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Understanding drivers of variability in oceanic primary productivity is essential to

increase our understanding of the functioning of marine ecosystems and

biogeochemical cycles. Here, interannual variability of satellite-derived

chlorophyll-a (CHL) and its underlying oceanographic processes are analyzed

in six coastal regions of the tropical and south Atlantic. Along the South American

coast, sea-surface height (SSH) and alongshore velocity, proxies for surface

flows, were identified as the main drivers. Along the African coast, variations in

sea-surface temperature (SST) and SSH related to coastal upwelling, were the

dominant drivers. Important links to the Tropical Southern Atlantic, Dipole Mode

Index, Western Hemisphere Warm Pool, and Southern Oscillation Index indices

were identified, indicating potential role of teleconnections in the CHL-

variability. The identified driver-linked variables were used to reconstruct the

regional CHL series using multi-linear regressions and a neural-network model.

The multi-linear models were able to reproduce significant fractions of the

observed CHL variance. In particular, a model based on eigenvalues from an

empirical orthogonal function decomposition of SST, outperformed the others.

The neural-network model shows the highest performance reproducing most of

the CHL variance (> 70%), but it presents difficulty to deduce the relative

importance of individual drivers. Beyond this fitting/training period, the multi-

linear model show better results respect to the neural-network model, especially

that based on oceanographic variables. These CHL-reconstruction models

present the possibility to reproduce CHL in periods when its observation is

unavailable and even to predict it in multi-year climate projections.
KEYWORDS
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1 Introduction

The tropical and south Atlantic encompasses diverse oceanic

regions of great ecological and socioeconomic importance.

Commonly referred to as North, East and South Brazil and

Patagonian Shelves, and Canary, Guinea and Benguela Currents,

these regions are part of the so-called Atlantic Large Marine

Ecosystems (e.g., Kessler et al., 2022). These ecosystems are generally

characterized by high primary productivity and fisheries (Kessler et al.,

2022), hence understanding their environmental variability is crucial to

design measures for their protection and adaptation under extreme

scenarios. Ocean biogeochemistry plays a determinant role on those

ecosystems by sustaining plankton communities which are the base for

the marine food web. Understanding the physical drivers that modulate

the biogeochemical conditions in tropical/south Atlantic coastal regions

has been the focus of diverse studies, normally using either primary

productivity or chlorophyll-a (CHL) as a proxy for the phytoplankton

biomass. These studies have shown relations between the biological

production and diverse physical factors such as the large-scale

circulation (Carr and Kearns, 2003), the combined effects of Ekman

transport and shelf width (Patti et al., 2008), surface horizontal stirring

and mixing (Rossi et al., 2008), mesoscale eddy activity (Gruber et al.,

2011), and dust deposition (Ohde and Siegel, 2010). A more recent

study analyzed the physical-biogeochemical drivers of the seasonal and

spatial variability of primary productivity in the four Eastern Boundary

Upwelling Systems, using mostly satellite and reanalysis products, and

found that macronutrient supply and light limitation are the dominant

drivers off Northwest Africa and Benguela, with evidence of iron

limitation (Messié and Chavez, 2015).

CHL is the most common proxy for the biological production in

the world ocean, and satellite sensors have been of paramount

importance to provide information about this variable. Although

the available satellite products have a wide spatio-temporal coverage

of the CHL, these products still present limitations that prevent

them from providing a complete coverage over the world ocean, in

addition to the relatively short time span (usually from the late

1990’s). To mitigate this issue, there have been efforts to estimate

the CHL by empirical methods from diverse oceanographic data.

For example, long-term CHL changes were estimated using

generalized additive models from historical shipboard

oceanographic measurements, showing that the average CHL

concentrations have declined across the majority of the global

ocean area over the past century (Boyce et al., 2014). On the

other hand, a machine learning approach was used to reconstruct

global spatio-temporal CHL variability from numerically-modeled

surface oceanic and atmospheric physical parameters, which

skillfully reproduced some aspects (e.g., El Niño) of the satellite-

observed CHL variability and trends (Martinez et al., 2020a, b).

The purpose of this paper is to identify the leading dynamical

factors that drive the interannual variability of satellite-derived CHL

in six coastal regions of the tropical Atlantic (south and north of the

Equator) and the south Atlantic, three on the South American coast

and three on the African coast. For this task, a correlation analysis

of a comprehensive observational dataset (satellite and reanalysis

data) is carried out, which allows the assessment of the relative
Frontiers in Marine Science 02
importance of individual drivers on the regional CHL and the

associated teleconnection patterns. These results are used to

implement empirical models to reconstruct the regional CHL

series, based on linear regressions of the identified driver-linked

variables and of empirical-orthogonal-function (EOF) modes of

sea-surface temperature (SST), as well as a reference non-linear

approach based on neural networks. The goal of these simplified

models is not just to estimate the satellite-observed CHL series but

also provide a method which allows the elucidation of the main

drivers involved in the observed CHL variability.

The rest of the paper is organized as follows. Section 2 defines

the six coastal regions focus of our study and provides a description

of the analyzed datasets and the methods used in the analysis,

including the correlation assessment and the CHL-reconstruction

approaches. Section 3 describes the results of this study, including

the regional physical drivers and the associated large-scale

teleconnection patterns, as well as the reconstructed CHL series.

Section 4 discusses some implications of these results. Finally,

Section 5 summarizes the main results of this work.
2 Methods

2.1 Study area

The study area consists of six coastal regions located in the tropical

and south Atlantic, three along the South American eastern coast and

three along the African western coast (Figure 1). Regions 1 to 4 are

located within the tropical band, while Regions 5 and 6 are located

roughly south of the Tropic of Capricorn. These regions are mostly

characterized by important levels of CHL (Figure 1) and they have a

high ecological and socioeconomical (fisheries, tourism, etc.)

importance. As will be shown below, these regions present a

vigorous interannual variability of CHL affected by diverse

oceanographic processes, either at local- or basin-scale, which are

different between each other.
2.2 Analytical approach

In each region, monthly mean time series of spatially-averaged

satellite-derived CHL is correlated with 1) 23 spatially-averaged

physical variables obtained from oceanic and atmospheric gridded

products (Table 1), 2) 14 teleconnection climatic indices (Table 2),

to elucidate the physical drivers of the regional biogeochemical

characteristics. The analysis period is from January 1998 to

December 2021 (24 years). A monthly climatology (1998–2021

period) was subtracted from each data series to produce monthly

anomalies and hence focus on interannual variations.

The selected CHL dataset is a Level-4 gridded product by

Copernicus Marine Environmental Monitoring Service (CMEMS,

https://marine.copernicus.eu/). The other oceanographic variables

were taken from different data sources, some of them taken

directly from the source while the other resulted from a post-

processing carried out for this analysis (Table 1). The large-scale

teleconnection indices were mostly provided by the National
frontiersin.org
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Oceanic and Atmospheric Administration (NOAA) - Physical

Science Laboratory (PSL; https://psl.noaa.gov/data/climateindices/

list/); only those indices directly associated with, or with known

effects on, the Atlantic were selected. For details about all these

variables and indices, see Supplementary Section S1.

Then, in order to identify the dynamical factors that affect the

CHL variability, a mechanistic-oriented correlation analysis was

carried out for each region (for details, see Supplementary Section

S2). This analysis consisted of 3 steps (Figure 2A): 1) correlating the

CHL series whith those of the potential drivers, either the

oceanographic variables (Table 1) with lag = 0 or the

teleconnection indices (Table 2) with 0 ≤ lag ≤ 9 months; 2)

ranking the significantly-correlated (p < 0:05) drivers’ series

according to the magnitude (absolute value) of their correlations;

3) selecting the ranked drivers’ series with no covariability between

each other. This selection (Step 3) is carried out by a cross-

correlation of the ranked drivers’ series (from Step 2), reducing

the number of independent drivers’ series (Figure 2B). The selected

drivers’ series are the focus of our mechanistic analysis and are used

as predictors to reconstruct the CHL (Section 2.3).

To elucidate the link between the oceanographic variables and

the teleconnection indices, i.e. the large-scale dynamical patterns

associated with each index, regression maps of the oceanographic

variables were calculated as functions of individual climate indices.

In preparation for these regression maps, each index was

standardized (1998–2021 period), i.e. its mean was subtracted and

the result was divided by its standard deviation, to ensure a mean of

zero and for not dealing with the indices’ units. Then, a no-intercept
Frontiers in Marine Science 03
linear regression-model was fitted (by a least-square technique) to

every point of each variable’s gridded anomaly (1998–2021 period)

as function of each standardized climate index; the regression map

consists of the fitted coefficients.
2.3 Reconstruction of regional CHL series

Given the relatively short temporal coverage of the CHL

datasets, barely long enough for interannual- but insufficient for

decadal-variability analyses, it is desirable to extend its temporal

extension. Then, herein we implement empirical models to estimate

the CHL in each region (Figure 1) using the selected drivers’ series

(Section 2.2) as predictors. These models consisted of three multi-

linear regressions (Supplementary Section S3.1) and a non-linear

approach based on artificial neural networks (Supplementary

Section S3.2), defined as follows.
1. Regression of oceanographic variables: Includes the

oceanographic fields (Table 1) resulting from the

correlation analysis (Figure 2).

2. Regression of teleconnection indices: Includes the climate

teleconnection indices (Table 2) resulting from the

correlation analysis (Figure 2).

3. Regression of SST EOF modes: Includes the SST principal

components (eigen-value series) taken from the first 27

EOF modes of an extended SST product (Supplementary

Section S1.3).
FIGURE 1

Definition of the six coastal regions (labeled by purple numbers) at the tropical and south Atlantic analyzed in this paper. Background color
corresponds to the long-term mean of satellite-derived chlorophyll-a (CHL) for the 1998–2021 period. Mean ± standard deviation of spatially-
averaged CHL are shown for each region. Vectors indicate the along-shore (blue) and cross-shore (red) directions in each region.
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Fron
4. Neural network model: Includes the selected oceanographic

variables (as in the first regression model), based on

nonlinear autoregressive networks with exogenous

inputs (NARX).
For details about the models, see Supplementary Section S3.
3 Results

3.1 Regional drivers

3.1.1 Region 1: North Brazil Current
In this region, the CHL is significantly correlated with 15 out of

the 23 oceanographic variables, but only three show no covariability

between each other (Figure 3): sea-surface height (SSH) (r = 0:33),

total precipitation rate (TPR) (r = 0:24) and SSH standard
tiers in Marine Science 04
deviation, SD (Sssh) (r = −0:13). The oceanographic variables that

explain the regional CHL are in turn explained by large-scale

oceanic and atmospheric patterns, that link the regional climatic

conditions to those in adjacent and/or remote locations. Some of

these climatic patterns are represented by teleconnection indices

like the ones described in Section 2.2 and Table 2. The CHL is

significantly correlated with 7 out of the 14 indices, but only three

show no covariability between each other (Figure 4): Tropical

Southern Atlantic (TSA) (r = 0:31, lag = 5 months), Southern

Oscillation Index (SOI) (r = 0:26, lag = 1 month), and Eastern

Atlantic/Western Russia (EAWR) (r = −0:12, lag = 4 months).

The TSA (Enfield et al., 1999) is characterized by an equatorial

warming that induces a weakening of the North Brazil Current

(NBC) and the NBC retroflection (Figure 5a), and of the trade

winds (Figure 5b), which affect the regional flows as corroborated

by its correlation (same lag of 5 months) with SSH (r = 0.21) and

Sssh (r = −0.19). The TSA also induces a positive precipitation
TABLE 1 Oceanographic variables included in the analysis (Section 2.2).

Abbreviation Description Units Source Processing Reference

CHL Chlorophyll-a mg m–3 Copernicus Original Garnesson et al. (2019)

MLD Mixed-layer depth m Copernicus Original Guinehut et al. (2012)

SST Sea surface temperature °C MODIS/AVHRR Merged Kilpatrick et al. (2001); Kilpatrick et al. (2015)

So Salinity psu GODAS Original Huang et al., 2008; Ravichandran et al., 2013

Uo Cross-shore water velocity m s–1 GODAS Redirected “

Vo Along-shore water velocity m s–1 GODAS Redirected “

VORo Water curl s–1 GODAS Calculated “

DIVo Water divergence s–1 GODAS Calculated “

SWR Net shortwave irradiance W m–2 ERA5 Original Hersbach et al. (2020)

PRS Surface pressure hPa ERA5 Original “

TPR Total precipitation rate kg m–2 s–1 ERA5 Original “

Tx Cross-shore wind stress Pa ERA5 Calculated “

Ty Along-shore wind stress Pa ERA5 Calculated “

Stx Cross-shore wind-stress SD Pa ERA5 Calculated “

Sty Along-shore wind-stress SD Pa ERA5 Calculated “

CRLw Wind-stress curl Pa m–1 ERA5 Calculated “

DIVw Wind-stress divergence Pa m–1 ERA5 Calculated “

SSH Sea surface height m AVISO Original Sánchez-Román et al. (2023)

Sssh Sea-surface-height SD m AVISO Calculated “

Ug Cross-shore geostrophic water-velocity m s–1 AVISO Redirected “

Vg Along-shore geostrophic water-velocity m s–1 AVISO Redirected “

VORg Water vorticity (geostrophic) s–1 AVISO Calculated “

EKE Eddy kinetic energy (geostrophic) m2 s–2 AVISO Calculated “

Q Okubo-Weiss parameter (geostrophic) s–2 AVISO Calculated “
This list includes variables taken directly from their sources (“Original”), one consisting of two merged products (“Merged”), those subsequently calculated from the original (“Calculated”), and
vector variables that were projected onto the along- and cross-shore directions (“Redirected”). In some cases, the monthly standard deviation (SD) is considered. The last column shows relevant
references about the original data product.
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anomaly over the region (Figure 5c), hence its correlation (same lag)

with TPR (r = 0.15), resulting in a freshwater anomaly enhanced by

an increased flow of the Amazon River. The SOI (e.g., Allan et al.,

1991), whose positive values correspond to La Niña (cold episodes)

and the negative to El Niño (warm episodes), is associated with a

roughly coherent intensification of the NBC and the NBC

retroflection (Figure 6a), anomalous shoreward winds (Figure 6b).

and increased precipitation near the Equator (Figure 6c) presenting

a correlation with TPR (r = 0.22). The EAWR (Barnston and

Livezey, 1987; Lim, 2015) is associated with a weak variability in

the NBC and a weak precipitation decrease (not shown), showing

no correlation with the three selected oceanographic variables.
3.1.2 Region 2: Mauritania-Senegal
In this region, the CHL is significantly correlated with 13

oceanographic variables, but all of them show some covariability

with the selected, top correlated variable (Figure 3): SSH (r = −0.50).

The teleconnection indices that independently (between each other)

explain the most CHL variability are Tropical Northern Atlantic

(TNA) (r = −0.37, lag = 0), TSA (r = −0.18, lag = 3 months) and

Dipole Mode Index (DMI) (r = −0.17, lag = 8 months), as shown

in Figure 4.

The TNA (Enfield et al., 1999) is associated with a weakening of

the trade winds which results in a weaker upwelling on the northern

portion of the region (not shown); these effects are evident in the

significant TNA-SSH correlation (r = 0.39). The TSA has a

weakening effect on the trade winds and the upwelling-favorable

winds on the northern portion of the region (Figure 5b), similar to
TABLE 2 Climate indices included in the analysis (Section 2.2) and
relevant references.

Acronym Name Reference

AO Arctic Oscillation
Thompson and Wallace

(1998)

AAO Antarctic Oscillation Gong and Wang (1999)

AMM Atlantic Meridional Mode
Chiang and Vimont

(2004)

AMO
Atlantic Multidecadal Oscillation

(unsmoothed)
Enfield et al. (2001)

DMI Dipole Mode Index
Saji et al. (1999); Saji
and Yamagata (2003)

EAWR Eastern Atlantic/Western Russia
Barnston and Livezey
(1987); Lim (2015)

FQI
NE Brazil Rainfall Anomaly

(Fortaleza-Quixeramobim Index)
Folland et al. (2001)

NAO0 North Atlantic Oscillation
Barnston and Livezey

(1987)

NAO North Atlantic Oscillation (Jones) Jones et al. (1998)

QBO Quasi-Biennial Oscillation Baldwin et al. (2001)

SOI Southern Oscillation Index Allan et al. (1991)

TNA Tropical Northern Atlantic Index Enfield et al. (1999)

TSA Tropical Southern Atlantic Index Enfield et al. (1999)

WHWP Western Hemisphere Warm Pool
Wang and Enfield

(2001)
FIGURE 2

Schematics of the mechanistic-oriented correlation analysis applied in each of the study regions (Figure 1). (A) The regional CHL and the potential
drivers are analyzed through 3 subsequent steps. Step 1: the drivers’ series are correlated with the CHL (with lag = 0 for the oceanographic variables;
with 0 ≤ lag ≤ 9 months for the teleconnection indices, where the drivers lead the CHL); Step 2: the significantly-correlated (p < 0.05) drivers are
ranked according to the absolute-value of their correlation; Step 3: from the ranked drivers, those with no significant correlation between each
other are selected for subsequent analysis. (B) Selection process in Step 3: from top to bottom, the ranked drivers (X1, X2,…, Xn, where n is the
number of significantly-correlated drivers) are correlated (lag = 0) between each other (r = corr (Xi, Xj≠i)), if the correlation (r) is significant the driver
(Xj≠i) is discarded, otherwise the driver is marked as selected (labeled with asterisks in Figures 3, 4).
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that of the TNA, but resulting in a lower correlation with SSH (r =

0.29). On the other hand, the DMI (Saji et al., 1999; Saji and

Yamagata, 2003) causes equatorward near-coastal flows (Figure 5d)

and a weakening of the upwelling-favorable winds (Figure 5e); this

index shows no significant correlation with SSH.

3.1.3 Region 3: Eastern Brazil
This region, herein considered as a counterpart analogous to

Region 4 described in the next section, is characterized by

remarkably lower CHL values, but is an important dynamical

region in the western Atlantic. In this case the non-covariability

variables correlated with CHL are wind-stress divergence (DIVw)

(r = −0.27), SSH (r = 0.25) and mixed-layer depth (MLD) (r = 0.12),

as shown in Figure 3. In this region the selected climate indices are

Fortaleza-Quixeramobim Index (FQI) (r = 0.44, lag = 2 months),

DMI (r = 0.18, lag = 9 months), and Arctic Oscillation (AO) (r =

0.16, lag = 5 months), as shown in Figure 4.

The FQI is especially adequate for this region, as expected

because it is calculated with two locations at Northeastern Brazil,

and it indeed shows the strongest correlation in the ranking for all

the regions. FQI is associated with increased precipitation and

southward-wind anomalies over this region (not shown), which

indicates that this region’s CHL is modulated by displacements of

the intertropical convergence zone (ITCZ). The DMI induces weak

variability on the surface circulation (Figure 5d), southward winds

(Figure 5e) and weak negative precipitation-anomalies (Figure 5f).

The AO (Thompson and Wallace, 1998) has effects similar to those

of the DMI mentioned above but weaker (not shown). In this
Frontiers in Marine Science 06
region, none of the selected indices is correlated with any of the

selected oceanographic variables.

3.1.4 Region 4: Gabon-Congo-Angola
This region is part of the tropical Angolan upwelling system

(e.g., Imbol Koungue et al., 2024), hence its driver-linked variables

are mostly upwelling-related. As in Region 2, only one variable is

selected as the best predictor but it is SST (r = −0.36) instead of SSH

(Figure 3). This region’s leading indices are TSA (r = −0.28, lag = 1

month), Antarctic Oscillation (AAO) (r = −0.20, lag = 7 months),

and Western Hemisphere Warm Pool (WHWP) (r = −0.14, lag =

8 months).

The TSA induces a weak warming (Figure 5a), evidenced by its

correlation with SST (r = 0.48), and an apparent weakening of the

South Atlantic Anticyclone, this anomaly’s outer edge causes

southward winds (weakened upwelling) over the region

(Figure 5b). This index also shows a negative salinity anomaly

(Figure 5c) associated with increased flow of the Congo River. The

AAO (Gong and Wang, 1999) is associated with a precipitation

increase over this region and a reduction in the salinity (not shown),

also attributable to an enhanced Congo riverine input. The WHWP

(Wang and Enfield, 2001) induces a warming, hence its correlation

with SST (r = 0.16), and a weakening of the equatorward flow

(Figure 6d), as well as anomalously-poleward winds (Figure 6e), and

a moderate excess precipitation and enhanced riverine input

(Figure 6f). Notice that even though these WHWP-induced

anomalies might not entirely satisfy our significance criterion, the

coherent distribution of the wind vectors and the sea-level pressure
FIGURE 3

Oceanographic variables (from those in Table 1) significantly correlated (p < 0.05) with the satellite-derived CHL at each of the regions defined in
Figure 1, ranked by the absolute value of their correlation for the 1998–2021 period (the highest values at the top). Color corresponds to zero-lag
correlation. The asterisks indicate the most correlated variables showing no covariability between each other (Figure 2).
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(SLP) contours, together with the agreement between these two

fields (Figure 6e), reinforces our confidence on the plotted results.

3.1.5 Region 5: Brazil-Uruguay-Argentina
CHL in this region is mostly explained by cross-shore water

velocity (Uo) (r = 0.30) and cross-shore wind stress (Tx) (r = 0.13)

(Figure 3). The selected climate indices that most explain the

regional CHL are TSA (r = 0.35, lag = 1 month), WHWP (r =

0.25, lag = 0), and DMI (r = 0.18, lag = 4 months) (Figure 4).

The TSA induces a warming and anticyclonic anomaly at the

Region’s central portion (Figure 5a) barely reflected in its

correlation with Uo (r = 0.14) and which has a weakening effect

on the Malvinas Current (MC), strong onshore/poleward winds

driven by an anticyclonic circulation associated with an intense

high-pressure anomaly (Figure 5b), and a freshwater anomaly

(Figure 5c) most probably associated with increased flow of the

La Plata River. The WHWP causes a modest weakening of the MC

(Figure 6d), somewhat linked with its correlation with Uo (r = 0.22),

anomalous shoreward winds (Figure 6e), and a moderate excess

precipitation and enhanced riverine input in the Region’s northern

portion (Figure 6f). The DMI causes a weak cooling and some

intensification of the poleward flow associated with the Brazil

Current (BC) (Figure 5d), strong equatorward winds driven by a

low-pressure anomaly off this region (Figure 5e), and a near-coastal

increase of the freshwater input (Figure 5f).
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3.1.6 Region 6: Namibia-South Africa
Although this region is part of the Benguela Current System, in

terms of interannual variability the upwelling plays a minor role to

explain the regional CHL. Solar light is the most important driver,

represented by shortwave irradiance (SWR) (r = 0.26), followed by

the cross-shore winds, represented by cross-shore wind-stress (Tx) (r

= −0.21) (Figure 3). The teleconnection indices that most explain this

region’s CHL are SOI (r = −0.20, lag = 7 months), Quasi-Biennal

Oscillation (QBO) (r = 0.16, lag = 9 months) and Atlantic

Multidecadal Oscillation (AMO) (r = 0.13, lag = 2months) (Figure 4).

The SOI is associated with a warming and a cooling in this

region’s northern and southern half, respectively, together with a

cyclonic circulation in its southern part that induces an anomalous

poleward flow in the Region’s southern half (Figure 6a), and SOI

also shows poleward wind anomalies over the whole region

(Figure 6b). The QBO (Baldwin et al., 2001) is associated with

modest warming and intensification of the equatorward near-

coastal flow (induced by an anticyclonic gyre) in the southern

portion of the region, and a weak intensification of upwelling-

favorable winds over all the region (not shown). This index shows

some correlation with SWR (r = 0.16), consistent with the notion of

the relation between the mesoscale flow and cloudiness. The AMO

(e.g., Enfield et al., 2001) is associated with weak flow intensification

a marked weakening of the upwelling-favorable winds, and an

anticyclonic wind curl over Cape Agulhas (not shown).
FIGURE 4

Teleconnection indices (from those in Table 2) significantly correlated (p < 0.05) with the satellite-derived CHL at each of the regions defined in
Figure 1, ranked by the absolute value of their correlation for the 1998–2021 period. In each case, both the correlation (blue-to-red) and the lag
(beige-to-brown) are indicated. The asterisks indicate the most correlated (lagged) indices showing no covariability between each other (Figure 2).
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3.2 Reconstruction of regional CHL

3.2.1 Fitting/training 1998–2021 period
In the previous section we identify the oceanographic variables

and climate indices that explain the CHL in the analyzed regions.

Based on these results, herein we present four different approaches

to reconstruct the regional CHL series (Section 2.3), which are

potentially useful to extend the CHL estimates to periods when

CHL satellite observations are not available. Figure 7 shows a

comparison between the satellite-derived CHL and the CHL-

reconstruction models for each analyzed region, and the

corresponding statistical results are shown in Table 3. RMS errors

are normalized by the SD of the satellite-derived CHL for better
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comparison among the differently-productive regions. In this

section we focus on the 1998–2021 period (shaded area in

Figure 7), in which the models’ linear coefficients were calculated

(Supplementary Section S3.1) and the training of the neural

network was carried out (Supplementary Section S3.2).

The first CHL-reconstruction approach is a multi-linear

regression using oceanographic variables (Supplementary Section

S3.1). Essentially, this approach takes the selected variables, i.e.

those showing no covariability between each other, from the

correlation ranking shown in Figure 3 as predictors to form a

model for each region (no lag is applied to the series). This

multilinear model captures much of the CHL variability,

especially lower-frequency, but there are many CHL peaks that
FIGURE 5

Regression of oceanographic anomalies onto (a–c) the Tropical Southern Atlantic index (TSA) and (d–f) the Dipole-Mode index (DMI) for the 1998–
2021 period. These leading indices have lags of 2 and 7 months, respectively. (a, d) SST and surface-current vectors; (b, e) sea-level pressure and
wind vectors; (c, f) precipitation rate and salinity contours (intervals of 0.03; red are positive, blue are negative, gray are zero). Shadded areas indicate
that at least one of the plotted variables is not significant (95% confidence interval).
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the model underestimates or is unable to reproduce (Figure 7, first

column). The correlation range is 0.33-0.50 (Table 3); Region 2

shows the highest correlation (r = 0.50) with the smallest error (s =

0.87) and Regions 5 and 6 show the lowest correlation (r = 0.33)

with the largest error (s = 0.94). As shown in Figure 3, Region 2

uses only one predictor (SSH), whereas two predictors are used each

of Regions 5 (Uo and Tx) and 6 (SWR and Tx).

The second approach to reconstruct the regional CHL is also a

multi-linear regression but using the teleconnection indices as

predictors (Supplementary Section S3.1), using the selected

indices shown in Figure 4 i.e. those with no covariability between

each other, and considering the corresponding lags (Table 3). As in

the previous case, this model captures much of the CHL variability

(Figure 7, first column) but many peaks are underestimated or not
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reproduced. This index-based model shows no better results,

compared to the previous model, in Regions 1, 2 and 6, but it is

similar in Region 4 and even slightly better in Regions 3 and 5

(Table 3). Region 3 shows the highest correlation (r = 0.50) with the

smallest error (s = 0.87), and Region 6 shows the lowest correlation

(r = 0.27) with the largest error (s = 0.96).

The third CHL-reconstruction approach consisted also of a

multi-linear regression but it uses the eigenvalues of SST EOF

modes as predictor variables (Supplementary Section S3.1), using

the selected modes and corresponding lags shown in Figure 8. The

first 27 EOF modes are above the random confidence-level

(Supplementary Section S1.3) and should be (in theory) physically

meaningful and safe to use in our analysis. By definition, the EOF

modes are linearly independent between each other and hence
FIGURE 6

Same as Figure 5, but for (a–c) the Southern Oscillation Index (SOI) and (d–f) the Western Hemisphere Warm Pool index (WHWP). These leading
indices have lags of 5 and 4 months, respectively.
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uncorrelated, but this not necessarily the case when lags are applied

(Figure 8) on the eigenvalue series (principal components), hence a

covariability-selection makes sense; therefore, the covariability

among the lagged eigenvalue series was removed before using

them in the model, similarly to the two previous multilinear models.

None of the EOF modes showed correlation with all the six

regions, and seven (2, 4, 5, 6, 8, 17, 19) out of the 27 modes were not
Frontiers in Marine Science 10
used in the regression model (Figure 8). Region 5 uses the lowest

number of modes (7), while Region 3 uses the highest number (11).

The EOF-based model is better to reproduce the regional CHL than

the models described above (Figure 7, second column); indeed, the

EOF-model’s lowest correlation (r = 0.51) is higher than the highest

correlation obtained in the previous models, and the errors are

smaller (Table 3). Region 2 shows the highest correlation (r = 0.62)
FIGURE 7

(a–l) Comparison between the regional satellite-derived CHL (“sat”, green line) and CHL-reconstruction models (Section 2.3), in mg m-3, in the six
analyzed regions (ordered from top to bottom). These models include the multi-linear models using oceanographic variables (“voc”), climate indices
(“ind”) and SST EOF modes (“eof”) (Supplementary Section S3.1), and the neural network model using the oceanographic variables as input data
(“nnx”) (Supplementary Section S3.2). The CHL-reconstruction series (“voc”, “ind”, “eof”, “nnx”) cover a time-span from 1993 to 2023, while the
satellite-CHL series (“sat”) extends from 1998. The shaded areas indicate the 1998–2021 period, used for the calculation of the coefficients involved
in the multi-linear models and for the training of the neural-network model.
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with the lowest error (s = 0.78), and Region 4 shows the lowest

correlation (r = 0.51) with the largest error (s = 0.86).

Finally, a highly non-linear approach is herein adopted to

reconstruct the regional CHL, based on NARX (Supplementary

Section S3.2). As the first multi-linear approach described above,

this model uses the selected, non-covariability oceanographic

variables ranked in Figure 3 as predictor variables. This NARX

model is remarkably better than the previous models, closely

reproducing most of the CHL variability (Figure 7, second

column). The model shows correlations over 0.85 and errors under

0.70 (Table 3). Region 3 shows the best represented CHL (Figure 7f)

with a nearly perfect correlation (r = 0.96) and a relatively-medium

error (s = 0.48). Regions 4 and 6 (Figures 7h, l) show the lowest

correlation (r = 0.86) with the largest errors, but even these “poor”

results are better than those from the multi-linear models.

3.2.2 Projection
The CHL reconstructions in the previous section can be used to

project the estimated-CHL series either forward or backward in

time beyond the fitting/training period (1998-2021), i.e., here we

refer to “projection” as the CHL reconstruction beyond the period

(1998-2021) that was used for model training. The projections were

performed for the 1993–1997 and 2022–2023 periods (Figure 7).

However, there are no satellite-CHL data in the 1993–1997 period

to evaluate the projection skill. The 2022–2023 period is too short

for a statistical comparison consistent with that carried out for the

1998–2021 period, therefore, we decided to use a period of a similar

length which includes that period, 2020-2023, and focus on how

much the correlations and errors change with respect to those

calculated for the 1998–2021 period; these results are also shown in
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Table 3. The results are similar between both evaluation periods in

the model based on oceanographic variables (“voc”), while the

results tend to be slightly worse in the index-based model (“ind”),

the EOF-based model (“eof”) and especially in the neural-network

model, in the projection period (2000-2023). This evaluation is not

very sensitive but the series shown in Figure 7 are helpful to

corroborate the correlation/error results. The “voc” model is

indeed slightly closer to the satellite CHL than the other models,

followed by the “eof”; the last years in Region 1’s series are especially

problematic for the models, the “nnx” model even shows an abrupt

fall right after the projection starts, an apparent unconstrained non-

linear response of the model. On the other hand, there are marked

differences among the models in the initial 1993–1997 period

(Figure 7), when CHL is not available for comparison. In this

case, the “nnx” seems to be too different with respect the other

models and hence its projection skill is questionable. There is some

consistency among the multi-linear models to reproduce some

peaks, especially in Region 4 where there is a remarkable

agreement between the “voc” and the “ind”. All these results

suggest that the CHL can be reasonably projected at least through

2–5 years beyond the fitting period, but using multi-linear models,

in particular with the “voc” model.
4 Discussion

4.1 Drivers of chlorophyll-a variabilty

Our comprehensive analysis of observational data has allowed

the identification of many of the physical drivers for the CHL in the
TABLE 3 Comparative results among the CHL-reconstruction models described in Section 2.3, with respect to the satellite-derived CHL, for the
regions shown in Figure 1.

Region Voc Ind Eof Nnx

1
SSH, TPR, Sssh

0.44/0.90
0.52/0.86

TSA(5), SOI(1), EAWR(4)
0.39/0.92
0.47/0.90

8 modes
0.55/0.83
0.60/0.80

SSH, TPR, Sssh
0.95/0.38
0.76/0.66

2
SSH

0.50/0.87
0.51/0.87

TNA(0), TSA(3), DMI(4)
0.42/0.91
0.41/0.93

10 modes
0.62/0.78
0.57/0.83

SSH
0.87/0.60
0.79/0.66

3
DIVw, SSH, MLD

0.38/0.93
0.39/0.92

FQI(2), DMI(9), AO(5)
0.50/0.87
0.44/0.91

11 modes
0.59/0.81
0.57/0.82

DIVw, SSH, MLD
0.96/0.48
0.89/0.58

4
SST

0.36/0.93
0.34/0.94

TSA(1), AAO(7), WHWP(8)
0.34/0.94
0.35/0.93

9 modes
0.51/0.86
0.52/0.85

SST
0.86/0.63
0.85/0.65

5
Uo, Tx
0.33/0.94
0.28/0.96

TSA(1), WHWP(0), DMI(4)
0.44/0.90
0.41/0.92

7 modes
0.61/0.79
0.53/0.85

Uo, Tx
0.95/0.36
0.93/0.40

6
SWR, Tx
0.33/0.94
0.32/0.95

SOI(7), QBO(9), AMO(2)
0.27/0.96
—/—

10 modes
0.54/0.84
0.48/0.88

SWR, Tx
0.86/0.65
0.80/0.70
The CHL reconstructions were carried out using multi-linear models (Supplementary Section S3.1) with oceanographic variables (“voc”), climate indices (“ind”) and eigenvalues of SST EOF
modes (“eof”), and using neural-network models with the oceanographic variables as input data (“nnx”) (Supplementary Section S3.2). For each region, the first row shows the predictors (lags in
months are specified for “ind”model) or the number of modes (for “eof”model), the second row shows correlation (r; p < 0.05)/root-mean-squared (RMS) error (s; normalized by the CHL SD)
evaluated in the 19982021 period (coefficient-fitting and network-training period), and the third row shows the same but for the 2000–2023 period. Notice that the statistics for the index-based
model (“ind”) for Region 6 in the 2020–2023 period are not available because this series extended only through the end of 2022 (because the AMO was available for that time span only).
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six analyzed regions, as well as the teleconnection patterns involved

in the large-scale patterns. Figure 9 shows a summary of these main

results of our analysis. The analyzed regions are characterized by a

vigorous interannual variability; comparing the regional CHL SD

before (Figure 1) and after removing the monthly climatology

(Figure 9) indicates that the interannual variability has roughly

half of the amplitude of the mean seasonal cycle in the tropical

regions (1 to 4), but they are comparable in the southernmost

regions (5 and 6). This interannual variability is a result from

different drivers, herein represented by those oceanographic

variables that explain a significant fraction of the observed

CHL variability.

In Region 1, SSH and Sssh are variables which can serve as

proxies for the regional surface circulations, the North Brazil

Current (NBC) (Johns et al., 1998; Vallès-Casanova et al., 2022),

the NBC retroflection (Johns et al., 1990; Richardson et al., 1994),

and the anticyclonic rings that are shed from it (Richardson et al.,

1994; Fratantoni and Glickson, 2002; Bueno et al., 2022; Garzoli

et al., 2003) that can interact with other eddies (Subirade et al.,

2023). Surface mean circulation is responsible for horizontal export

of nutrients (Santos et al., 2008), while eddy features can have

different local effects on the CHL (e.g., Pereira et al., 2019). These

effects are caused by eddy-wind driven upwelling, vertically

transporting nutrients to the surface levels and hence modifying

the phytoplankton growth (McGillicuddy et al., 2007; Pereira et al.,

2019), or by eddy-interactions which can modify the

biogeochemical properties of the water column and shape the

CHL distribution (Hernández-Carrasco et al., 2020). Other

transient motions like coastal-trapped waves (CTW), both
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intraseasonal (Imbol Koungue and Brandt, 2021) and interannual

(Bachèlery et al., 2020), would affect the local phytoplankton

growth. This effect can be by upward nitrate flux induced by

nitrocline displacements combined with intense vertical mixing

(Körner et al., 2024), or by enhanced CTW-induced along shelf

flows (e.g., Rivas, 2017) that might export nutrients and CHL to

other zones. Also, the wind fluctuations that generate the CTW

might have an enhancing effect of surface seawater turbulence

favorable to the phytoplankton (e.g., by turbulent supply of

nutrients; Hales et al., 2009). Precipitation rate (TPR) can impact

CHL (r = −0.21) through modification of the freshwater input and

runoff from land. This runoff carries a large amount of nutrients

essential for phytoplankton growth (Santos et al., 2008), and also an

important amount of suspended particles that limit the incoming

light necessary for the phytoplankton (DeMaster et al., 1986), in

addition to the SWR reduced by the prevalent cloudiness that comes

with precipitation (e.g., McQuate and Hayden, 1984; Chaves and

Cavalcanti, 2001; Yan, 2005).

In Region 2, which is part of the four major Eastern Boundary

Upwelling Systems (e.g., Quiñones, 2010), the wind-driven offshore

Ekman transport generates a divergence over the shelf (e.g.,

Trautman and Walter, 2021) and a sea-level decrease near the

coast (e.g., Kruse and Huyer, 1983) while cold and saltier water from

deeper levels compensates the offshore transport. Dynamical

features linked to the upwelling front, like an equatorward

alongshore flow (e.g., Allen, 1973) would affect the nutrient

distribution, and the mesoscale structures shed from it can

increase the CHL (e.g., Hernández-Hernández et al., 2020),

especially the cyclonic structures due to a shoaling of the
FIGURE 8

Tabular array indicating the SST EOF modes used in each region (Supplementary Section S3.1). Bars’ color indicates: correlation in the upper halves,
the corresponding lag in the lower halves. Gray bars indicate insignificant correlations.
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isopycnals and the nitrocline (e.g., Hernández-Hernández et al.,

2020), and hence the subsurface chlorophyll-a maximum (e.g.,

Almazán-Becerril et al., 2012). Rainfall events can interact with

upwelling intrusions to produce temporal variations in

phytoplankton biomass (Valentin et al., 2021), and cross-shore

winds can induce a flux of nutrients and micronutrients from the

Saharan desert (Mills et al., 2004; Mahowald et al., 2009; Shi et al.,

2022), modulated by the passage of African easterly waves

(Bloomfield et al., 2022; Nakamae and Shiotani, 2013).

In Region 3, the atmospheric circulation is influenced by the

ITCZ (e.g., De Albuquerque Cavalcanti, 2015) which modulates the

wind field, rainfall and solar radiation thus affecting the regional

phytoplankton growth. SSH is a proxy for the driving effect by the

NBC and the North Brazil Undercurrent (Dossa et al., 2021),

together with a weak influence of the Amazon River and the Saõ

Francisco River (Rodrigues Holanda et al., 2021).

In Region 4, SST is linked to atmopsheric patterns like the ITCZ

which creates strong convective activity, characterized by

atmospheric-pressure reductions and wind convergence at surface

that generates the thunderstorms that characterize the tropical

regions (Huntley, 2019). These storms can lead to a deepening of

the mixed-layer depth and a dilution of the deep chlorophyll-a

maximum (Barrillon et al., 2023).

In Region 5, cross-shore velocity Uo represents the circulation

variability dominated by the Malvinas Current (MC) in the south
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and the Brazil Current (BC) in the north, which converge near 34°S

(Piola et al., 2018; Artana et al., 2021), and the mesoscale dynamics

enhanced as a consequence of the MC-BC interation (+EKE,

+CHL) (as in Frey and Kubryakov, 2023). These hydrodynamic

features have an influence on the regional transport of nutrients,

especially those originated in the La Plata River’s plume and the

lagoon systems (Niencheski, 2018). Tx represents the variability of

cross-shore winds, responsible for an atmospheric input of limiting

micro-nutrients (i.e., iron) from land, mostly from the Patagonian

desert (Johnson et al., 2010), and which are driven by the winds

associated to high and low pressure systems characteristic of South

Brazil and the nearly-weekly southwesterly cold fronts (Rodrigues

et al., 2004; Wahrlich et al., 2018).

In Region 6, shortwave-irradiance SWR variability is driven by the

characteristic fog and low-level clouds in the Namib area (Andersen

et al., 2019, 2020), and this cloudiness would produce some

precipitation. Tx represents the cross-shore winds which plays an

important role transporting nutrients from desert areas to the ocean

surface, in the form of dust plumes linked to salt pans and dry river

valleys in the Namib desert (Eckardt and Kuring, 2005). Windblown

dust within the river valleys is easily transportable offshore from the

Namib over the Benguela Upwelling System (Dansie et al., 2017c),

containing great concentrations of bioavailable iron and enriched

nitrogen and phosphorus, which may positively impact marine

productivity in the southern Atlantic (Dansie et al., 2017a, b).
FIGURE 9

Summary of the main results (predictor variables, physical drivers, teleconnection patterns) for each of the six analyzed regions. The predictors and
indices correspond to the non-covariability selections described in Section 3.1; numbers in parentheses correspond to their lags in months. Vertical
arrows indicate intensification (↑) or weakening (↓) of the specified process. Signs of the drivers’ predictor variables match their correlation signs in
Figure 3. Background color corresponds to the standard deviation of satellite-derived chlorophyll-a (CHL) for the 1998–2021 period, after removing
the monthly climatology for the same period. Spatially-averaged values are shown for each region.
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SST anomalies in the tropical Atlantic (TSA and TNA;

Figures 5a–c) have a marked effect on the rainfall over

northeastern Brazil (and the Amazon basin) through the

modulation of the latitudinal position of the ITCZ (Nobre and

Shukla, 1996; Hounsou-Gbo et al., 2019). The El Niño Southern

Oscillation (ENSO) also has a significant effect on the rainfall in the

western near-equatorial Atlantic; along the ENSO cycle

(Figures 6a–c but for SOI < 0), the ascendant branch of the

Pacific Walker cell shifts to the east and the Pacific-Atlantic cell

shows enhanced subsidence over equatorial South America and the

western Atlantic, causing a more stable atmosphere which reduces

the moist convection (Rodriguez-Fonseca et al., 2023). Marine

resources in the northwest African coast are well affected by the

ENSO variability, for example, the El Niño has been used as a

predictor of the sardinella population biomass and distribution in

the central-southern portion of the Canary Current Upwelling

System (López-Parages et al., 2020).

The eastern Atlantic off Mauritania exhibits intense SST

interannual varability associated with the Dakar Niño/Niña

involving ocean-land-atmosphere coupled processes (Oettli et al.,

2016; Koseki et al., 2024), which would have their signature in

variables like SSH and others (consistent with the ranked variables

in Figure 3). On the eastern tropical Atlantic, positive Dipole Mode

Index (DMI) episodes (Figures 5d–f) drive tropospheric circulation

changes that lead to an increase in moisture convergence and

convection over the Congo basin and an increase in Congo River

discharge (Jarugula and McPhaden, 2023), as evidenced in the

reduced salinity in that region (Figure 5f). In the western south

Atlantic, salinity and CHL anomalies show significant correlation

with the Atlantic Multidecadal Oscillation (AMO) (Pacheco et al.,

2022), apparently associated with an onshore advection of moist

and relatively-warm air.

On the other hand, winds are responsible for upper-ocean

nutrient-enrichment processes like coastal upwelling, a determinant

factor for phytoplankton growth, and their changes can modify the

spatial distribution (and even stability) of the upper-ocean circulation,

and hence affect the transports of nutrients and phytoplankton. The

wind-field patterns can be also modified by large-scale teleconnection

mechanisms. For example, near-equatorial warmings (TSA and TNA)

produce a weakening of the trade winds (Nobre and Shukla, 1996;

Hounsou-Gbo et al., 2019) (Figure 5b). Also, there is a weak but

significant correlation between the ENSO and the Brazil Current (BC)

SST (with an 8-month lag when ENSO leads) in austral summer, linked

to changes in upwelling-favorable winds and the intensity of the trade

winds, associated with changes of the South Atlantic anticyclone

intensity and position (Rouault and Tomety, 2022). The ENSO also

induces a subsidence over the equatorial western Atlantic, which

produces a weakening of the trade winds (Figure 6b for SOI < 0)

and a reduction of the upwelling in that area (Rodriguez-Fonseca et al.,

2023). These wind-field variations, specifically the wind-stress curl

(Fonseca et al., 2004), have a modification effect on the surface

equatorial currents (Figures 5a, 6a); the North Brazil Current (NBC)

also presents a multidecadal variability (Tretkoff, 2011). Detachment of

anticyclonic eddies from the NBC retroflection occurs during periods

when this retroflection is weakened (Didden and Schott, 1993), but
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these eddies’ formation mechanism has been associated with short

equatorial Rossby waves, generated by wind variations in the tropical

Atlantic (Ma, 1996). The detached eddies can interact with the Amazon

River plume, resulting in a CHL increase (Fratantoni and Glickson,

2002), and responsible for the transport of water properties to the

northwest (Richardson et al., 1994; Fratantoni and Richardson, 2006).

South of the tropical band, the BC transport is significantly

correlated with the sea-level pressure (Schmid and Majumder,

2018) and the wind-stress curl in the western Atlantic (Goes

et al., 2019) (Figures 5b, e, 6b–e). The BC transport is also

correlated with the ENSO and teleconnection indices not

considered in our analysis (namely, the South Atlantic

Subtropical Dipole Mode and the Southern Annular Mode)

(Schmid and Majumder, 2018). These BC’s variations must

modulate the formation of eddies in the Brazil-Malvinas

confluence zone (Frey and Kubryakov, 2023), which can be

detected by their enhanced CHL levels (Garcia et al., 2004).

On the subtropical eastern coast (around Region 6), Andersen

et al. (2020) report that synoptic-scale patterns control the fog and

low-level cloud variability off Namibia. They conclude that the fog/

clouds are formed by an increased longwave cooling under the dry

anomaly close to the coast, and an onshore flow anomaly of marine

boundary-layer air masses, modulated by coastal winds and a heat

low over southern Africa (generated by greenhouse warming by

moist air masses and northerly warm air advection). Our results

suggest that the ENSO may modulate the interannual variability of

this synoptically-controlled phenomenon. During La Niña

conditions (SOI > 0) three dynamical features occur which

resemble the conceptual model for April-June proposed by

Andersen et al. (2020): a strong synoptic-scale SLP anomaly

southwest of Namibia (Figure 6b), a smaller-scale low-pressure

system next to the Namibian coast (Figure 6b), and a warming over

the Angola-Benguela front (Figure 6a). Thus, this suggests that an

El Niño episode would decrease (with a lag of 4–6 months) the

occurrence of fog and low-level clouds off Namibia, especially

during the austral fall, whereas a La Niña episode would have an

opposite effect; this is consistent with the significant correlation

between the SOI and this Region’s precipitation TPR (r = 0.18). Fog

is an essential component of Namib-region ecosystems (Andersen

et al., 2019); as described in Section 3.1.6, the fog and low-level

clouds modulate the incoming solar light, limiting the regional

phytoplankton growth and the CHL.
4.2 CHL-reconstruction approaches

A relevant application of the identification of the main driver-

linked series for the regional CHL is using these series to reconstruct

the CHL series by different model approaches. Each CHL-

reconstruction approach adopted in this paper has its merits. The

multi-linear regression models are able to reproduce significant

fractions of the observed CHL variance (especially lower

frequencies), with the climate-index model showing poorer results

and the SST-EOF model showing better results, but the

oceanographic-variable model is the most physically sound.
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Although the climate-index model shows a lower performance to

reproduce the regional CHL (Table 3, Figure 7), it can be easier to

evaluate (if the indices are available) compared to the data

processing required to the use of the satellite/reanalysis data.

The SST-EOFmodel, on the other hand, not only shows the best

results among the multi-linear models (Table 3, Figure 7) but it

requires the processing of one single variable (SST); however, the

validity and physical meaning of the higher EOF modes remain to

be clarified. Applying a significance criterion like the “N-test” used

in our analysis (Supplementary Section S1.3) is most probably not

enough to guarantee that the last selected modes are indeed

physically sound, but dynamical criteria are necessary to

determine this notion, which is out of the scope of this paper.

None of the selected EOFmodes was used in all the regional models,

only two of them, 1 and 15, were used in five of the six regions

(Figure 8). EOF-mode 1 is consistent with the SST-anomaly

induced by the Tropical Northern Atlantic Index (TNA) and in

lesser extent that by the Tropical Southern Atlantic Index (TSA),

with the characteristic warming in the Tropical North Atlantic, but

with more clear warmings off Benguela and off La Plata River (not

shown). EOF-mode 15 shows a different pattern, with an intense

signal along the South American eastern coast, from Region 3 to

Region 5 where it is stronger, and weaker signals over the southern

portion of Region 2 and over the northern portion of Region 6, as

well as a signal of opposite sign off Region 4 (not shown).

The neural-network model shows a high performance to

reproduce the CHL variability (Figure 7), even if only one

predictor variable (Regions 2 and 4) is used. However, deducing

the relative importance of one specific input variable (when more

than one predictors are used) is complicated since there is no

explicit way to clarify the relation-ship between inputs and outputs

in these models, which causes difficulty in interpreting the results

(Torres-Faurrieta et al., 2016).

Previous papers have also used non-linear CHL-reconstruction

models. For example, Martinez et al. (2020a, 2020b) used a machine

learning approach (a non-linear statistical approach based on

Support Vector Regression) to reconstruct global spatiotemporal

CHL variability from selected surface oceanic and atmospheric

physical parameters taken from a numerical model. Using a 13

year-long training period, they skillfully reproduced the CHL

variability from a 32-years (1979-2010) global physical-

biogeochemical simulation, and their reconstructed CHL more

accurately reproduced some aspects (e.g., El Niño signature in the

tropical Pacific and Indian Oceans) of the satellite-observed CHL

variability and trends compared to the model simulation.

The CHL-reconstruction models present the possibility to

reproduce CHL in periods when its observation is unavailable. As

described in Section 3.2.2, the models were used to project for two

periods beyond the fitting/training (1998-2021) period: 1993–1997

and 2022-2023. The comparisons between the projected CHL-

reconstructed series and the satellite-observed CHL, and between

each other, show that the multi-linear models have a performance

comparable to that for the fitting period, but the index-based model

and the EOF-based model show a slightly poorer performance

compared to the model based on oceanographic variables
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(Figure 7). The non-linear model (NARX), on the other hand,

shows nearly-perfect correlations in the training period (1998-2021)

but shows results slightly poorer than those obtained with

the multi-linear models (Figure 7). This issue occurs because the

neural-network presents a non-linear response during the

unconstrained period which produce significant deviations from

the observed CHL, which might make this model inconvenient to

estimate long-term CHL series. Then, all these results point to a

potential use of a model based on oceanographic variables to

reproduce and even project (at least for 2–5 years beyond the

fitting period if it is this period is long enough), the regional CHL.
5 Conclusions

Herein we present the correlation analysis of a comprehensive

dataset (satellite and reanalysis) to identify the physical drivers of

the chlorophyll-a (CHL) observed in six key regions in the tropical

and south Atlantic. This analysis allows the identification of the

main drivers involved in the regional phytoplankton growth

represented by the satellite-derived CHL, and provides insights of

the teleconnection patterns involved in those drivers. Although

numerous driver-linked variables and climate indices modulate the

CHL at the analyzed regions, we can short-list the leading

dynamical factors as follows.
• At the tropical (north and south of the Equator) western

side (American coast), the regional (Regions 1 and 3) CHL

is affected by fluctuations of the North Brazil Current,

enhanced precipitation linked to the intertropical

convergence zone, and the riverine input and runoff,

mostly associated with the Tropical Southern Atlantic

Index (TSA) and Southern Oscillation Index (SOI).

• At the tropical eastern side (African coast), the regional

(Regions 2 and 4) CHL is affected by coastal upwelling,

mostly associated with the Tropical Northern Atlantic

Index and the TSA.

• At the southernmost western side (Region 5), the CHL is

affected by the interaction of Malvinas and Brazil currents

and terraneous nutrients by cross-shore winds, mostly

associated with the TSA and the Western Hemisphere

Warm Pool.

• At the southernmost eastern side (Region 6), the CHL is

affected by fog and low-level clouds and terraneous

nutrients transported by cross-shore winds, associated

with the SOI and the Quasi-Biennial Oscillation.
The identification of the driver-linked variables and climate

indices that most explain the regional CHL variability also allows

the implementation of different approaches to reconstruct the CHL

series as functions of such variables and indices. Multi-linear

regressions using oceanographic variables, climate indices, or

empirical-orthogonal-function eigenvalues of sea-surface

temperature, show a reasonably good performance reproducing

significant fractions of CHL variability (mostly lower frequencies),
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but their results are poorer than the estimates obtained through

non-linear, neural-network models. Although these strongly non-

linear models show a high predictive skill, deducing relative

importance of individual drivers is complicated. To project the

regional CHL series beyond the period in which the coefficients/

networks were calculated (fitting/training period), the multi-linear

models show a better performance since the neural-network model

is prone to present ample non-linear deviations with respect to the

target variable (CHL). Among the multi-linear models, the one

based on oceanographic variables shows a slightly better

performance with respect to the other two, and allows the

projection of CHL for 2–6 years beyond the fitting period. Thus,

the CHL-reconstruction approaches herein adopted open the

possibility to estimate the regional CHL when observations or

skillful numerical modeling is unavailable, and to carry out long-

term predictions like climate-change projections.
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