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Economics and Management, Weifang University, Weifang, China
Introduction: As Digital Industry 4.0 advances, shipping operators are progressively

implementing digital technologies for maritime decarbonization efforts.

Methods: This review employs a bibliometric methodology to thoroughly

examine and analyze the application of digital technology in decarbonizing

shipping from 2005 to 2024. Examining 201 publications from the SCI-

EXPANDED and SSCI databases elucidates the present condition, challenges,

and prospects of digital technology applications in this domain.

Results: The review demonstrates the swift expansion of research on digital

technologies for decarbonization within the shipping sector via an analysis of

annual publication trends. Subsequent journal metrics and collaborative network

analysis with VOSviewer identified particularly prolific journals, nations, institutions,

and authors. Furthermore, this review delineates the field's principal research

clusters and hotspots via keyword co-occurrence analysis, offering direction for

future investigations. Ultimately, it examines research gaps in speed optimization,

emission prediction, and autonomous ships by integrating keyword co-

occurrence analysis with the content of recent publications, and then proposes

prospective research options.

Discussions: Future studies on ship speed optimization could benefit from

adopting multi-objective optimization methods, combining more machine-

learning techniques with the FCP model, etc. Concerning emission prediction,

future research efforts could focus on integrating more diverse external data

sources into emission prediction models, adopting emerging technology

applications, such as ship-based carbon capture (SBCC), introducing blockchain

into smart emission monitoring systems, etc. Future research regarding

autonomous ships can further refine optimizing route planning and navigation

safety, autonomous ship energy efficiency and emission control, maritime

communications and navigation systems, ship electrification, and green design.
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1 Introduction

The shipping industry is essential in the twenty-first-century

global economy, underpinning international trade and acting as a

crucial connection between various locations worldwide.

Nonetheless, due to escalating worldwide apprehension around

climate change, mitigating emissions from shipping has emerged

as a critical issue (Xu et al., 2024a). Classification of shipping

emissions is as follows (Serra and Fancello, 2020; Xu et al., 2024b):
Fron
• Carbon Dioxide (CO2) is the predominant Greenhouse Gas

(GHG) in the vessels. GHG emissions are the primary

contributor to global warming.

• Sulfur Oxides (SOx) and Nitrogen Oxides (NOx) facilitate

the development of acid rain, which is detrimental to

human health.

• Carbon Monoxide (CO), Volatile Organic Compounds

(VOC), and PM affect human health. The PM also

includes Black Carbon (BC), which is not only

particularly harmful to humans but is the second most

important climate force after CO2.
This review primarily addresses GHG emissions, among

other topics.

The international shipping industry is one of the largest GHG

emitters in the global economy and is also expected to be one of the

fastest-growing GHG emitters (Gibbs et al., 2014). The shipping

sector contributes approximately 3% of total global GHG emissions, a

figure that, while not substantial, warrants attention due to its long-

term environmental ramifications (Lu et al., 2023). Consequently,

decarbonizing the shipping industry is essential to address the global

demand for emission reductions and secure the industry’s sustainable

development. International organizations have introduced a series of

clear milestones for emission reductions. According to the Fourth

IMO GHG Study, the total GHG increased from 977 million tons to

1.076 million tons. In addition, the total GHG in the shipping

industry increased by 10.1% (Fan et al., 2022). The IMO

anticipated that by 2050, maritime transport would represent 15%

of overall CO2 emissions, underscoring the necessity for emission

reduction strategies in this sector (Dnv, 2019). Furthermore, the IMO

is dedicated to attaining net zero emissions from maritime

transportation by 2050 at the latest (IMO, 2020).

The ongoing innovation in digital technology, propelled by digital

transformation and the swift advancement of the Internet, presents

new potential for the maritime industry to achieve decarbonization.

Before digital technologies, shipping decarbonization relied primarily

on improving fuel efficiency, using alternative energy sources,

optimizing routes, and technological transformation. However,

these methods often rely on experience and static decisions and

lack real-time data support to achieve optimal results. In contrast,

through real-time monitoring and data analysis, digital technologies

can accurately control energy consumption and emissions, optimize

routes and predict ship failures in advance, significantly increasing

the efficiency of decarbonization. Combining digitalization with

traditional methods can improve operational efficiency while

achieving more precise decarbonization targets, driving the
tiers in Marine Science 02
shipping industry toward a greener and more sustainable direction.

Digital technology encompasses a collection of technologies

grounded in digitization, involving collecting, processing,

transmitting, storing, and utilizing information via contemporary

information technology platforms. Digital technologies include

the following:
• Internet of Things (IoT): IoT facilitates the interchange of

information and communication between objects and

individuals through the interconnection of sensors,

devices, and networks (Al-Fuqaha et al., 2015).

• Big data: Big data entails extracting essential insights from

extensive volumes of intricate data (Manyika, 2011).

• Artificial Intelligence (AI): AI refers to technology that

emulates human intelligence, allowing computer systems

to execute activities, including learning, reasoning, and self-

correction (McFarlane et al., 2003; Chen et al., 2024a).

• Blockchain: Blockchain is a decentralized ledger system that

securely, transparently, and immutably records transactions

(Sidhu, 2017).

• Digital Twin: Digital twins are virtual representations of

physical entities that replicate their state and behavior

(Grieves and Vickers, 2017).
Digital technologies are viable and sustainable solutions to

significantly reduce GHG emissions associated with maritime

transport in the short term. IoT enables real-time monitoring of

ships’ energy use and emissions for enhanced energy management

(Iris and Lam, 2019). Big data analytics enables maritime businesses

to evaluate and forecast cargo flows, optimize routes, and minimize

superfluous voyages, decreasing Fuel Consumption (FCP) and

carbon emissions (Cariou et al., 2019). AI can facilitate the

creation of intelligent vessels that autonomously modify speeds

and courses to reduce energy consumption and emissions (Bouman

et al., 2017). Furthermore, implementing blockchain in the shipping

sector can enhance the transparency and efficiency of the supply

chain while fostering the advancement of sustainable shipping

practices (Horvath et al., 2018).
2 Literature review

Although technology holds significant relevance in the shipping

sector, the existing literature on the subject is sparse and disjointed.

This analysis delineates 15 literature surveys published from 2020 to

2023. The increasing focus on the environmental consequences of

shipping is also seen in the literature of associated disciplines.

Specific assessments have concentrated on analyzing the

implementation of particular digital technologies in the decarbonizing

maritime sector, encompassing AI, AIS, machine learning, and

blockchain, among others. Research on AI pertains to fuel

optimization, predictive maintenance, route planning, autonomous

shipping, and logistics management, studies on machine learning

focus on ship design, ship emission forecasting, and hull shape

enhancement. Investigations into digital twins are concerned with

optimizing new energy ship power systems. The research on machine
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learning in the decarbonization of the shipping industry is the most

comprehensive. Huang et al. (2022) provided a comprehensive analysis

of the application of machine learning techniques to enhance ship

sustainability in the domain of machine learning, addressing the

fundamentals of machine learning and its applications in associated

fields: ship design, operational performance, and trip planning. Tripathi

and Vijayakumar (2024) investigated the enhancement of ship hulls in

four domains: hull form, hull structure, hull cleaning, and hull

lubrication, integrating uncertainty analysis, operations research, and

machine learning with simulation models to create various software

and methodologies to achieve optimal outcomes. Wang et al. (2022)

examined the impact of neural networks, intelligent algorithms, and

grey box models on forecasting energy emissions from vessels, probing

theoretical analysis, AI-driven ship energy consumption model, and

top-down and bottom-up ship emission forecast models. Durlik et al.

(2024) examined the application of AI in fuel optimization, predictive

maintenance, route planning, intelligent energy management,

autonomous shipping, and logistics management through case

studies of the Maersk Line and the Port of Rotterdam. Yin et al.

(2023) demonstrated that three critical technologies are employed in

new energy ship power systems: new energy spatiotemporal prediction

technology, ship power scheduling technology, and digital twin.

These reviews examine the application, developmental trends, and

challenges of particular digital technologies by analyzing their use in the

decarbonizing shipping industry. Nonetheless, there exists a deficiency

of research grounded in a holistic viewpoint in this domain. Only one

evaluation offers a comprehensive overview of the application of digital

technologies in decarbonizing the shipping industry. Xue and Lai

(2024) introduced the idea of Digital Green Shipping Innovation

(DGSI) and examined its application in research and practice, the

antecedents and repercussions of DGSI application, along the problems

and opportunities associated with it. The review is predicated on DGSI,

and its formulation of green shipping encompasses not only

decarbonization but also environmental preservation and the

sustainability of shipping operations, among other factors. Thus, this

review concentrates on shipping decarbonization and analyzes the

implementation, challenges, and opportunities of digital technologies

within this domain using a bibliometric methodology. The review

initially presents the data collection and research methodology;

evaluates annual publication trends and conducts a collaborative

network analysis of interactions among countries, institutions, and

authors; elucidates the use of digital technologies in shipping

decarbonization via keyword co-occurrence analysis; and assesses the

challenges and opportunities within the field. The subsequent sections

of this review are structured as follows. Section 3 delineates the data

collecting and research methods. Section 4 outlines the bibliometric

analysis and its findings. Section 5 analyzes the research gaps and

future research directions. Section 6 presents the conclusions.
3 Data and methodology

3.1 Data collection

This review examines publications on digital technology for the

decarbonizing maritime sector. It picked the Web of Science (WoS)
Frontiers in Marine Science 03
database for in-depth analysis to understand the newest academic

advancements, which is essential for capturing worldwide scholarship

(Li et al., 2018). This review’s dataset is sourced from the two primary

indexes in WoS: the Science Citation Index Expanded (SCI-

EXPANDED) and the Social Science Citation Index (SSCI). It is

confined to English-language literature, encompassing both journal

articles and reviews, which cover the period from 2005 to 2024, as of

November 12, 2024. English is the main language of international

academic exchange, and the relevant literature is more representative.

Considering the emergence of digital technologies, their application in

the shipping industry, and the growing global focus on

decarbonization, we set the starting point of our data as 2005. To

ensure the publication search is both precise and exhaustive, thereby

preventing the omission of critical information or the inclusion of

irrelevant publications, we employed a strategy of selecting keywords

that effectively articulate and explore the role of digital technologies in

decarbonizing shipping. We examined research through four distinct

processes, including a preliminary evaluation of keywords, broadening

the spectrum of keywords, removing extraneous terms, iterative

refinement of search terms, and removing predatory references. The

publication search process is shown in Figure 1. The search criteria are

shown in Table 1.
3.2 Bibliometric method

Bibliometrics is a field that elucidates scientific trends and

structures via the quantitative analysis of literary data. This entails

employing mathematical and statistical techniques to examine data in

publications, including authors, keywords, and citations, to elucidate

the distribution of scientific knowledge, collaborative networks,

research hotspots, and trends (Dalle Lucca Tosi and dos Reis, 2020).

Moreover, the advantage of bibliometrics compared to other literature

review methodologies is its capacity to yield more objective and

dependable outcomes, hence furnishing scholars with comprehensive

insights into the evolution of a discipline (Wallin, 2005). Investigations

in this domain can assist researchers, policymakers, and academic

institutions in comprehending the dynamics of disciplines,

evaluating research impact, and directing future research trajectories.

Bibliometrics possesses diverse applications, enabling the evaluation of

research production and impact of a country or institution, and the

identification of research frontiers and seminal literature within a

specific domain (Ninkov et al., 2022). Moreover, citation analysis

enables bibliometrics to elucidate knowledge flows and the

distribution pathways of scholarly concepts (Markus, 2003). The

advancement of big data is propelling the evolution of bibliometric

research methods. Bibliometric analysis has been employed across

various industry sectors to detect research trends, difficulties, and

possibilities within a certain topic (Muhuri et al., 2019). This

publication aims to identify the current focal points of digital

technology in shipping decarbonization applications via bibliometric

analysis. To explore the research hotspots in the relevant field, we

employed VOSviewer, a complimentary Java-based software created by

the Centre for Technology Research at Leiden University in the

Netherlands, to visualize and analyze countries, authors, and

institutions, culminating (Bui et al., 2020).
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3.3 Analytic measures

The H-index, or Hirsch index, quantifies the academic effect of an

individual scholar, researcher, or research organization. Introduced

by American physicist Jorge Hirsch in 2005, the fundamental concept

of the H-index posits that a scholar’s H-index corresponds to the

number of instances in which at least h of their publications have

been mentioned no fewer than h times, while citations for any

additional publication do not surpass h (Hirsch, 2005). The H-

index possesses multiple advantages: firstly, it amalgamates the

number of publications and citations of researchers, thereby

reflecting their academic impact; secondly, the H-index exhibits

relative stability, remaining unaffected by atypically high citations

of individual publications, rendering it a more objective metric for

academic assessment; lastly, the H-index is straightforward to

comprehend and compute, contributing to its widespread

application in academic circles. This review uses the H-index to

evaluate the research performance of institutions and nations.
4 Results

4.1 Scientometric analysis

Analyzing the fluctuations in publication volume within a

specific domain can elucidate the evolving patterns and focal

points of research in that area (Adnan et al., 2023; Shi et al.,

2023). The annual number of publications from 2015 to 2024 is

shown in Figure 2. This review examines the trend in publications

on digital technology used for decarbonizing shipping during the
Frontiers in Marine Science 04
past decade. The writing on this topic commenced in 2015, with a

single publication, which may be attributed to the fact that in the

early 21st century, there were fewer studies on digital technologies

such as AI in shipping due to the slow development of technologies

such as AI (Xiao and Xu, 2024; Xiao et al., 2024b). Conversely, the

total number of annual publications in 2023 is 55, representing a 54-

fold rise in the overall count. The period from 2015 to 2020 marks

the beginning of a growing publication volume within the

discipline, culminating in the release of 28 publications. This

results from the groundbreaking research conducted by scholars

in this domain, including Gkerekos et al. (2019), who investigated

the efficacy of various multiple regression algorithms for predicting

the Fuel Oil Consumption (FOC) of a vessel using diverse data

sampling frequencies. From 2020 to 2023, the quantity of

publications in this domain increased substantially, by almost

threefold. Furthermore, 45 publications in this domain were

published between January and November 12, 2024, indicating a

foreseeable increase. This signifies that an increasing number of

scholars have focused on studying the application of digital

technology in decarbonizing shipping in recent years.

4.1.1 Journal analysis
This review comprises 201 publications published across 94

journals, with the ten most prolific journals detailed in Table 2,

accounting for approximately 44.3% of the total publications.

Among the examined fields, Sustainability is the journal with the

most published publications, with 24 or 11.94% of the overall

publications. Ocean Engineering published 21 publications,

accounting for 10.45% of the total publications. This may suggest

that they serve as a significant reference for scholars in this area.
FIGURE 1

Publication search process.
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Moreover, Sustainability and Ocean Engineering are the most

impactful journals for the H-index, each with an H-index of 8. In

the most frequently cited paper in Sustainability, the authors

present a methodology to enhance the AIS dataset by correcting

and extending its features, focusing on using crbm to improve the

prediction and clustering algorithms (Xiao et al., 2025).

Nonetheless, the quantity of publications does not inherently

correlate with the H-index; for instance, IEEE Access and

Engineering Applications of AI published 4 and 3 publications,

respectively, yet the latter possesses a higher H-index, suggesting

that Engineering applications of Artificial Intelligence are more

frequently cited within this domain.

4.1.2 Country analysis
Analyzing publishing data by country allows for assessing

research contributions from each nation to the domain and

collaboration among countries. From 2005 to 2024, 53 countries

contributed to the SCI and SSCI databases. Table 3 enumerates the
Frontiers in Marine Science 05
top ten countries based on publication volume, detailing the number

of publications and their respective percentages, and the H-index of

research from these nations, including China, the United Kingdom,

the United States, Norway, Singapore, etc. The chart indicates that

China leads in the number of publications within the domain, with 67

publications, followed by the UK with 15 and the US with 13. China

has authored 33.33% of the total publications in this discipline,

surpassing any other nation. In 2023, the most cited publication

originated from China, presenting a machine learning approach

utilizing AIS data, incorporating AADTW, SCAF, and an

innovative route optimization algorithm for feature extraction and

unsupervised route planning for Maritime Autonomous Surface

Ships (MASS) (Li and Yang, 2023). It underscores China’s growing

emphasis on augmenting innovation and competitiveness via

technological progress and demonstrates China’s substantial

contribution to the deployment of the domain, which may be

attributed to three primary factors: First, governmental policy and

fiscal assistance (Xiao and Cui, 2023). Second, the atmosphere for

technical improvement and innovation. Third, industrial size and

market demand. The table further illustrates the academic influence

and quality of published publications by country through H-index,

and SCI categorization of publications. China holds the top position

in the H-index, boasting an H-index of 13 and 38 publications

published in Q1 journals. The quantity of published publications is

positively connected with the H-index (Hou and Wang, 2023).

We employed VOSviewer to create a collaboration network of

countries. Figure 3 illustrates the collaboration network of countries,

predicated on a minimum of five publications per country,

encompassing 18 items with a cumulative collaboration intensity of

108, organized into 9 clusters. In Figure 3, each item symbolizes a

country, with its size reflecting the quantity of publications published

in that nation. The connections among the items signify international

collaboration, while the thickness of the links reflects the quantity of

joint publications. The dimensions of the items indicate that China is

the nation that has produced the most publications. Thirteen

countries partnered with China, resulting in a total collaboration

intensity of 24. Subsequently, the UK has 13 cooperating countries
FIGURE 2

Annual number of publications and citations from 2015 to 2024. (The data were retrieved on November 12, 2024).
TABLE 1 Search criteria.

Parameter WoS

Database SCI-EXPANDED and SSCI

Range 2005-2024

Date November 12, 2024

Document Type Journal article or review article

Search field Title, abstract, and keywords

Search formula

TS= (“maritime” OR “shipping” OR “ship”) AND TS=
(“decarboniz*” OR “emission” OR “low carbon” OR
“sustainab*”) AND TS= (“digitalization” OR “digital
technology” OR “Artificial intelligence” OR “AI” OR

“big data” OR “blockchain” OR “Internet of Things” OR
“IoT” OR “machine learning” OR “deep learning” OR

“digital twin”)

Results 201
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with a total collaboration intensity of 8, while Denmark has 11

participating countries with the same intensity of 8. Based on the

chain’s thickness, China and the United States exhibit the most robust

collaboration, with a collaboration intensity of 4. However, several

countries including Greece, Spain, and Italy exhibit fewer

publications and collaborative engagement with other nations.

Additionally, several countries, such as South Korea and Scotland,

appear to be isolated from the collaboration network.

The overall participation in the collaboration network is limited.

While the countries involved have engaged in collaboration, the degree

of cooperation remains minimal, with most countries exhibiting

limited interactions with others. The reasons for this may be twofold:

first, the disparate levels of technological advancement, and second,

variations in policies and regulations. Proposed enhancement strategies

may encompass, firstly, the creation of a global collaboration

platform to facilitate information exchange, technology

dissemination, and collaborative research among nations in the

domain of shipping decarbonization. Secondly, international

organizations and governments can unify maritime decarbonization

policies and diminish barriers to collaboration through conversation

and consultation. Thirdly, co-financing research initiatives through
Frontiers in Marine Science 06
global collaborative projects and funding, as well as co-financing

research and development on maritime decarbonization technology.

4.1.3 Author analysis
The authors’ analysis was executed in two manners: the first

emphasizes the most prolific contributors to digital technologies

within the decarbonizing shipping through Field-Weighted Citation

Impact (FWCI), while the second delineates the collaboration links

among authors via collaboration networks. Table 4 enumerates the

ten most impactful authors in the domain. Li has five publications

and is the most prolific author among these researchers. He is

succeeded by Sun (4 publications) and Lam (4 publications). Li

possesses an FWCI of 2.58, which indicates his citation impact

exceeds the global average by 158 percent, representing the highest

metrics among the top ten authors. The publications by leading

authors primarily concentrate on optimizing ship speed, planning

ship routes, predicting ship emissions, and enhancing FCP

efficiency. Researchers mostly employ machine learning for ship

speed optimization analysis (Li et al., 2022, 2024a). In ship route

planning research, authors mostly employ digital twins (Vasilikis

et al., 2023). In ship emission prediction research, researchers
TABLE 3 Most productive countries.

Country Publications Percentage (%) H-index Q1 Q2 Q3 Q4

China 67 33.33% 13 38 17 7 3

England 15 7.46% 5 12 3 0 0

USA 13 6.47% 6 8 4 1 0

Norway 11 5.47% 6 9 1 1 0

Singapore 11 5.47% 6 6 3 2 0

Spain 11 5.47% 6 5 2 2 0

Croatia 10 4.98% 6 4 5 0 1

Italy 9 4.48% 7 4 3 1 1

South Korea 9 4.48% 4 2 5 2 0

India 8 3.98% 2 4 2 1 1
TABLE 2 Most productive journals.

Journal Publications Percentage (%) H-index

Sustainability 24 11.94% 8

Ocean Engineering 21 10.45% 8

Journal of Marine Science and Engineering 13 6.47% 6

Energies 6 2.99% 4

Transportation Research Part E: Logistics and Transportation Review 6 2.99% 4

Ocean & Coastal Management 5 2.49% 4

IEEE Access 4 1.99% 2

Maritime Policy & Management 4 1.99% 2

Applied Sciences-Basel 3 1.49% 2

Engineering Applications of Artificial Intelligence 3 1.49% 3
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predominantly utilize Convolutional Neural Network (CNN),

multi-task learning, Artificial Neural Network (ANN), AIS,

machine learning, and blockchain (Cao et al., 2021; Pu and Lam,

2021; Kurchaba et al., 2022, 2023; Feng et al., 2024; Kurchaba et al.,

2024). Researchers mostly employ machine learning to examine

FCP optimization (Xie et al., 2023b).

We used VOSviewer to create an author collaboration network to

examine the partnerships among authors in the domain (Waltman

et al., 2010). Figure 4 illustrates the collaboration network among

authors, comprising 39 items and 5 clusters. Each item represents an

author, with the size denoting the quantity of publications produced by

that individual. The connections among the items signify the
Frontiers in Marine Science 07
collaboration between authors, while the thickness presents the

strength of their collaboration. The hue of the objects illustrates the

outcomes of the clustering, with elements sharing the same color (i.e.,

authors), indicating affiliation to the same study team. For example, the

research team of Li and Sun specializes in ship speed optimization and

FCP prediction (Li et al., 2022; Xie et al., 2023b, 2023; Li et al., 2024a).

Furthermore, the cluster distribution in Figure 4 reveals a higher

frequency of connections within clusters, alongside some inter-cluster

connections; however, there is insufficient contact among authors from

disparate l. The potential reasons for this include, firstly, that research

on the domain remains in its developmental phase, characterized by

limited collaboration within research teams and insufficient exploration

of inter-team cooperation. Secondly, there is a disparity in professional

expertise, which may result in challenges to interdisciplinary

communication. Thirdly, there may be inadequate avenues for

collaboration among authors from diverse research fields due to

geographic limitations, institutional restrictions, or insufficient

conference engagement. To resolve the abovementioned issues, three

strategies may be implemented: facilitate multidisciplinary seminars

and workshops, create a collaborative research fund, and enhance the

development of academic communication platforms.

4.1.4 Institution analysis
The institution analysis is performed in two manners: the first

identifies the most prolific institutions facilitating the domain, and

the second delineates the collaborative relationships among

institutions via collaboration networks. The 201 publications were

published by 337 institutions. Table 5 enumerates the ten most

productive institutes in research. Seven publications originate from

China, while the remaining three are from the UK (University of
TABLE 4 Most productive authors.

Author Publications Percentage (%) FWCI

Xiaohe Li 5 2.49% 2.58

Baozhi Sun 4 1.99% 0.56

Jasmine siu lee Lam 4 1.99% 2.28

Evangelos
Boulougouris

3 1.49% 1.36

Irmina Durlik 3 1.49% 1.88

Qinyou Hu 3 1.49% 0.88

Solomiia Kurchaba 3 1.49% 1.55

Yong Li 3 1.49% 0.82

Zhengjie Liu 3 1.54% 1.64

Qiang Mei 3 1.54% 0.88
FIGURE 3

Cooperation network of countries (From: VOSViewer).
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Strathclyde), Singapore (Nanyang Technological University), and

India (Indian Institute of Technology). Dalian Maritime University

and Shanghai Maritime University were rated highest among these

universities, with 11 publications and an H-index of 4, indicating

they have significantly contributed to the advancement of the

domain. Despite publishing only eight publications in this

domain, Nanyang Technological University achieved the highest

H-index, indicating the institution’s exemplary research quality in

applying digital technology within the decarbonizing shipping.

We used VOSviewer to create a collaboration network of

institutions to examine their partnerships in the domain. Figure 5

illustrates the collaboration network of institutions, comprising 49

items and 7 clusters, with a minimum document threshold of 2 and

a total connection strength of 268. In Figure 5, each item denotes an

institution, and the size reflects the quantity of publications. The

connections between items signify institutional collaboration, while

the thickness of the links reflects the intensity of this collaboration.

The size of publications indicates that Dalian Maritime University is

the leading university in publication output, it also cooperated with

ten universities, resulting in a total collaboration intensity of 10.

Nonetheless, regarding link strength, Dalian Maritime University’s
Frontiers in Marine Science 08
collaboration with all ten partner universities is relatively weak. This

may be attributed to the geographical remoteness of Dalian

Maritime University from other universities, hindering ongoing

academic exchanges; conversely, Dalian Maritime University may

choose to foster tighter collaboration within. The Chinese Academy

of Sciences partnered with seven universities, achieving a total

collaboration intensity of 13, the highest ranking. The Chinese

Academy of Sciences engaged in a more profound collaboration

with both Beijing University of Technology and Jimei University.
4.2 Co-occurrence analysis

Co-occurrence analysis is a content analysis method that accurately

represents the intensity of correlation between information items in

textual data (Wang et al., 2012). The co-occurrence of literature terms

is studied to assess the intensity of association among keywords and

ascertain the composition, research focus, and future trends. We

employed VOSviewer to create the keyword co-occurrence network,

depicted in Figure 6. Keyword co-occurrence denotes the concurrent

emergence of two keywords; each item signifies a keyword, with larger
TABLE 5 Most productive institutions.

Institution Publications Percentage (%) H-index

Dalian Maritime University 11 5.47% 4

Shanghai Maritime University 11 5.47% 4

Nanyang Technological University 8 3.98% 5

Harbin Engineering University 7 3.48% 4

Wuhan University of Technology 7 3.48% 4

Chinese Academy of Sciences 6 2.99% 2

University of Strathclyde 6 2.99% 4

Hong Kong Polytechnic University 5 2.49% 4

Indian Institute of Technology 5 2.49% 1

South China University of Technology 5 2.49% 2
FIGURE 4

Cooperation network of authors (From: VOSViewer).
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nodes indicating a higher frequency of keyword occurrence. The

proximity between two elements (i.e., keywords) signifies the

intensity of their relationship, with a reduced distance reflecting a

more robust association. The color of the items signifies the clustering

outcomes, with items sharing the same color denoting membership in

the same cluster. This keyword co-occurrence network has five distinct

clustering groups, as Figure 6 illustrates, which results in five

distinct domains.

Figure 7A depicts the application of digital technology in

optimization, and prediction, encompassing ship speed optimization,

trim optimization, oil consumption forecasting, energy consumption

forecasting, and hull design. Emissions from vessels in seaports are

progressively eliciting concerns regarding environmental sustainability.

Precise emission forecasts can facilitate the monitoring and resolution

of this issue, hence enhancing the sustainability of maritime

transportation (Liu et al., 2023; Chen et al., 2024a). To attain optimal

environmental sustainability, the selected energy technology on board

must be integrated with the operational mode within specified limits,

such as routes, operations, and speed (Elg et al., 2023). In this domain,

machine algorithms have been utilized most frequently, with 40

instances, links to 40 keywords, and an overall cooperation intensity

of 107, the highest among all keywords. Due to their significance, we

enumerated the applications of machine learning and deep learning in

Table 6. Simultaneously, machine learning, optimization, speed

optimization, prediction, and oil consumption prediction have

connection strengths of 8, 7, 4, and 7, respectively, making them the

most interconnected keywords to these four terms.

Figure 7B emphasizes the application of digital technology in

maritime emissions, encompassing emission prediction, inventory

management, and air quality assessment (He et al., 2022).

Considering global warming, effectively measuring and reducing
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ship emissions has emerged as a significant problem for the

transportation industry and society. In recent years, a significant

advancement in emission accounting has arisen, specifically using

big data, particularly data derived from AIS (Yin et al., 2021).

Figure 7C emphasizes the application of digital technologies in

logistics and supply chain management, encompassing ship energy

efficiency optimization and emission forecasting, using technologies

such as blockchain, big data, and machine learning. Maritime

supply chain management is critical to ensuring the smooth flow

of global trade, reducing transport costs, and improving logistics

efficiency (Xu et al., 2021, 2022). For instance, Perera, etc.

introduced a Machine Intelligence (MI)-based data processing

framework for ship performance and navigation data to formulate

suitable navigation strategies (Perera and Mo, 2017).

Figure 7D emphasizes model development and optimization,

centering on the ship FCP model, which incorporates digital

technologies, including blockchain, IoT, machine learning, and

AIS. The FCP in ships is crucial to decarbonization initiatives,

enhancing energy efficiency and reducing GHG emissions from

international shipping (Nguyen et al., 2023). Figure 7E illustrates

additional applications of digital technology in carbon reduction

within shipping, encompassing ship-port interfaces, identification

systems, and route optimization.

A burst keyword is a phenomenon where a keyword exhibits a

high frequency of occurrence within a designated timeframe. This

information illustrates the history of research hotspots, indicates

recent research trends, and aids in forecasting future research

directions (Lyu et al., 2023). To better understand the evolution of

research trajectories, the burst word analysis is presented in Table 7.

The years during which the 12 burst words emerged are 2016–2024.

The term “algorithm” emerged as a prominent buzzword from 2016
FIGURE 5

Cooperation network of institutions (From: VOSViewer).
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FIGURE 7

Clusters of keyword co-occurrence network. (A) represents the application of optimization and prediction. (B) represents the application of emission
prediction. (C) represents the application of logistics management and supply chain management. (D) represents the application of ship FCP model.
(E) represents other applications (From: VOSViewer).
FIGURE 6

Keyword co-occurrence network (From: VOSViewer).
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to 2018. Oil depletion, environmental change, condition monitoring,

and blockchain have been extensively examined since 2020. Air

quality, AIS, and autonomous ships emerged as prominent research

topics in 2021–2022. Since 2022, ANN, speed optimization, and

neural networks have emerged as prominent research focal points.
5 Analysis of research gaps and future
research directions

The bibliometric analysis indicates that digital technology

enhances the efficiency, intelligence, and sustainability of shipping

decarbonization. While advancements in this domain have

accelerated in recent years, several challenges remain to be

resolved. This review delineates three research focal points in

shipping decarbonization, derived from keyword co-occurrence,

burst word analysis, and literature review: speed optimization,

emission prediction, and autonomous ships. This section

emphasizes three recent developments and examines their

associated difficulties and opportunities.
5.1 Speed optimization

The relationship between FCP and speed is not linear. FCP is

considered to be proportional to the third power of the ship’s speed,

so a small decrease in speed implies a significant decrease in FCP

(Alvarez et al., 2010; Fagerholt et al., 2010). Shipping companies have

widely used digital technology for speed optimization. For example,

global shipping company Maersk uses a speed optimization system

based on big data and machine learning, which has helped Maersk

reduce FCP by about 10-15% on several routes (Luo et al., 2024b).

Several researchers have offered valuable insights and technical

solutions through various methodologies and viewpoints in speed

optimization, they have continued to refine their research from the

perspective of using weather archive data and route segmentation

methods and combining longitudinal inclination optimization. Kim

and Lee (2018) centered on employing Dynamic Programming (DP)

techniques to develop speed adjustment strategies for ships, targeting

energy conservation and emission reduction by efficiently managing

external factors. Their research integrated AIS data with marine

environmental data through MapReduce to analyze and quantify

speed variations caused by external factors. Previous literature has

included theoretical FCP functions in speed optimization models;

however, these functions are constrained by meteorological

circumstances encountered during navigation. Lee et al. (2018)

adopted an alternative strategy by creating a decision support

system to enhance speed by integrating weather archive data and a

Particle Swarm Optimization (PSO) methodology. Li et al. (2022)

utilized the route segmentation approach to develop a machine-

learning model for predicting FCP and shaft speed. They introduced

an iterative strategy for optimizing route segmentation, weather

loading, and speed. (Xie et al., 2023a) integrated the FCP

prediction model from the prior study. They introduced

optimization techniques for speed, longitudinal gradient, and nodes

across various wind and wave conditions in each segment.
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Summary and prospects: Speed affects only a quarter of total

supply chain costs, but it impacts half of delivery times andmore than

70% of the carbon footprint. To reduce ship emissions, scholars have

proposed rational control of ship speed, acceleration, engine speed,

and torque (Fan et al., 2024). Future research directions of digital

technology in speed optimization can focus on the in-depth

exploration of multi-objective optimization methods, such as real-

time balance between economic benefits and environmental impacts

by introducing dynamic weight adjustment strategies (Li et al.,

2024a). In addition, the FCP prediction model is optimized by

combining more advanced machine learning techniques to improve

prediction accuracy and adaptability. Intelligent algorithms are

further developed to solve multivariate dynamic speed optimization

problems in complex environments, such as integrating wind and

wave conditions, shiploads, and route adjustments. At the same time,

practitioners and people who develop digital technologies can

promote deeper integration between digital technologies, such as

synergizing machine learning with IoT, big data analytics, and real-

time sensing technologies to enhance comprehensive optimization

capabilities. Finally, global optimization methods based on big data

and real-time information processing are explored to provide more

efficient solutions for ship decarbonization.
5.2 Emission prediction

The shipping industry, a significant contributor to GHG and

pollutant emissions, has garnered international attention about

emission reduction due to the escalating global concern over

climate change and environmental protection (Xiao et al., 2023;

Luo et al., 2024a). In the area of emission prediction, researchers

have used techniques such as machine learning and big data to

improve their research in terms of optimization of prediction

models, data sources, and expansion of prediction methods.

Initially, researchers created numerous machine learning models to

enhance predictive accuracy regarding emission prediction. Ren et al.

(2022) developed an algorithmic model based on ridge regression

through data fusion techniques, combining dynamic information of the

ship and meteorological conditions. Papandreou and Ziakopoulos

(2022) developed an FCP model using machine learning algorithms,

especially XGBoost. Some researchers also improved the study by

combiningmachine learning, big data, and neural networks, in terms of

optimizing the FCP prediction model, and data sources and extending

the predictionmethods. Hu et al. (2019) developedmachine learning to

predict the FCP of ships under the influence of different marine

environmental factors, in particular Back Propagation Neural

Networks (BPNN) and Gaussian Process Regression (GPR). Tran

(2021) applied a combination of Monte Carlo (MC) simulation

methods and ANN to develop a probabilistic model based on

machine learning, for main diesel engine FCP prediction. Using

meteorological data and machine learning, Jaques et al. (2023)

developed a ridge regression-based algorithmic model to automate

FCP estimation under different weather conditions through data fusion

techniques, combining the ship’s dynamic information and

meteorological conditions. Cao et al. (2021) suggested a methodology

that integrates optical remote sensing with deep learning approaches to
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TABLE 6 Application of machine learning relevant to decarbonizing shipping.

Application Method Description Application Description Ref.

FCP estimation

A data-driven machine learning model
based on real-time monitoring of
intergranular air temperature, Relative
Humidity (RH), and CO2 concentration
to predict soybean quality during
bulk transport.

For predicting the FCP of a ship’s
main engine.

Jaques et al. (2023)

A combination of Monte Carlo (MC)
simulation methods and ANN was
applied to develop a probabilistic model
based on machine learning techniques.

Main diesel engine FCP prediction for
bulk carriers from launch to
current state.

Tran (2021)

A machine learning-based classification
model to identify operational phases by
analyzing motion behavior-related and
geospatial feature-related features in
AIS data.

Used to improve the accuracy of
emission estimates.

Duan et al. (2024)

The algorithmic model based on ridge
regression was developed through data
fusion techniques, combining dynamic
information of the ship and
meteorological conditions.

For automatic estimation of carbon
emissions and FCP of container ships
under different weather conditions
during the voyage.

Ren et al. (2022)

An FCP model is proposed using
machine learning algorithms, in
particular, XGBoost regression models.

For predicting the FCP of Very Large
Crude Carriers (VLCCs).

Papandreou and Ziakopoulos (2022)

Developed a black-box model based on
machine learning and a white-box
model based on mathematical methods
and also used Kwon’s formula as a data
preprocessing cleaning method for the
black-box model.

For predicting FCP rates of ships. Xie et al. (2023b)

A model for predicting FCP and carbon
emissions using operational data from
dual-fuel-propelled ships is presented.

For predicting FCP and
carbon emissions.

Lee et al. (2024)

Machine learning techniques,
particularly back propagation neural
networks (BPNN) and Gaussian process
regression (GPR), predicted the FCP of
ships under the influence of different
marine environmental factors.

For predicting FCP in different
marine environments.

Hu et al. (2019)

A Near Real-Time (NRT) carbon
accounting framework that combines
key factors such as ship sailing
characteristics, weather, and sea state,
which utilizes machine learning models
to enable carbon emissions tracking at
15-minute intervals.

For accurate carbon accounting. Li et al. (2024b)

Established a pilot-scale experimental
platform for solvent-based SBCC and
developed a carbon capture model
based on it

For reducing GHG emissions in the
marine transportation.

Wang et al. (2024)

Air quality monitoring
A machine learning tool for predicting
local pollutant concentrations.

For estimating the impact of port and
cruise ship traffic on urban air quality.

Dai et al. (2023)

energy management

An Approximate Model Predictive
Control (AMPC) based real-time energy
management strategy for hybrid
energy ships.

Real-time operation for energy
management of hybrid energy vessels.

Gan et al. (2022)

Development of a mathematical
relationship using simple linear
regression, polynomial regression, K

Estimated main and auxiliary engine
power for new vessels.

Okumus et al. (2021)

(Continued)
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TABLE 6 Continued

Application Method Description Application Description Ref.

Nearest Neighbor (KNN) regression,
and Gradient Booster (GBM) regression
algorithms to estimate engine power
based on the length (L), gross tonnage
(GT), and age of the vessel.

An FCP prediction model using
machine learning techniques such as
Decision Tree (DT), Random Forest,
Extra Tree, Gradient Boosting, Extreme
Gradient Boosting (XGB),
and CatBoost.

For reducing energy consumption. Melo et al. (2024)

Ship speed optimization

A comprehensive optimization
methodology that takes into account
speed, aspect, and speed-aspect
adjustments for different loading
conditions to achieve minimized FCP
over the entire voyage.

For optimizing the ship’s courier and
longitudinal inclination to reduce the
ship’s FCP.

Xie et al. (2023a)

route planner

A machine learning approach to feature
extraction and unsupervised route
planning for MASS using AADTW,
SCAF, and a new route optimization
algorithm based on AIS data.

Optimal routes for simulating different
types of vessels in complex
traffic waters.

Li and Yang (2023)

ship emissions estimation

Four machine learning algorithms, lasso
regression, support vector machine,
extreme gradient enhancement, and
ANN, were introduced to predict ship-
related BC emissions. A prediction
model was developed using datasets of
similar ship engines under different
steady-state conditions.

For predicting BC emissions from ships. Sun et al. (2022)

Predicting GHG emissions from peanut
supply chains, including those from
maritime transportation, by applying
Machine Learning-Based Predictive
Modeling (MLPM) using FAOSTAT
and EDGAR databases. Moreover,
building smart contracts on
Hyperledger Fabric to secure predictive
analytics against fraud.

For predicting GHG emissions in the
peanut supply chain.

El Hathat et al. (2024)

A shipping emissions inventory model
that incorporates machine
learning tools.

For estimating gas emissions. Fletcher et al. (2018)

A model for estimating FCP and
emissions of ships based on
hydrodynamic modeling of ships and
machine learning techniques using
information from AIS, ship information
databases, and met ocean data.

Estimating ship FCP at high
computational speeds using machine
learning techniques to assess new
measures to reduce GHG emissions.

Guo et al. (2022)

ship detection

Combining machine learning models
and TROPOMI satellite data, an
automated and scalable method was
developed to select potentially non-
compliant ships by predicting the
amount of NO2 expected to be
produced by a ship in a given
atmospheric condition to determine the
value of the ship’s inspection.

Automated and scalable options for
potentially non-compliant ships.

Kurchaba et al. (2023)
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forecast pollutant concentrations and assess fuel sulfur content by

analyzing ship exhaust plume images. He et al. (2022) devised a rapid

approach utilizing data panning, which markedly enhances the

computing efficiency of emission dispersion concentrations from

many vessels over extended durations and distances while

maintaining accuracy. Nonetheless, these publications have also

uncovered several hurdles to emission reduction within the maritime

sector. The initial issue is the quality and accessibility of data. Su et al.

(2024) demonstrated that the CatBoost algorithm excelled in

estimating the FCP of PCTC ships, although random forests or

neural networks may be more appropriate in alternative

investigations. The research conducted by Yuan et al. (2024)

uncovered the unintended consequences of emission reduction

strategies, including the IMO 2020 fuel sulfur regulation, which may

exacerbate global warming even as air quality improves, indicating the

necessity for a thorough evaluation of the long-term effects of

such measures.

Summary and prospects:
Fron
1. Model improvement and data integration. Developers

should integrate more diverse data sources into emission

prediction models, such as fuel price fluctuations, port

operating practices, and regulatory changes, among other

external factors. For example, Duan et al. (2024) introduced

a Random Forest-based approach to improve the accuracy

of emission estimation by examining the AIS data of a ship

to determine the ship’s operational phase. Meanwhile, the

study is extended to more ports and ship types to address

the limitations of current models in specific contexts.

2. Selection and optimization of intelligent algorithms.

Practitioners should select appropriate machine learning

algorithms based on specific application scenarios. For

example, Su et al. (2024) mentioned that CatBoost performs

well in certain prediction tasks, while random forests or neural

networks may be more suitable for complex alternative

surveys. Developers should continuously explore the
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performance advantages of different algorithms and

optimize parameter settings to improve accuracy.

3. Emerging technology applications. Practitioners and

developers can adopt various technological measures and

business strategies, especially SBCC, which is considered a

viable way to reduce emissions in the future. For example,

Wang et al. (2024) Established a pilot-scale experimental

platform for solvent-based SBCC and developed a carbon

capture In addition, real-time carbon accounting

technologies that integrate with digital technologies are

also noteworthy, as Li et al. (2024b) developed an NRT

carbon accounting framework that combines key factors

such as ship sailing characteristics, weather, and sea state.

4. Blockchain technology is introduced into smart emission

monitoring systems. Blockchain technology (e.g.,

Hyperledger Fabric) is used to achieve transparency and

traceability of emission data and enhance data management

efficiency. Practitioners can verify the authenticity of the

predicted data through the blockchain platform, providing

a reliable basis for regulation and decision-making. For

example, Elsisi et al. (2024) proposed an IoT architecture

that integrates deep learning and signal processing

technologies to monitor ship emissions in real time while

also resisting cyber-attacks.
5.3 Autonomous ship

Autonomous ships can significantly reduce shipping carbon

emissions by optimizing operations to improve fuel efficiency while

integrating alternative power systems such as methanol and electricity

(Yan et al., 2024). These technologies have demonstrated clear

environmental and economic advantages in short- and medium-haul

routes. In light of the swift advancement of the global transportation

sector and increasing apprehensions regarding climate change, the

marine industry is diligently investigating alternative energy sources

and using innovative technology to improve safety efficiency and

facilitate decarbonizing shipping (Xiao et al., 2024a; Xiao and Xu,

2024). Autonomous ships and navigation facilitated by digital

technology have emerged as a prominent research focus. In this area,

the study advances from optimizing the establishment and

optimization of alternative fuel and power systems, efficient

communication systems, and precise navigation systems.

Jovanovic et al. (2022) studied the feasibility of unmanned ro-ro

passenger ships in the Adriatic Sea region, analyzing the life cycle,

environmental, and economic performance of three ships on short,

medium, and long routes. They found that combining automation

with alternative fuels can bring environmental and economic

benefits in specific cases. Of these, methanol-powered and electric

vessels perform best. In addition, the economic advantages of

automated vessels are affected by the price volatility of fossils and

alternative fuels, highlighting the environmental advantages and

economic uncertainties in the development of autonomous vessels.

The enhancement of marine communication systems has emerged

as a critical concern concurrent with the advancement of
TABLE 7 Top 12 keywords with the strongest citation bursts.

Keywords Year Strength Begin End

Algorithm 2016 1.65 2016 2018

Optimization 2018 0.98 2019 2020

Big data analytics 2019 0.83 2019 2021

FCP 2020 2.37 2020 2021

Climate Change 2020 1.41 2020 2021

Condition monitoring 2020 0.95 2020 2022

AIS 2021 1.56 2021 2022

Air quality 2021 1.34 2021 2022

Autonomous ship 2021 0.78 2021 2022

Neural network 2022 1.57 2022 2024

Speed optimization 2018 1.19 2022 2024

ANN 2021 0.87 2022 2024
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autonomous ships, and it is this challenge that the research by

Jurdana et al. (2021) offers a unique solution to. These systems help

to optimize route and traffic management by supporting real-time

navigation, monitoring, and operational control of autonomous

vessels, thereby reducing FCP. Current maritime communication

systems encounter limitations, including low data rates, high costs,

and restricted capacity, particularly in the Global Maritime Distress

and Safety System (GMDSS) and AIS. Jurdana et al. proposed a

variable record length data compression technique utilizing

differential binary coding to mitigate this issue. This approach

accomplished compression by transmitting solely the data items

that have altered since the previous transmission, thus markedly

diminishing the volume of data sent. A recent publication examines

the enhancement of route planning and navigational safety for

MASS in maritime environments. Li and Yang (2023) introduced a

machine learning methodology leveraging AIS data, employing

AADTW, SCAF, and a novel route optimization algorithm for

MASS to facilitate feature extraction and unsupervised route

planning. The strategy significantly enhanced route planning for

real-time collision avoidance by emphasizing safety at critical

hotspots at intersections of established routes through a temporal

analysis approach.

Summary and prospects: These publications indicate several

critical avenues for the advancement of autonomous ships:
Fron
1. Route planning and navigation safety optimization.

Current research has applied AIS data and advanced

machine learning techniques (e.g., AADTW and SCAF)

to develop models for simulating optimal routes in complex

waters. For example, the route optimization algorithm

based on AIS data proposed by Li and Yang (2023) has

been able to extract features and implement unsupervised

route planning in real scenarios.

2. Autonomous ship energy efficiency and emission control. At

this stage, there are already technology applications for

energy efficiency optimization of autonomous ships. For

example, (Su et al., 2024) showed that by combining the

CatBoost algorithm and the FCP Prediction model, it is

possible to optimize the speed and energy consumption of

autonomous ships in real navigation. In addition, specific

studies targeting alternative energy sources (e.g., electric

boats and methanol fuels) have shown significant

environmental and economic advantages in selected routes.

3. Maritime communications and navigation systems. Maritime

communication and data compression technologies have

specific improvement programs, such as the differential

binary coding method proposed by Jurdana et al. (2021)has

significantly reduced the amount of data transmission in AIS

and GMDSS systems. This technique is currently being

deployed in selected pilot projects to support the real-time

communication and monitoring needs of autonomous ships.

4. Ship electrification and green design. Existing research on

ship electrification and green design has achieved initial

practice. Retrofitting of methanol-powered vessels has also

demonstrated the practical feasibility of alternative

energy technologies.
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In addition, Given the increasing global emphasis on reducing

carbon emissions, changes in relevant policies and regulations will

play a substantial role in shaping the trajectory of decarbonization

efforts within the shipping industry (Chen et al., 2023, 2024b). The

IMO has implemented several regulations to reduce the carbon

footprint of maritime transportation. Two important emission

regulations are the EU Monitoring, Reporting and Verification

(EU-MRV) and the IMO Data Collection System (IMO DCS),

both of which are part of the Ship Energy Efficiency Management

Plan (SEEMP) (Kanberoglu and Kökkülünk, 2021). To reduce CO2

emissions, the Chinese government has established a carbon trading

mechanism that allocates free emission allowances to industrial

companies, while companies exceeding the emission allowances are

not allowed to use CO2 in their operations (Wang et al., 2023).

Researchers should continually monitor and incorporate these

evolving policies to ensure that their findings are both consistent

with market demand and relevant to regulatory expectations.
6 Conclusions

This review offers a thorough assessment and analysis of digital

technology applications in decarbonization within the shipping

industry using a bibliometric methodology. Utilizing the SCI-

EXPANDED and SSCI databases, 201 publications published

between 2005 and 2024 were gathered through bibliometric methods

to elucidate the prevailing challenges and opportunities in the domain,

alongside the current status and trends regarding the application of

digital technologies in decarbonizing shipping. The review commences

with an exposition of the data collecting and research technique,

followed by an examination of collaboration among countries,

institutions, and authors through annual publication patterns and

collaboration network analysis. The review revealed a substantial

increase in research publications regarding the application of digital

technologies in shipping during 2015, signifying heightened interest in

this field. Journal studies indicate that publications like Sustainability,

Ocean Engineering, and the Journal of Marine Science and Engineering

have disseminated numerous works in this domain, potentially

establishing a significant academic stance about the employment of

digital technology in decarbonizing shipping. The survey identified

China, the UK, and the US as the primary contributors to research in

this domain, with China significantly ahead, indicating its prominence

and impact in the research of decarbonization technology for shipping.

Nonetheless, international collaboration in this domain has not

attained the requisite intensity and requires enhancement and

reinforcement in forthcoming research initiatives. Specific measures

can be implemented to enhance international collaboration, including

the creation of an international cooperation platform, the alignment of

policies and regulations, and the joint funding of research initiatives.

The authors’ analysis indicates that Li, Sun, and Lam possess the

highest research outputs, concentrating on ship speed optimization,

route planning, emission prediction, and FCP optimization. These

publications demonstrate that machine learning and deep learning

methodologies are crucial. Institution analysis indicates that Dalian

Maritime University, Shanghai Maritime University, and Nanyang

Technological University are leading research on shipping
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decarbonization. Examining the collaboration networks among these

institutions indicates that while certain partnerships exist, the overall

degree of collaboration is weak. Strategies to mitigate this phenomenon

encompass promoting interdisciplinary seminars and workshops,

creating collaborative research funds, and improving academic

communication platforms.

Co-occurrence analysis of keywords elucidates the research focal

points in shipping decarbonization, encompassing optimization,

forecasting, design, emission prediction, logistics management,

supply chain management, and ship FCP modeling. Machine

learning and deep learning are the predominant digital technologies

employed in shipping decarbonization. In addition, this publication

examines the developmental trajectory of exploding words in pertinent

domains by exploded word analysis and identifies that ANN, speed

optimization and neural networks are current research focal points.

This publication identifies three research hotspots in shipping

decarbonization: speed optimization, emission prediction, and

autonomous ships, based on keyword co-occurrence, exploded word

analysis, and literature review. The discourse encompasses

advancements, challenges, and opportunities in speed optimization,

emission prediction, and autonomous ship, along with potential

avenues for future research.

This review’s findings offer significant insights for researchers in

shipping decarbonization and indicate directions for further research.

However, this publication has limitations, as it exclusively focused on

SCI-EXPANDED and SSCI inside the WoS database for literature

collection, potentially constraining the range and diversity of the

scholarly publications acquired. As digital technology progresses and

applications broaden, future research is expected to investigate a

more extensive array of keywords and search methodologies to

capture the research dynamics and trends within the discipline.
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