

highly diverse and complex environments.

In conclusion, the ocean plays an essential role in human

society, and deep exploration of the ocean remains a significant

objective for the future. Underwater image segmentation is vital for

exploring underwater environments and targets, motivating

researchers to investigate effective segmentation methods that

advance national marine exploration efforts. While current image

segmentation models achieve good results in various scenarios on

land, they encounter multiple challenges in underwater

environments. This research focuses on the inadequacy of feature

extraction capabilities in existing underwater segmentation models

when dealing with complex backgrounds and multi-scale targets

(Kerai and Khekare, 2024), which fail to effectively capture the

details and contextual semantic information of the targets. To

address these challenges, this study has implemented targeted

improvements on the standard SegFormer model. In particular,

uneven lighting, complex shapes of targets, and background

disturbances in underwater environments often make it difficult

for existing models to extract complete and distinguishable features,

and the absence of contextual information also restricts the

segmentation accuracy of the models. Therefore, we introduce a

more powerful feature extraction backbone network and attention

mechanisms (Fu et al., 2018; Li et al., 2018; Zhong et al., 2019) to

better capture multi-scale information and detailed features in

complex environments, and by optimizing the model’s feature

fusion strategy, we enable effective dissemination and integration

of contextual information across different scales, thereby improving

the model’s segmentation performance in intricate underwater

scenes. The segmentation performance of this model has been

enhanced compared to the baseline model. The primary

contributions of this paper are:
Fron
1. Replacing the Mix Transformer backbone network

in SegFormer with the Swin Transformer further

enhances the model’s feature extraction capabilities in

complex environments.

2. An efficient multi-scale attention (EMA) mechanism

(Ouyang et al . , 2023) is incorporated into the

downsampling phase of the backbone network and the

decoder to more effectively capture multi-scale features,

thereby enhancing the model’s segmentation accuracy.

3. The model structure is optimized by implementing a

feature pyramid network (FPN) (Lin et al., 2016) in the
tiers in Marine Science 03
decoder, which improves the model’s accuracy and

robustness in processing complex scenes through multi-

level feature fusion.
The remainder of this paper is organized as follows. Section 2

discusses the methods proposed in this study, Section 3 presents

and analyzes the experimental results, and Section 4 summarizes

the research findings.
2 Materials and methods

2.1 Datasets

The dataset utilized in this paper is sourced from the publicly

available underwater image dataset SUIM, accessible on the IRVLab

laboratory’s official website (https://irvlab.cs.umn.edu/resources/

suim-dataset). This dataset was meticulously gathered during

marine exploration and human-robot cooperation experiments,

comprising 1,635 pixel-level annotated images across eight

categories: fish (vertebrates), coral reefs (invertebrates), aquatic

plants, shipwrecks (ruins), human divers, robots, and the seafloor.

This encompasses not only the primary objectives of underwater

exploration and measurement (Bingham et al., 2010; Shkurti et al.,

2012; Girdhar et al., 2014), but also other underwater entities. The

SUIM dataset is the first large-scale multi-class dataset dedicated to

underwater image semantic segmentation, featuring natural images

and authentic semantic labels, as illustrated in Figure 1. In the

experiments, based on the official division of the SUIM dataset,

1,525 images were used for training and 110 images for validation

and testing. Given the varied image collection methods and

inconsistent sizes within the dataset, we standardized the images

by resizing them to 256� 192 pixels to enhance the model’s

training efficiency. Furthermore, to improve data diversity during

the experiments, we implemented five data augmentation

techniques, which included random resizing, random cropping,

random alterations in lighting and color, random rotations, and

random horizontal flips. These strategies significantly enhance data

diversity and help mitigate the model’s overfitting to specific

sample characteristics.
2.2 Network architecture

In this section, we will outline the overall network architecture

of the model introduced in this research. In designing any model, it

is crucial to consider both its performance and computational

efficiency. The standard SegFormer model strikes a good balance

in this aspect, as its authors have avoided the complex designs of

many traditional methods, and fully considering the efficiency of

the model. Nevertheless, this simplified structure compromises

performance to some extent. Consequently, this study introduces

the Swin Transformer, EMA attention mechanism, and FPN

structure on the basis of the standard SegFormer model to further

improve the segmentation capability of the model, while ensuring
frontiersin.org
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that the computational efficiency of the model does not significantly

decline. Compared to the standard SegFormer model, the parameter

count has increased slightly by 9.89M, reaching 91.86M. The

complete architecture of the model is illustrated in Figure 2.

The model comprises a Swin Transformer encoder and a

SegFormer decoder. The input image is initially divided into non-

overlapping patches by the Patch Partition module, and then it

proceeds through four stages of the backbone network for feature

extraction. In Stage 1, there are Linear Embedding module, Swin

Transformer Blocks module, and EMA module. As the hierarchy

progresses, stages 2, 3, and 4 utilize Patch Merging instead of Linear

Embedding, to acquire feature maps at various scales through the

iterative processes of patch merging and feature transformation.

The features obtained from the encoder are then transmitted to the

decoder. The standard SegFormer model is outfitted with a lightweight

multilayer perceptron (MLP) decoder (Tolstikhin et al., 2021), which

aggregates feature maps from various layers of the encoder, integrating

local and global semantic information to deliver robust performance.
Frontiers in Marine Science 04
However, this feature aggregation approach is somewhat limited and

does not fully leverage the information available in the feature maps.

Consequently, we incorporated the FPN structure and the EMA

attention mechanism. The FPN structure facilitates gradual feature

fusion via successive upsampling and lateral connections, whereas the

EMA attention mechanism performs cross-spatial learning through

parallel substructures to utilize more contextual information between

features. The integration of these two modules allows for the

comprehensive fusion of feature maps across various levels, thereby

further improving the segmentation performance of the model.
2.3 Encoder

2.3.1 Backbone
In this research, the backbone network primarily comprises the

Patch Partition, Linear Embedding, Swin Transformer Blocks, EMA

module, and Patch Merging, for effective feature extraction of input
FIGURE 2

Overall structure of the network model.
FIGURE 1

SUIM dataset of natural underwater images and real semantic labels, and corresponding color tables for each class.
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images. Firstly, the 3-dimensional RGB input image is divided into

non-overlapping patches through the Patch Partition module, with

a patch size of 4� 4 used in this study. Each patch is then flattened

and mapped to a feature space of C dimension via a linear

embedding layer. Next, the image undergoes feature extraction

using Swin Transformer Blocks. The image resolution is gradually

reduced while ensuring computational efficiency, in the first stage, it

is reduced to H
4 � W

4 . Following the blocks, we add an EMA module

to enhance the extracted feature representations at each layer. The

output feature map size at the first stage is H
4 � W

4 � C. As the

network deepens, the Patch Merging module reduces the patch

count by merging adjacent patch features, followed by Swin

Transformer Blocks and EMA module to perform feature

transformations. The image resolution is downsampled to H
8 � W

8 ,

with the feature dimension expanding to 2C, resulting in a feature

map size of H
8 � W

8 � 2C at the second stage output. This process

repeats in the subsequent stages twice, producing output feature

map sizes of H
16 � W

16 � 4C and H
32 � W

32 � 8C, respectively,

ultimately generating multi-level feature maps across various

scales that offer rich multi-scale features to the decoder.

2.3.2 Swin transformer blocks
The key mechanism of the Swin Transformer Block is based on

shifted windows self-attention, replacing the multi-head self-

attention (MSA) module in the standard Transformer Block with

a shifted windows module. This design incorporates Window

Multi-head Self-Attention (W-MSA) and Shifted Window Multi-

head Self-Attention (SW-MSA) to address the limitations of the

standard Transformer Block in dense prediction tasks and high-

resolution visual tasks. W-MSA computes self-attention within

non-overlapping windows, uniformly dividing the image,

however, its modeling capacity is limited due to a lack of inter-

window connectivity. Consequently, the introduction of SW-MSA

enables information exchange across windows, thereby enhancing

the model’s capacity to capture relationships. W-MSA and SW-

MSA are alternated within successive Swin Transformer Blocks, as

illustrated in Figure 3, comprising two Swin Transformer Blocks.
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The input feature zl−1 is first processed through a LayerNorm layer,

then passed through a (S)W-MSA module, with the resulting

output added to zl−1 via residual connection to yield the

intermediate feature ẑ l . Subsequently, the intermediate feature is

processed through an LayerNorm layer and an MLP layer, with the

final output added to the intermediate feature ẑ l via residual

connection, resulting in the output feature zl . This design

maintains feature stability and information flow, markedly

improving the model’s perception of multi-scale features, thereby

boosting visual task performance.

2.3.3 EMA module
The EMA module employs a parallel processing strategy,

enabling the network to avoid the constraints of sequential

processing and reducing the need for greater network depth; its

overall structure is illustrated in Figure 4. For the input feature map,

the module divides its channel dimension into G sub-feature

groups. Subsequently, the module employs three parallel paths to

extract attention weight descriptors from the grouped feature maps,

with two paths featuring a 1� 1 convolution branch and one

featuring a 3� 3 convolution branch. In the 1� 1 convolution

branch, two global average pooling operations encode channels

along both spatial directions, after which the two channel-level

attention mappings are concatenated. In the 3� 3 convolution

branch, a convolution operation is used to capture feature

representations. For the output of the 1� 1 convolution branch,

the EMA module employs two non-linear Sigmoid functions to fit

the 2D distribution over the linear convolution. The cross-space

learning component encodes global spatial information from the

1� 1 convolution branch output through 2D global average

pooling, aligning the output with the target dimensions. A

softmax function then approximates a linear transformation over

the 2D global average pooling output with a 2D Gaussian mapping.

The parallel processing output is multiplied by the matrix dot-

product operation, producing the first spatial attention map.

Additionally, the same procedure is applied to the output from

the 3� 3 convolution branch, resulting in a second spatial attention
FIGURE 3

Swin Transformer Blocks structure schematic.
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map that preserves precise spatial location information. Ultimately,

the two spatial attention maps are combined, and the final output is

produced through a Sigmoid function.

The EMA module divides the channel dimension into several

sub-features, encoding global information to calibrate channel

weights across branches, effectively learning multi-scale spatial

semantics and strengthening feature capture capability. In this

study, the EMA module is integrated into the downsampling

stages of the backbone network and decoder to enhance model’s

segmentation performance.
2.4 Decoder

2.4.1 FPN module
In semantic segmentation, the integration of contextual

semantic information is crucial. In semantic information

processing, low-level features primarily consist of details such as

edges, while high-level features offer an expression of the overall

structure of the image. The SegFormer decoder uses a simple MLP

layer for feature fusion during the integration process, which leads

to inadequate feature merging and may affect the model’s overall
Frontiers in Marine Science 06
segmentation performance. Thus, this study introduces the FPN

structure to enhance feature fusion.

FPN is a top-down structure built on feature image pyramids

that includes lateral connections, used to generate semantic feature

maps at all scales, as shown in Figure 5. The bottom-up pathway of

the backbone network extracts features from the image, generating

feature maps at different resolutions: H
4 � W

4 � C,   H8 � W
8 � 2C,  

H
16 � W

16 � 4C and   H32 � W
32 � 8C. Each feature map is adjusted to

the channel dimension of C via a 1� 1 convolution, standardizing

channels for effective merging. Next, the top-down path of the

structure upsamples the low-resolution but semantically rich

feature maps by a factor of two, merging them with the adjusted

channel dimension higher-resolution feature maps through lateral

connections. By repeating this process, we obtain merged maps for

each layer. To reduce the aliasing effects that may occur during

upsampling, the feature maps after fusion at each layer are

processed through a 3� 3 convolution, resulting in the final

feature maps with dimensions of H
4 � W

4 � C,   H8 � W
8 � C,   H16 �

W
16 � C   and   H32 � W

32 � C, uniformly denoted as H
2i+1 � W

2i+1 � C,

where i denotes the ith stage of the backbone network. The feature

maps outputted at each layer integrate both high-level and low-level

features of the image, providing richer semantic and spatial
FIGURE 5

FPN module structure schematic.
FIGURE 4

EMA module structure schematic.
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information, thereby effectively improving the segmentation

performance of the network.

2.4.2 ALL MLP
The decoder also features a lightweight MLP structure, whose

purpose is to merge multi-scale features to generate the final

semantic segmentation map. The design of the decoder

circumvents complex and computationally heavy modules, using

simple UpSample layers and MLP layers to accomplish feature

fusion and prediction. Firstly, the feature maps at multiple scales

processed by the FPN module already possess the same channel

dimension. After going through the EMA module, the feature maps

with unified channel numbers are upsampled to a common

resolution and concatenated, aligning them spatially to enable

effective fusion. Next, a single MLP layer processes the merged

feature maps to further combine features from different scales, and

ultimately, another MLP layer converts the fused feature maps into

the final semantic segmentation map.
2.5 Loss function

In this research, we employ the cross-entropy loss function

(Zhang and Sabuncu, 2018), widely used in classification tasks to

measure the disparity between the predicted distribution and the

true distribution, assessing the degree of correspondence between

the model’s output probability distribution and the actual labels.

Specifically, let the true probability distribution be P(xi) and the

predicted probability distribution be Q(xi). The loss function is

computed using the Equation 1:

H(P,Q) =   −on
i=1P(xi) log  Q(xi) (1)
2.6 Transfer learning

Transfer learning is a technique in machine learning designed

to apply knowledge gained from one task to another related task,

particularly in scenarios where data for the target task is scarce. The

fundamental concept is that features learned by a model in one

domain can aid in learning in other similar domains, thus

minimizing the requirement for extensive data and training time.

In this research, given the limited size of the underwater image

dataset, transfer learning was employed to enhance the model’s

training performance. We initially pre-trained the Swin

Transformer model on the ADE20K (Zhou et al., 2017) dataset,

then fine-tuned the model with the weights obtained from the pre-

trained model and applied it to the underwater image dataset. This

approach enabled the model to achieve improved performance by

utilizing it as the backbone network for feature extraction in

this study.
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3 Results

3.1 Experimental environment

In this research, to ensure the objectivity and reliability of the

experimental results, all experiments were carried out under

consistent conditions. The experiments were conducted on

Ubuntu 20.04, utilizing an Intel(R) Xeon(R) Platinum 8352V

CPU @ 2.10GHz, equipped with an NVIDIA GTX 4090 GPU

and 24GB of VRAM. The programming language employed was

Python 3.8.10, and the deep learning framework used was PyTorch

1.11.0 along with CUDA 11.3. The experimental training batch size

was configured to be 24, with the number of epochs set at 400. The

optimizer employed was the weight-decay adaptive moment

estimation (Kingma and Ba, 2014), with an initial learning rate of

0.00006 and a learning rate decay factor of 0.01.
3.2 Evaluation metrics

In this study, to fully assess the segmentation performance of

the network, commonly used evaluation metrics in image

segmentation were utilized, including Mean Intersection over

Union (MIoU), Recall, Precision, and F1score, which are

computed as shown in Equations 2–5:

MIoU =
1

k + 1o
k
i=0

TP
FN + FP + TP

(2)

Recall =  
TP

TP + FN
(3)

Precision =  
TP

TP + FP
(4)

F1score =  
2� Precision� Recall
Precision + Recall

=
2TP

2TP + FP + FN
(5)

In this context, True Positive (TP) refers to the positive samples

correctly predicted by the model, True Negative (TN) refers to the

negative samples correctly predicted by the model, False Positive

(FP) indicates the negative samples incorrectly predicted as positive,

and False Negative (FN) refers to the positive samples incorrectly

predicted as negative. MIoU is a widely used metric in semantic

segmentation that computes the average intersection over union for

each class in the dataset to assess the accuracy of the model when

segmenting pixels of different categories in the image. A higher

MIoU value signifies superior model performance in differentiating

between various objects. Recall is defined as the ratio of actual

positive samples that the model correctly identifies as positive, and

it serves as a crucial metric for assessing classification models.

Precision refers to the ratio of correctly predicted positive samples

by the model that are truly positive; higher precision indicates
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greater accuracy in predicting positive samples, thus showcasing

better model performance. However, within the performance

metrics, higher Recall suggests that the model can detect more

positive samples, but it may lead to decrease in Precision, resulting

in more negative samples being misclassified as positive.

Conversely, higher Precision may cause decline in Recall,

meaning the model may be too conservative, only predicting

those positive samples it is highly confident about, thereby

potentially overlooking some actual positives. Consequently, the

F1score is introduced as a holistic evaluation metric that considers

both Precision and Recall, acting as a balanced indicator for both.
3.3 Experimental results and analysis

3.3.1 Ablation study
In the experiments, we conducted ablation studies to evaluate

the impact of various modules on the performance of the network.

Starting with the standard SegFormer model, referred to as Model1,

we incrementally introduced different modules for the ablation

experiments, naming them Model2, Model3, and Model4. The

results of the experiments are presented in Table 1. The “√” in

the table signifies that the module was included. As shown in

Table 1, Model1 attained an MIoU of 73.27%, mRecall of 83.06%,

mPrecision of 85.65%, and mF1score of 84.19% on the SUIM

underwater image dataset. Model2 initially incorporated the Swin

Transformer to replace the original backbone network, thereby

enhancing the model’s feature extraction capability. On the SUIM

dataset, it recorded an MIoU of 75.27%, mRecall of 84.85%,

mPrecision of 86.51%, and an mF1score of 85.54%. Compared to

Model1, despite an increase of 5.53M in parameter count, the

MIoU, mRecall, mPrecision, and mF1score rose by 2.0%, 1.79%,

0.86%, and 1.35%, respectively. Subsequently, Model3 incorporated

the EMA mechanism into the down-sampling phase and the

decoder to capture multi-scale features. Building on Model2, it

improved the MIoU by 0.93%, the mRecall by 0.35%, the

mPrecision by 0.88%, and the mF1score by 0.63%, with only

0.23M increase in parameters, achieving an MIoU of 76.20%,

mRecall of 85.20%, mPrecision of 87.39%, and an mF1score of

86.17% on the SUIM dataset. Lastly, Model4 added the FPN

structure to the decoder, merging multi-level features. In the end,

Model4 attained an MIoU of 77.00%, mRecall of 85.04%,

mPrecision of 89.03%, and an mF1score of 86.63%. Compared to

Model3, the MIoU rose by 0.80%, mRecall dropped by 0.16%,

mPrecision increased by 1.64%, and the mF1score improved by
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0.46%, with a 4.13M increase in parameters. Finally, compared to

Model1, Model4, which integrates the three modules, improved the

MIoU by 3.73%, increased mRecall by 1.98%, mPrecision by 3.38%,

and mF1score by 2.44%, with a slight increase in parameters of

9.89M, FLOPs increased by 14.07G.

We adopt Swin Transformer to replace the original

MixTransformer backbone network, which significantly improves

the feature extraction capability of the model.Swin Transformer

adopts a hierarchical local-global feature modeling approach, which

enables the model to be more fine-grained in capturing the detailed

information in complex environments, especially for the challenges

such as blurring and illumination unevenness and scale changes in

underwater images. challenges such as blurring, uneven

illumination and scale changes, Swin Transformer demonstrates a

strong feature representation capability. The EMA attention

mechanism aims to enhance the model’s ability to capture multi-

scale features. In the underwater image segmentation task, due to

the large scale difference of target objects, the EMA mechanism can

better retain the feature information of different scales, thus

effectively improving the segmentation accuracy of small objects

and long-distance targets. The FPN structure is introduced into the

decoder to enhance the segmentation performance of the model

through multi-level feature fusion. The FPN structure can

effectively integrate the features of different scales, so that the

contextual information is better fused between different levels.

Especially for images with complex backgrounds, FPN can

effectively improve the model’s ability to capture details and

further enhance the segmentation accuracy. The experimental

results indicate that this study successfully improved the standard

SegFormer model by introducing a more powerful feature

extraction backbone network, the Swin Transformer, and the

EMA attention mechanism. This effectively captured multi-scale

information and detail features in complex environments.

Additionally, by optimizing the model’s feature fusion strategy

and introducing the FPN structure, contextual information was

effectively integrated across different scales, in the current

environment of abundant computational resources, ensuring

model efficiency while significantly enhancing its semantic

segmentation performance.

3.3.2 Comparison of experimental results among
different models

To thoroughly assess the segmentation performance of the

model developed in this study, we further conducted comparative

experiments in the same experimental environment with existing
TABLE 1 Ablation study results.

Network Model
Swin

Transformer
EMA FPN

MIoU
(%)

mRecall
(%)

mPrecision
(%)

mF1score
(%)

Parameters/
M

FLOPs/
G

SegFormer

Model1 73.27 83.06 85.65 84.19 81.97 12.44

Model2 ✓ 75.27 84.85 86.51 85.54 87.50 18.80

Model3 ✓ ✓ 76.20 85.20 87.39 86.17 87.73 19.35

Model4 ✓ ✓ ✓ 77.00 85.04 89.03 86.63 91.86 26.51
fro
Bold values: model's evaluation metrics performed the best.
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popular models, such as UNet, FCN, DeepLabv3+, ISANet (Huang

et al., 2019), PSPNet (Zhao et al., 2016), KNet (Zhang et al., 2021),

MaskFormer (Cheng et al., 2021), Mask2Former (Cheng et al.,

2022), UperNet (Xiao et al., 2018) and SegFormer. The results of

these comparative experiments are presented in Table 2. As shown

in Table 2, for the SUIM underwater image dataset, the model

developed in this study achieved an MIoU of 77.00%, mRecall of

85.04%, mPrecision of 89.03%, and an mF1score of 86.63%, which

surpasses other models across these evaluation metrics. Compared

to PSPNet, the number of parameters of this model has risen, but

MIoU, mRecall, mPrecision, and mFscore have improved by 7.69%,

7.18%, 2.71%, and 7.58%, respectively, and FLOPs have decreased

by 11.56G, which proves that the computational efficiency of this

model is better. Compared to the classical model KNet, the number

of parameters rises a bit, but MIoU improves by 6.46%, mRecall by

5.75%, mPrecision by 2.99%, mFscore by 5.31%, and FLOPs by

11.32G. Comparing Maskformer and Mask2former, our model’s

evaluation metrics are all better than their evaluation metrics,

representing that our model has good segmentation performance

and computational efficiency. In comparison to UperNet, which

demonstrates the best segmentation performance among other

models, our model achieved increases of 4.3% in MIoU, 2.84% in

mRecall, 2.88% in mPrecision, and 2.86% in mF1score, that reduces

31.02M and 17.97G in the number of parameters and FLOPs,

respectively. Compared to the standard SegFormer model, our

model showed improvements of 3.73% in MIoU, 1.98% in

mRecall, 3.38% in mPrecision, and 2.44% in mF1score, the

number of parameters increased by 9.89M and FLOPs increased

by 14.07G, which ensures a certain efficiency of the model and at the

same time makes its semantic segmentation performance well

improved. The analysis of the above results indicates that our

model has better evaluation metrics compared to other popular

models in the underwater image segmentation task, which reflects

its superior segmentation performance.

To visually compare the model proposed in this study with

existing popular models, we created a graph depicting the MIoU
Frontiers in Marine Science 09
metrics for all models used during the training process on the

validation set, as illustrated in Figure 6. As observed in Figure 6,

with an increase in the number of training epochs, the training

performance of each model gradually converges. The model

proposed in this research clearly outperformed other models in

terms of MIoU, showcasing superior segmentation performance.

Furthermore, this study validated the model using test images

by selecting four images that encompass all categories in the dataset,

with performance evaluations conducted on each model, as

illustrated in Figure 7. UNet, as a classic image segmentation

model, performs poorly in the segmentation task of underwater

multi-classified objects, and when multiple objects rely on each

other, the recognition of UNet produces incorrect predictions,

which proves that the model needs better multi-scale feature

extraction and fusion capabilities in the complex underwater

environment. The performance of FCN, DeeplabV3+, ISANet and

PSPNet is closer to each other overall, but there are problems in

many details that cannot be segmented accurately, such as divers,

water plants and some other objects close to the background color,

which also indirectly proves that these models have deficiencies in

detail feature extraction capabilities. performance is closer, but

there are problems in many details that cannot be segmented

accurately, such as divers, water plants and some other objects

that are close to the background color, which also indirectly proves

that these models have deficiencies in the detailed feature extraction

ability of the objects, resulting in the poor performance of the

models. KNet, Maskformer, Mask2former and standard SegFormer

have the same problem in the water plant segmentation suffer from

the same problem of incorrect segmentation recognition when there

are different classes of objects with close color proximity, but their

performance on fish segmentation is much improved. UperNet and

our model perform close to each other on water grass and fish

segmentation, but our model performs better on details such as both

small tentacles and small object boundaries of divers and fish. Our

model better captures multi-scale information and detailed features

in complex environments, so that contextual information can be
TABLE 2 Comparative experimental results of different models.

Methods Backbone MIoU(%) mRecall(%) mPrecision(%) mF1score(%) Parameters/M FLOPs/G

UNet UNet 61.91 71.67 79.87 74.03 28.99 38.07

FCN ResNet50 68.65 77.8 84 79.63 47.13 37.15

DeeplabV3+ ResNet50 68.69 77.7 86.28 78.56 41.22 33.10

ISANe ResNet50 68.76 77.35 82.85 78.46 35.34 28.09

PSPNet ResNet50 69.31 77.86 86.32 79.05 46.61 33.54

KNet ResNet50 70.54 79.29 86.04 81.32 60.34 37.83

Maskformer ResNet50 71.07 79.12 85.44 81.01 41.27 53.22

Mask2former ResNet50 72.55 80.06 86.2 82.04 44.63 226.63

UperNet ResNet50 72.7 82.2 86.15 83.77 122.88 44.48

Segformer Mix Transformer 73.27 83.06 85.65 84.19 81.97 12.44

Ours Swin Transformer 77.00 85.04 89.03 86.63 91.86 26.51
Bold values: model's evaluation metrics performed the best.
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effectively integrated between different scales, and successfully

solves the problems of insufficient feature extraction ability and

inadequate integration of contextual semantic information in

complex backgrounds, which results in a better performance of

the model.

The results indicate that the model developed in this study

excelled in segmenting categories such as aquatic vegetation and

fish, with its segmentation results being closer to the actual labels, in

terms of model inference speed, excluding the standard SegFormer

model, the FLOPs of all the remaining models are higher than our

model, and their performance is still lower than our model, thus,

both in terms of performance and inference speed, our model shows

very good segmentation performance. In conclusion, taking into

account Table 2, Figures 6, 7, and the result analysis, the model

proposed in this study attained commendable metrics in the

underwater image segmentation task, showcasing strong

segmentation performance.

3.3.3 Error analysis and discussion
In Figure 7, it can be found that our model has incorrect

prediction in the segmentation of very small categories, and will

incorrectly predict small fishes, small aquatic grasses, and tiny

branches of submersibles, etc. into other categories, the main

reason is that when the small objects are highly overlapped with

other similarly-colored objects, due to the lack of underwater light

and other reasons, the model’s ability to segment small objects or

long-distance targets will be fully tested, and there is still room for

improvement in the segmentation accuracy of small objects and long-

distance targets. There is still room for improvement in the

segmentation accuracy of small objects and long-distance targets.

In the future research, we will study the better attention mechanism

and feature fusion strategy to enhance the segmentation performance

of the model. We also need to consider excellent image preprocessing

methods to enhance the visual quality of the image and help the
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model extract features better, so as to overcome the image quality

problems caused by the complex underwater environment and

further improve the segmentation performance of the model.
4 Discussion

This study introduces an enhanced underwater image semantic

segmentation model based on the SegFormer framework, capable of

effectively and accurately segmenting underwater targets while

achieving satisfactory segmentation performance. Initially, we

substituted the backbone of the standard SegFormer model with

the Swin Transformer to improve the model’s ability to extract

features, enabling it to more effectively acquire the semantic

information of the images. Additionally, we incorporated the

EMA mechanism in both the downsampling stage and the

decoder to more effectively capture multi-scale features, thereby

improving segmentation precision. Lastly, we integrated the FPN

architecture into the decoder to merge multi-level feature maps,

thereby improving the model’s accuracy and robustness in complex

environments. This model demonstrates a significant enhancement

in segmentation performance while preserving computational

efficiency. The experimental results show that this model attained

MIoU of 77.00%, mRecall of 85.04%, mPrecision of 89.03%, and

mF1score of 86.63% on the SUIM underwater image dataset. In

comparison to the UperNet, which is the top-performing model

among other popular models, our model demonstrated

improvements of 4.3%, 2.84%, 2.88%, and 2.86% in MIoU,

mRecall, mPrecision, and mF1score, respectively. When

compared to the standard SegFormer model, our model achieved

3.73% increase in MIoU, 1.98% increase in mRecall, 3.38% increase

in mPrecision, and 2.44% increase in mF1score, with only a modest

rise of 9.89M in parameters. Overall, the model developed in this

research demonstrates outstanding segmentation performance,
FIGURE 6

MIoU trend curves of different semantic segmentation models during verification process.
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effectively resolving the challenges of insufficient feature extraction

and inadequate fusion of contextual semantic information in

complex backgrounds.

Historically, underwater image semantic segmentation models

have primarily focused on improving either feature extraction

ability or feature fusion capability, without successfully
Frontiers in Marine Science 11
integrating both approaches. This research enhances the baseline

model by integrating both approaches and introducing attention

mechanisms along with feature pyramid networks, which more

effectively capture multi-scale information and detailed features in

complex environments while efficiently acquiring global

information from images, leading to strong performance in
FIGURE 7

Test results of different semantic segmentation models.
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underwater image segmentation tasks. The experimental findings

indicate that the model proposed in this study achieved the highest

MIoU on the SUIM dataset, confirming its superior performance in

underwater image segmentation. Thus, this research offers an

effective approach to semantic segmentation of underwater images.

Nevertheless, our model requires further optimization

regarding computational efficiency. Given the real-time demands

of AUVs during underwater operations, deeper exploration of the

model’s computational efficiency remains essential. Thus,

researching a lightweight and high-performance semantic

segmentation model for underwater images is a significant future

direction. Furthermore, the design of the attention mechanism and

feature fusion strategy in this model is somewhat simplistic. The

future introduction of more effective attention mechanisms and

feature fusion strategies could hold considerable research

significance in improving model performance. Finally, in contrast

to the outstanding performance of popular models on terrestrial

datasets, the complexity of underwater environments results in

lower quality datasets, causing many models to underperform on

underwater images. This represents one of the primary challenges

encountered in the domain of underwater image processing.

Additionally, the significant shortage of underwater image

datasets poses another critical issue that requires immediate

attention. Thus, in our future research, we intend to explore two

main avenues. In terms of datasets, we will utilize data

augmentation techniques and leverage advanced methods like

Generative Adversarial Networks to generate high-quality

underwater images, thereby enhancing the dataset’s diversity.

Concurrently, we aspire to collaborate with marine research

organizations to share data resources and perform field collection,

thereby ensuring the dataset’s authenticity and effectiveness. From

an algorithmic perspective, we will investigate lightweight model

research to fulfill the demands for both model efficiency and high

performance. Moreover, during the preprocessing phase, we intend

to incorporate advanced and efficient image processing techniques

to enhance the visual quality of images, thereby aiding the model in

better feature extraction. We will also emphasize the enhancement

of underwater image processing algorithms to address image quality

issues resulting from complex underwater conditions, further

improving the model’s segmentation performance. By pursuing

these two avenues, we aim to propel the advancement of

underwater image processing technologies, thereby offering more

accurate technical support for marine ecological monitoring and

biological studies.
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