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AviaryMOT: Aviary Attention-
based adaptive multi-object
tracking of cranes and
storks in wetlands
Chang Liu1*, Xuran Ma2, Jiahong Zhou2,
Nini Sun2 and Hengming Liu1

1Computer School, Beijing Information Science and Technology University, Beijing, China, 2Shandong
Changdao National Nature Reserve, Shandong, Yantai, China
This study focuses on tracking cranes and storks to aid in wetland ecological

protection. Multi-target tracking of these birds presents challenges such as

frequent occlusions, sudden appearances, and disappearances. To tackle these

issues, we propose a novel multi-target tracking algorithm, AviaryMOT, which

utilizes a fusion technique that combines shallow and deep features to enhance

tracking accuracy and effectiveness. We construct a dataset, BirdTrack, for

cranes and storks tracking. In the detecting stage, we proposed Aviary

Attention to effectively capture the features of birds, by integrating the

Coordinate Attention into the YOLOv8 framework and applying Soft-NMS to

improve detection in occluded scenarios. In the tracking stage, the BYTE data

association method effectively utilizes similarities between low-score detection

boxes and tracking trajectories, enabling the identification of true objects and

filtering out background noise. Experimental results show that our method

outperforms the state-of-art models, maintaining stable target trajectories

while ensuring high-quality detection.
KEYWORDS

multiple object tracking, Aviary Attention, YOLOv framework, ByteTrack,
wetlands protection
1 Introduction

Wetlands play a critical role in hydrological cycles, biodiversity conservation, and

climate regulation, yet their ecological integrity in Pakistan is increasingly threatened by

anthropogenic pressures and climate change (Aslam et al., 2023b; Aslam et al., 2024b).

Remote sensing and machine learning techniques, including supervised classification,

Tasseled Cap indices, and spectral analysis, have proven effective in monitoring wetland

dynamics, revealing significant declines in water bodies across various regions (Aslam et al.,

2023b; Aslam et al., 2024b; Aslam et al., 2024d). Studies employing advanced geospatial

modeling techniques project further wetland degradation under scenarios of rising

temperatures, groundwater depletion, and land-use changes (Aslam et al., 2024a; Aslam
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et al., 2024c). Currently, groundwater quality in urban centers faces

serious challenges from industrial effluents, with contamination

levels in some areas exceeding safe consumption standards;

mitigation strategies involving wastewater treatment show

potential to improve water quality (Naz et al., 2023; Naz et al.,

2024). These findings highlight the need for integrated approaches

that combine satellite data analysis, machine learning, and policy

interventions to protect wetlands and water resources against

increasing climatic and anthropogenic pressures (Aslam et al.,

2023a; Aslam et al., 2024a; Aslam et al., 2024c).

The success of environmental monitoring through machine

learning has catalyzed broader adoption of AI technologies in

ecological management. This technological paradigm shift is

particularly evident in advancements in computational technology

and the increasing sophistication of artificial intelligence, where the

trend of employing computer vision to analyze and interpret video

data in place of human visual processing has become increasingly

prominent. With advancements in computational technology and

the increasing sophistication of artificial intelligence, the trend of

employing computer vision to analyze and interpret video data in

place of human visual processing has become increasingly

prominent. Multi-object tracking (MOT) technology harnesses

sophisticated methodologies from various domains, including

pattern recognition, machine learning, computer vision, image

processing, and computational applications, to enable precise

localization and trajectory prediction of multiple targets. This

technology holds significant promise and potential economic

impact in a variety of applications, such as intelligent surveillance,

behavioral analysis, human-computer interaction, sports analytics,

and autonomous driving systems.

Although there has been significant development in deep

learning-based multi-target tracking methods, they are all

designed based on pedestrian datasets and still face some

challenges when applied to multitarget tracking of crane and

stork birds. The dynamic characteristics and significant

deformations of birds present three main challenges for tracking.

First, bird flocks exhibit higher maneuverability than ground

objects due to their three-dimensional movement space and

additional degrees of freedom. In addition, birds have relatively

low inertia, allowing them to accelerate, decelerate, and change

direction more flexibly. This, combined with complex aerodynamic

effects, makes their motion even more difficult to predict. Second,

birds often undergo frequent and drastic deformations during

flight, primarily due to their flapping-wing locomotion. Finally,

collective behavior is prevalent in bird flocks, further increasing the

complexity of tracking. However, when the tracking scene switches

to crane and stork bird habitats, due to the complexity of crane and

stork bird movements and the ambiguity of their characteristics,

these methods make it difficult to achieve good results in multi-

target tracking of crane and stork birds.

To strengthen the ability of the tracking algorithm to associate

inter-frame targets in complex environments and reduce mis-

tracking caused by changes in crane and stork bird habitats, this

paper introduces Coordinate Attention, which considers not only

channel information but also direction-related positional
Frontiers in Marine Science 02
information. Unlike 2D global pooling that transforms feature

tensors into a single feature vector with channel attention,

coordinate attention decomposes channel attention into two one-

dimensional feature encoding processes, aggregating features along

two spatial directions. In this way, remote dependency relationships

can be captured along one spatial direction while precise positional

information can be retained along the other spatial direction. The

obtained feature maps are then separately encoded into a pair of

direction-aware and position-sensitive attention maps, which can

be complementary applied to input feature maps to enhance the

representation of the objects of interest. Soft non-maximum

suppression (soft-NMS) can be conveniently introduced into the

algorithm without the need to retrain the original model, and the

c od e imp l emen t a t i o n i s e a s y w i t h ou t i n c r e a s i n g

computational overhead.

In summary, the main contributions of this paper are as follows:
1. We constructed the BirdTrack dataset for bird tracking,

which is entirely sourced from real-world environments

and meticulously annotated. The dataset comprises 20

video sequences, each containing an average of 16 target

trajectories, and includes motion imagery of cranes and

storks captured across diverse scenes, such as water

surfaces, mudflats, and the sky.

2. We proposed Aviary Attention to effectively capture bird

features by integrating Coordinate Attention and Soft-

NMS. This led to the development of the multi-target

tracking algorithm AviaryMOT, which enhances network

performance. The algorithm employs a fusion technique

that combines shallow and deep features to create a new

feature detection layer, thereby improving the accuracy and

effectiveness of convolutional neural networks in tracking

bird targets.
2 Related work

2.1 Multi-object tracking

The existing MOT works primarily fall into two main categories.

The first category involves detection based tracking, wherein each

frame begins with target detection, utilizing a pre-existing detector to

capture objects within video frames. Subsequently, features are

extracted to delineate target appearance and motion, facilitating

similarity value computation. During data association, targets are

partitioned into distinct groups, maintaining one-to-one association

constraints while employing matching algorithms to resolve data

association issues and maximize overall global similarity. With the

rapid advancements in detection algorithms, many methods leverage

robust detectors to enhance tracking performance. The YOLO series,

renowned for its efficient target detection and real-time processing

capabilities, is an appealing choice for integration into tracking

systems. Noteworthy for its simplicity, efficiency, and ease of

deployment, it has become the most favored detector. Its balance
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between accuracy and speed has led to its adoption by numerous

tracking algorithms. WANG et al. introduced JDE (Wang et al., 2020),

which utilizes the DarkNet’s YOLOv3 framework, incorporating a

ReID branch parallel to the detection branch. This branch extracts

feature vectors from the output feature map, utilizing the central

points of positive anchor boxes as the target’s appearance feature

vectors. ZHANG et al. proposed FairMOT (Zhang et al., 2021),

building upon JDE by selecting feature extraction at estimated

object centers, thereby mitigating alignment issues between features

extracted from coarse anchor boxes and target centers, effectively

enhancing tracking algorithm performance. ByteTrack (Zhang et al.,

2022) presents a simple, effective, and versatile association method,

tracking nearly all detection boxes instead of solely those with high

scores. For low-scoring detection boxes, similarity is utilized to recover

true targets while filtering out background detections. The SORT

(Bewley et al., 2016) algorithm employs a simple Kalman filter for

frame-by-frame data correlation and utilizes the Hungarian algorithm

for association measurement. Its simplicity enables SORT to achieve

commendable performance at high frame rates. However, due to its

disregard for target appearance features, SORT’s accuracy is

compromised when uncertainty in target state estimation is high.

Consequently, the introduction of cascaded matching and other

enhancements has yielded DeepSORT (Wojke et al., 2017), which

exhibits superior performance over SORT’s basic framework.

The other category integrates detection and tracking modules

into a single network for multitask learning, simultaneously

accomplishing object detection and tracking. Joint detection and

tracking algorithms typically detect two consecutive frames in a

video, employing diverse strategies to assess the similarity between

targets across frames, aiding in simultaneous tracking and

prediction. Prominent examples in this category include

FairMOT, CenterTrack (Zhou et al., 2020), and QDTrack (Pang

et al., 2021). On the other hand, Transformer-based tracking

integrates Transformer architectures into multi-object tracking.

Currently, there are primarily two approaches: TransTrack (Sun

et al., 2020) and TrackFormer (Meinhardt et al., 2022). In

TransTrack, the feature mapping of the current frame serves as

the Key, while the Query comprises the combination of target

features from the previous frame and the current frame. These

inputs drive the operation of the entire network.
2.2 The benchmark dataset for multi-
object tracking

In recent years, numerous benchmarks have been proposed.

PETS2009 (Ferryman and Shahrokni, 2009) stands as one of the

earliest MOT benchmark tests, comprising three video sequences

for pedestrian tracking. KITTI (Geiger et al., 2013), designed for

autonomous driving, consists of 50 video sequences focusing on

tracking pedestrians and vehicles in traffic scenes. In addition to 2D

MOT, KITTI also supports 3D MOT. UA-DETRAC (Wen et al.,

2020) comprises 100 challenging sequences captured from real-

world traffic scenarios. This dataset provides rich annotations for

multi-object tracking, including lighting conditions, occlusion,
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truncation ratios, vehicle types, and bounding boxes.

MOTChallenge (Dendorfer et al., 2021) encompasses a series of

benchmark tests. The initial version, MOT15 (Leal-Taixé, 2015),

consisting of 22 sequences, was utilized for tracking. Due to the

relatively low difficulty of MOT15 videos, MOT16 (Milan, 2016)

compiled 14 new, more challenging sequences. MOT17 employed

the same videos as MOT16 but enhanced annotations and applied

different evaluation systems. Subsequently, MOT20 (Dendorfer,

2020) was introduced for MOT in crowded scenes, featuring new

sequences. MOTS (Voigtlaender et al., 2019) is a newly introduced

multi-object tracking dataset. In addition to 2D bounding boxes,

MOTS provides pixel masks for each target, aiming to facilitate

simultaneous tracking and segmentation. BDD100K (Yu et al.,

2020), recently introduced for video understanding in traffic

scenes, offers multiple tasks including multi-object tracking.

AnimalTrack (Zhang et al., 2022) provides a new platform

dedicated to studying animal MOT.
2.3 The mechanism of attention

The attention mechanism serves as a technique to enhance the

performance of network models, enabling them to focus on crucial

features. The theory of attention mechanisms has established a

comprehensive and mature framework in the field of deep learning.

(Hu et al., 2018). introduced a Squeeze-and-Excitation (SE) block to

obtain weights corresponding to each channel. This is achieved by

compressing features to aggregate global channel information.

When SE interacts with information, the correspondence between

each channel and its weight is indirect. Therefore, they designed an

Effective Channel Attention (ECA) (Wang et al., 2020) by replacing

the fully connected (FC) layer in SE with one-dimensional

convolution with adaptive kernel sizes. (Woo et al., 2018).

proposed the Convolutional Block Attention Module (CBAM),

which combines channel attention and spatial attention.

As a plug-and-play module, it can be embedded into

convolutional neural networks to enhance network performance.

While SE and CBAM have improved network performance, there is

still room for further exploration and refinement in attention

mechanisms (Liu et al., 2023). (Hou et al., 2021). found that SE

and CBAM’s compressed features lose too much information.

Hence, they proposed Lightweight Coordinate Attention Blocks to

address this issue. (Long et al., 2015). designed a spatial attention

module and a channel attention module to extend Fully

Convolut iona l Networks (FCN) , mode l ing semant ic

interdependence in spatial and channel dimensions, respectively.

(Zhang et al., 2023). generated feature maps at different scales in the

channel to construct a more efficient channel attention mechanism.
3 The method

We introduced Aviary Attention by integrating Coordinate

Attention into YOLOv8 and applying Soft-NMS to improve

detection in occluded scenarios. In the tracking stage, we used the
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BYTE data association method to match low-confidence detections

with tracking paths, helping to identify true objects and filter out

background noise. The pipeline of the proposed AviaryMOT is

shown in Figure 1.
3.1 The network architecture of adaptive
multi-object tracking

The YOLOv8 (Terven et al., 2023) detection algorithm

represents a significant advancement in the YOLO series,

integrating cutting-edge technologies and design principles to

achieve precise and efficient object detection. Built upon the

architecture of YOLOv5 (Jocher et al., 2022), YOLOv8 introduces

important enhancements. The C3 module of YOLOv5 is replaced

by the C2f module, drawing inspiration from the Cross Stage Partial

(CSP) concept. This fusion leverages the advantages of the C3

module and the Efficient Lightweight Attention Network (ELAN)

from YOLOv7 (Wang et al., 2023), resulting in fine-grained

gradient insight and lightweight configuration. The backbone of

YOLOv8 adopts the Spatial Pyramid Pooling Fusion (SPPF)

module, employing three consecutive max-pooling layers with a

size of 5 × 5. These pooled feature maps are then concatenated,

effectively encompassing objects of different scales. This blueprint

ensures accurate detection capability while maintaining

computational efficiency. In the neck component, feature fusion is

performed using the Path Aggregation Network and Feature

Pyramid Network (PAN-FPN) approach. This method optimizes

the integration and utilization of feature layers at different scales,

thereby improving overall detection performance. The neck module

seamlessly integrates two upsampling operations, multiple C2f

modules, and a decoupled head structure inspired by YOLOX

(Ge, 2021). This combination emphasizes target localization and

classification accuracy.

YOLOv8 integrates functionalities such as pose estimation and

rotated object detection by replacing the detection head while

keeping the main network architecture unchanged. When

adopting a two-branch detection head with shared parameters,

the feature extraction capability tends to weaken. For decoupled

heads, the improvement in feature extraction is more significant

when detecting multiple object categories, whereas for single-class
Frontiers in Marine Science 04
detection, a coupled head with shared parameters generally

performs better since both classification and regression branches

are category-dependent. To further enhance YOLOv8 ’s

performance, our method incorporates a Coordinate Attention

(CA) module into the network architecture, which strengthens

multi-scale feature extraction by improving spatial awareness and

emphasizing positional information, thereby optimizing the overall

network structure.

To further enhance the performance of YOLOv8, this paper

proposes an improved YOLOv8 algorithm that combines an

attention mechanism module. This combination aims to enhance

spatial awareness, focus on positional information, and optimize the

network architecture. The network architecture of the proposed

model is illustrated in Figure 2.

The synergistic attention mechanism consists of two

consecutive steps: coordinate information embedding and

coordinate attention generation. As illustrated in Figure 3,

initially, two spatial ranges of the pooling kernel encode

horizontal and vertical information for each channel. In the

second step, a shared 1 × 1 convolutional transformation function

is applied to the concatenated outputs of the two pooling layers.

Subsequently, the coordinate attention divides the resulting tensor

into two separate tensors, thereby generating attention vectors with

the same number of channels for the input X in horizontal and

vertical coordinates. This can be expressed by Equations 1–6.

zh = GAPh(X) (1)

zw = GAPw(X) (2)

f = d (BN(Conv1�1
1 (½zh; zw�))) (3)

f h, f w = split(f ) (4)

sh = s(Conv1�1
h (f h)) (5)

sw = s(Conv1�1
w (f w)) (6)

where GAPh and GAPw denote pooling functions for vertical

and horizontal coordinates, and sh ∈ RC�1�W and sw ∈ RC�H�1

represent corresponding attention weights.
FIGURE 1

Pipeline for the proposed AviaryMOT.
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To embed positional information into channel attention,

allowing the mobile network to engage in large areas while

avoiding excessive computational overhead, the channel attention

is decomposed into two parallel one-dimensional feature encoding

processes. This effectively integrates spatial coordinate information

into the generated attention map, alleviating positional information

loss caused by 2D global pooling. Specifically, two one-dimensional

global pooling operations are employed to aggregate input features

in the vertical and horizontal directions into two independent

direction-aware feature maps. These two feature maps,

embedding direction-specific information, are then encoded into
Frontiers in Marine Science 05
two attention maps, each capturing long-range spatial dependencies

along one spatial direction of the input feature map. As a result,

positional information is retained in the generated attention maps.

Subsequently, the two attention maps are applied to the input

feature map through multiplication to emphasize the

representations of interest. This approach not only captures inter-

channel information but also captures direction-aware and

position-sensitive information, aiding the model in more

accurately localizing and identifying objects of interest.
3.2 Aviary Attention Block

The Aviary Attention Block incorporates positional

information into attention mechanisms, dynamically adjusting

representation weights at different locations in feature maps to

enhance the model’s sensitivity and modeling capability for spatial

information. It introduces positional encoding to represent absolute

positional information for each location in the input feature map,

enabling better understanding of relative positional relationships.

The mechanism operates through two primary steps: attention

weight computation and feature weighted summation. To capture

precise positional attention across image dimensions, the input

feature map undergoes width-wise and height-wise global average

pooling:

zhc (h) =
1
W o

0≤i≤W
xc(h, i) and zwc (w) =

1
H o

0≤j≤H
xc(j,w) (7)

where zhc (h) ∈ RC�H�1 and zwc (w) ∈ RC�1�W . These pooled

features are then concatenated and processed through a shared 1�
1 convolutional module with channel reduction ratio r:
FIGURE 3

Coordinate attention block.
FIGURE 2

Framework of the improved YOLOv8 network model.
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f = d (F1(½zh, zw�)) (8)

producing f ∈ RC=r�1�(H+W), where d denotes batch

normalization. The transformed features are then split and

convolved to generate dimension-specific attention weights:

gh = s (Fh(f
h)) and gw = s(Fw(f

w)) (9)

with s representing the sigmoid activation function. The final

output combines original features with these attention weights:

yc(i, j) = xc(i, j)� ghc (i)� gwc (j) (10)

The comprehensive description of the Aviary Attention

architecture is expressed by Equations 7-10. This architecture

provides several advantages: (1) Enhanced spatial relationship

modeling through explicit positional encoding, (2) Dynamic

weight adjustment that improves perception of both local

structures and global layouts, (3) Flexible integration requiring

minimal architectural modifications, and (4) Increased model

robustness by focusing computation on salient regions. The

coordinate attention mechanism significantly boosts spatial

representation throughout the network, improving performance

across various vision tasks while maintaining parameter efficiency.
3.3 Soft-NMS implementation for Aviary
Attention

In the original YOLOv8 framework, non-maximum

suppression (NMS) (Neubeck and Van Gool, 2006) is utilized to

refine candidate boxes. However, the selection of the NMS

threshold significantly impacts the accuracy of crane and stork

bird detection. An overly conservative threshold may suppress valid

positive instances, while an overly lenient threshold may lead to an

increase in false positive instances. Given the common occlusion

issues in crane and stork bird detection, traditional NMS often

results in missed detections. To overcome this limitation, we

integrated Soft-NMS (Bodla et al., 2017) to enhance the detection

performance of crane and stork birds in occluded scenes. Soft-NMS

is tailored for closed datasets, and its mathematical expression is as

follows:

si =
si, iou(M, bi) ≥ Nt

si(1 − iou(M, bi)), iou(M, bi) ≥ Nt

(
(11)

Where Sirepresents the score of the i th candidate box, M and

birespectively denote the coordinates of the highest scoring

candidate box and the i th candidate box, the function iou(M,bi)

quantifies the intersection over union ratio between the i th

candidate box and M, Ntrepresents the predetermined threshold.

However, Equation 11 is not a continuous function. When a

bounding box overlaps with M by an iou exceeding the threshold

Nt, its score undergoes a discontinuous change, resulting in

significant fluctuations in the detection results. Therefore, Soft-

NMS ultimately provides a more stable and continuous score

resetting function as follows:
Frontiers in Marine Science 06
si = sie
−
iou(M,bi )

2

s , ∀bi ∉ D : (12)

Soft-NMS improves upon the hard suppression mechanism of

traditional NMS by adopting a dynamic decay strategy for

overlapping bounding boxes. The process involves: first sorting

detection boxes by confidence score, then adding the highest-

scoring box to the result set. Instead of directly discarding

remaining boxes, their scores are decayed based on IoU

(Intersection over Union) with the current highest-scoring box,

using either linear or Gaussian weighting.

By employing this score decay approach in Equation 12, for

certain highly-scored bounding boxes, they may still be considered

as correct detection boxes in subsequent computations, unlike

NMS, which essentially “eliminates” them. Thus, this method can

effectively enhance the model’s recall rate. The computational

complexity of Soft-NMS is equivalent to that of NMS, making it a

more versatile non maximum suppression method. NMS can be

viewed as a binary special case of Soft-NMS.
4 Experiment

4.1 The dataset

To comprehensively evaluate the multi-object tracking

capabilities of the model, we conducted experiments on both our

custom-built BirdTrack dataset and the publicly available MOT17

dataset. MOT17 is a representative dataset in the MOT challenge,

comprising data collected from the real world and annotated. It

consists of 7 training subsets and 7 validation subsets. The

BirdTrack dataset is a dataset created and proposed by our team,

focusing on multi-object tracking of crane and stork bird species.

When constructing the dataset, BirdTrack selected videos

containing a large number of crane and stork bird activities.

Unlike other multi-object tracking datasets, the BirdTrack dataset

aims to include only crane and stork bird species as tracking targets

in the videos, excluding other objects that could be used for tracking

(Luo et al., 2021). The dataset includes species of crane and stork

from the Yellow River Delta, captured in their natural habitat, with

no requirement for specifying the exact number of stork species.

And the dataset covers field environments across different seasons

and time periods, without annotations for species, age, or

movement patterns.

After determining the requirements for the initial screening

data, we began selecting the original video sequences that met the

criteria. The main sources of video data include two aspects: one is

from online sources, mainly selecting crane and stork bird activity

videos from the internet with clear video quality but potential post-

processing artifacts. The other is from protected area monitoring;

the data collection work received strong support from the Yellow

River Delta Protected Area. The protected area provided some

original monitoring videos, which the production team screened

and cropped to extract the required video sequences. Although the

data from protected area monitoring is more authentic and reflects

the natural activity patterns of crane and stork birds, the video
frontiersin.org
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quality is relatively poor due to limitations in the image acquisition

capabilities of the monitoring equipment, with low resolution.

Ultimately, the entire dataset comprises 12 video sequences, with

an average length of 600 frames per video and no fewer than 10

targets appearing in each video. Table 1 compares the specific

parameter details of BirdTrack with other general multi-object

tracking datasets.

The dataset originates from the wetlands, collected entirely

from crane and stork birds and annotated following the standard

MOT dataset format, mainly detailing basic information such as

video frame rate and resolution, as shown in Figure 4. It comprises a

total of 16 training subsets and 4 testing subsets. In the realm of

deep learning, the objective of multi-object tracking tasks is to train

and evaluate deep trackers. BirdTrack focuses on multi-object

tracking of crane and stork birds. When constructing the dataset,

BirdTrack selected videos containing a large number of crane and

stork bird activity scenes. Unlike other multi-object tracking

datasets mentioned earlier, BirdTrack’s videos strive to include

only crane and stork birds as tracking targets, excluding other

objects that could be used for tracking. This approach not only

reduces the difficulty of dataset creation but also ensures the

dataset’s specialization in crane and stork bird tracking. The

BirdTrack dataset is constructed to provide a dedicated

benchmark for tracking crane and stork species. The following

principles are adhered to in the dataset construction process:
Fron
1. Specialized Benchmark: The primary goal of BirdTrack is to

offer a specialized benchmark for tracking crane and stork

species. The dataset should ensure the continuity of video

sequences and consistency between frames to enable

accurate target tracking. Appropriate strategies should be

in place to handle cases of target occlusion, disappearance,

and reappearance.

2. Annotation Quality and Completeness: The quality of

annotations directly affects model training outcomes and

performance evaluation. Every target in the dataset should

be accurately and fully annotated, including key

information such as bounding boxes, categories, and IDs.
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3. Diversity and Representativeness: The movement scenarios

of crane and stork species are much more varied than those

of humans, so the dataset should include video sequences

from diverse scenes to ensure model generalization.

Additionally, the dataset should be representative of

typical real-world applications.
4.2 Evaluation metrics

To better compare our model’s performance with existing

methods, we employ evaluation metrics identical to those used in

the MOT challenge. Specifically, the metrics used include High-

Order Tracking Accuracy (HOTA), Multi-Object Tracking

Accuracy (MOTA), Identity Switches (IDS), Identity F1 Score

(IDF1), False Positives (FP), and False Negatives (FN). Among

these metrics, MOTA is the most widely used and closely represents

human visual assessment. A higher MOTA indicates that the

proposed method has the ability to balance various factors.

HOTA comprehensively evaluates the performance of detection

and data association. IDF1 focuses more on association

performance, with a higher IDF1 score indicating that most of an

object’s images are mapped to the same identity. FP and FN are

defined as the number of incorrect targets and missed correct

targets, respectively.
4.3 Experimental details

The method proposed in this paper is implemented based on

the PyTorch 1.9.0 framework. The model runs on a Linux 18.04

system and is trained from scratch using two NVIDIA GTX 3090

GPUs. The batch size for the DataLoader is set to 16, and the SGD

optimization method is chosen. CUDA v11.1 is utilized to accelerate

computations, with a batch size of 8 and an initial learning rate of

0.01. We employ the Warmup strategy to gradually increase the

learning rate during training. The model is initially trained for 100
TABLE 1 Comparison of details of multi-object tracking datasets.

Datasets MOT17 MOT20 AnimalTrack GMOT-40-Animal BirdTrack

Number of videos 14 8 58 12 20

Average duration 33.0 66.8 14.2 7.1 28.2

Minimum duration 17.0 17.0 6.5 3.0 7.0

Maximum duration 463.0 535.0 823.7 85.0 123

Average trajectories 95 479 33 70 16

Maximum trajectory 222 1211 128 133 24

Frame rate 25 25 30 30 25

Total number of frames 11 K 13 K 24.7 K 2.6 K 12 K
frontiersin.org

https://doi.org/10.3389/fmars.2025.1524134
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Liu et al. 10.3389/fmars.2025.1524134
epochs on the MOT17 dataset, followed by fine-tuning for 40

epochs, with a training duration of approximately 56 hours.

Similarly, on the BirdTrack dataset, the model is trained for 100

epochs initially, followed by 40 epochs of fine-tuning, with a

training duration of about 49 hours. During fine-tuning, the

learning rate starts from the initial value and decreases after 10

epochs. Due to variations in the total number of tracks per frame in

trajectory tracking, to align the lengths of tracking results across all

frames, we pad empty tracking results in each frame’s output when

stacking multi-frame results into batches. The training results of the

improved YOLOv8 mode are shown in Figure 5.
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4.4 Compare the improved method with
attention mechanism

As shown in Table 2, we evaluated our proposed model based

on the YOLOv8 baseline network. The integration of Soft-NMS

technology resulted in significant improvements across various

performance metrics. Notably, we observed an increase in

precision by 0.93%, recall by 1.55%, and mAP0.5 by 0.61%.

Furthermore, we achieved a reduction in parameter count by

39.98% and a decrease in FLOPs by 35.8%. When combined with

Coordinate Attention, the precision improved by 3.38%. These
FIGURE 5

Training results of the improved YOLOv8 model.
FIGURE 4

Scenes in the BirdTrack dataset.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1524134
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Liu et al. 10.3389/fmars.2025.1524134
findings underscore the effectiveness of these enhancement

techniques in optimizing the YOLOv8 model, enhancing object

detection capabilities while maintaining a balance between accuracy

and lightweight design.

Although the individual performance may decrease after

incorporating CA, the combination of Soft-NMS and Coordinate

Attention can improve performance compared to the baseline,

owing to the complementary nature of these two techniques. Soft-

NMS suppresses redundant detections, compensating for the slight

performance decrease caused by Coordinate Attention.

Additionally, the integration of Coordinate Attention provides

benefits such as reducing complexity and computational costs,

enhancing feature representation, and increasing receptive fields,

which contribute to overall performance improvement.
4.5 Compare the improved method on
different datasets

We employed a straightforward yet effective multi-object

tracking data association method called BYTE. With the

improved YOLOv8 detector, AviaryMOT, compared to the

original ByteTrack, achieved an increase of 1.5 MOTA and 1.8

IDF1 on the MOT17 test set at a speed of 30 FPS. For the original

ByteTrack algorithm, as shown in Table 3, MOTA scores recorded

on four different datasets were (67.4,67.0,38.5,53.7), indicating

high accuracy and effectiveness in tracking multiple targets. On

the other hand, when used in conjunction with the YOLOv8

detector, as shown in Table 4, MOTA increased to 67.9%, and

IDF 1 score increased to 71.5%, demonstrating improved detection

and tracking precision. False positives (FP) and false negatives

(FN) values were 9633 and 170323 respectively. A comprehensive

improvement over ByteTrack is evident. Overall, both algorithms

demonstrate their capability to effectively track targets within the

given data. These results provide valuable insights into the tracking

performance of each algorithm and aid in selecting the most
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suitable algorithm based on specific tracking requirements and

dataset characteristics.
4.6 Ablation study

As shown in Table 5, the integration of Soft-NMS technology

resulted in significant improvements across various performance

metrics. The experiments observed a 0.93% increase in precision,

1.55% improvement in recall, and 0.61% enhancement in mAP0.5.

Additionally, the improved method achieved a 39.98% reduction in

parameter count and 35.8% decrease in FLOPs.

The individual performance with CA alone shows degradation

compared to the baseline. However, the combination of Soft-NMS

and Coordinate Attention improves performance due to their

complementary nature. Soft-NMS suppresses duplicate detections,

compensating for the slight performance drop caused by

Coordinate Attention. Furthermore, the integration of Coordinate

Attention provides benefits such as reduced complexity and

computational costs, enhanced feature representation, and

increased receptive field, contributing to improved overall

performance while maintaining a balance between accuracy and

lightweight design.
4.7 Compare different methods on
BirdTrack

Table 6 presents the results of our method and other tracking

approaches on the BirdTrack dataset, including DeepSORT,

CenterTrack, TrackFormer, GSDT, and MOTR. Since these

methods have not been previously evaluated on our custom

BirdTrack dataset, we implemented them on our experimental

setup to obtain their results. Each indicator in the table is

accompanied by an arrow, where “ ↑ “ indicates higher values are

preferred, and “ ↓ “ indicates lower values are desired.
TABLE 3 Comparing ByteTrack on different data sets.

Data Sets IDF1 ↑ MOTA ↑ IDs ↓ FP ↓ FN ↓

MOT17 70.0 67.4 1331 9939 172636

MOT20 70.2 67.0 680 9685 160303

AnimalTrack 51.2 38.5 1309 31591 116587

BirdTrack 59.7 53.7 70 1791 23612
TABLE 2 Comparison experiments.

Model Precision Recall mAP0.5 Parameters FLOPs/G

YOLOv8n 0.857 0.710 0.820 3005,843 8.1

+Soft-NMS 0.865 0.721 0.825 3005,843 8.1

+CA 0.841 0.682 0.789 1804,031 5.2

+Soft-NMS+CA 0.886 0.653 0.793 1804,031 5.2
In each column, the best result is in bold.
TABLE 4 Comparing our methods on different data sets.

Data Sets IDF1 ↑ MOTA ↑ IDs ↓ FP ↓ FN ↓

MOT17 71.5 68.9 1318 9633 170323

MOT20 71.3 68.8 680 9685 160303

AnimalTrack 51.9 43.0 1247 29994 115436

BirdTrack 61.7 60.1 47 1297 19372
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From Table 6, it is evident that our algorithm achieves

outstanding results on the BirdTrack dataset in terms of MOTA

and IDF1, with scores of 60.1% and 61.7% respectively, leading the

second-best by 6.3% and 0.5% respectively. Apart from MOTA and

IDF1, other metrics also show some improvement with our

proposed method. However, the performance of our method on

FP and FN is not the best, which may be attributed to the similarity
Frontiers in Marine Science 10
between falsely detected and correctly identified targets, leading to

false positives.

The excellent results of MOTA and IDF1 demonstrate that our

model exhibits robust tracking performance, maintaining stable

trajectories. This is mainly due to the utilization of the advanced

YOLOv8 detection algorithm and the incorporation of the

improved attention mechanism, Coordinate Attention, which

enhances the extraction of receptive field features. Figure 6

illustrates the tracking results of the improved model on samples

of bird images. These images depict various scenes, including sky,

water, and land scenarios. The bounding boxes along with the

corresponding class labels and confidence scores indicate the

detected birds and their associated levels of certainty. The

improved model can detect more birds, including those in

densely populated areas with complex backgrounds. The

bounding boxes can accurately localize the birds, even in complex

scenes with dense bird populations. Furthermore, the improved

model demonstrates increased sensitivity to birds of various sizes. It

can successfully detect and track birds of different sizes and

distances, thereby comprehensively covering birds of different

scales. This capability is particularly important in real-world

scenarios where birds may appear at different scales. The

examples of Crane stork bird tracking results are shown in Figure 6.
TABLE 5 Ablation study (the best result is in bold in each column).

Model Precision Recall mAP0.5 Parameters FLOPs/G

YOLOv8n 0.857 0.710 0.820 3,005,843 8.1

+SoftNMS 0.865 0.721 0.825 3,005,843 8.1

+CA 0.841 0.682 0.789 1,804,031 5.2

+SoftNMS+CA 0.886 0.653 0.793 1,804,031 5.2
TABLE 6 Comparison of the methods on the BridTrack test set.

Methods IDF1 ↑ MOTA ↑ IDs ↓ FP ↓ FN ↓

DeepSORT 45.1 33.9 44 1276 34677

CenterTrack 50.6 42.4 15 1849 31015

MOTR 53.1 42.0 61 1598 27725

TrackFormer 57.3 49.2 64 1634 25654

ByteTrack 59.7 53.7 70 1791 23612

OC-Sort 60.9 51.1 63 1638 22653

Bot_Sort 61.2 53.8 57 1376 21768

Ours
(AviaryMOT)

61.7 60.1 47 1297 19372
In each column, the best result is in bold.
FIGURE 6

The examples of Crane stork bird tracking results.
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5 Discussion

ByteTrack exhibits strong robustness to occlusion due to its

accurate detection performance and the assistance of low-scoring

detection boxes. The primary goal of multi-object tracking is to

assign IDs to detected objects and maintain consistent IDs for the

same objects across subsequent frames. Most existing work in this

field is based on pedestrian datasets, where challenges such as

occlusion, background clutter, and motion blur are less prevalent.

However, in complex environments like those involving stork and

heron birds, these adverse conditions occur more frequently,

making it exceedingly difficult to maintain stable tracking.

This paper proposes a novel multi-object tracking algorithm,

AviaryMOT, based on YOLOv8. AviaryMOT introduces an

improved attention mechanism module called Coordinate

Attention and Soft-NMS into the YOLOv8 detector compared to

other methods. AviaryMOT can enhance network performance,

strengthen the model’s feature extraction capabilities, maintain

stable tracking in complex environments, and achieve better

results by weighting channel and spatial attention. Experimental

results on a stork and heron bird multi-object tracking dataset

demonstrate that AviaryMOT performs excellently in tracking these

birds. Several evaluation metrics reach optimal performance,

validating the effectiveness of the proposed approach.
6 Conclusion

In bird multi-object tracking scenarios, challenges such as

frequent occlusions, multiple appearances and disappearances of

targets, and high visual similarity among birds are commonly

encountered. To address these issues, we proposed a bird multi-

object tracking algorithm called AviaryMOT, which utilizes a fusion

technique of shallow and deep features to construct a new feature

detection layer, thereby enhancing the accuracy and effectiveness of

convolutional neural networks in tracking bird targets. The

AviaryMOT algorithm integrates the Coordinate Attention

module into the YOLOv8 architecture and incorporates SoftNMS

to improve the detection performance of crane and stork species in

occluded scenarios. Additionally, it employs the BYTE data

association method, effectively leveraging the similarity between

low-confidence detection boxes and tracking trajectories to extract

actual targets from low-confidence boxes while filtering out

the background.

Based on YOLOv8 as the object detector, this algorithm

combines an improved non-maximum suppression (NMS)

approach to significantly enhance detection performance for

crane and stork species in complex scenes. Evaluation

experiments conducted on multiple public datasets demonstrate

that the proposed AviaryMOT algorithm outperforms existing

models overall, maintaining the stability of target trajectories

while ensuring high-quality detection.

Our approach exhibits good versatility and can adapt to various

complex application scenarios, including but not limited to those
Frontiers in Marine Science 11
involving stork and heron birds. Particularly in outdoor scenarios

involving wildlife, AviaryMOT demonstrates highly competitive

performance. In the future, we believe that our model can be used

for multi-object tracking in important complex scenarios involving

stork and heron birds and for exploring their activities.
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Terven, J., Córdova-Esparza, D.-M., and Romero-González, J.-A. (2023). A
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