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Shizhe Chen2, Jiming Zhang1,2,3, Wenqing Li1,2,3, Keke Zhang1,2,3

and Xiao Fu1,2,3

1Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of
Sciences), Qingdao, China, 2Laoshan Laboratory, Qingdao, China, 3School of Ocean Technology
Sciences, Qilu University of Technology (Shandong Academy of Sciences), Qingdao, China
Ocean moored buoys are essential ocean monitoring devices that are

permanently moored in the sea to collect real-time hydrological and

meteorological data. In response to the anomalies and missing data in datasets

collected from ocean moored buoys, this paper innovatively established an

intelligent quality control Transformer-Encoder-BiLSTM model. This model can

impute missing data and identify anomalies in buoy datasets. Themodel first uses

the multi-head attention mechanism of the Transformer Encoder to extract

global features from time-series data of buoy observations. Subsequently, it

utilizes the BiLSTM network for temporal reasoning training to capture dynamic

changes within the time series, predicted data. Finally, using the predicted data as

a benchmark, the model conducts anomaly detection, fills in missing values, and

rectifies stuck values. We conducted a series of comprehensive experiments,

with the data from Buoy No. 0199 in Qingdao, China as an illustrative example.

The experimental results indicate that the performance indicator R² of the model

is above 0.9, the accuracy of quality control is above 97%, while both precision

and recall are above 84%. The F1 scores range between 81.61% and 90.09%.

These experiments demonstrate that this method exhibits high accuracy and

efficiency in filling in missing data, rectifying stuck values and identifying

anomalous data, showing broad application potential.
KEYWORDS

ocean moored buoy, data quality control, transformer encoder, BiLSTM, anomaly
detection, data correction
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1 Introduction

Ocean moored buoys are crucial monitoring devices for

collecting ocean observation data, which are equipped with

various marine sensors to meet monitoring needs such as marine

meteorological observations, ecological environmental protection,

and disaster prevention and reduction. Anchored buoys provide a

reliable platform for collecting and transmitting real-time

hydrological and meteorological data from the ocean,

characterized by their long-term, continuous, and stable nature

(Liu et al., 2023). Meanwhile, anchored buoys provide robust

empirical data for complex oceanographic processes, thereby

advancing the development of marine science (Rapizo et al., 2015;

Wang et al., 2016). In the context of developing cutting-edge marine

science, the quality of firsthand ocean observation data directly

determines the feasibility of constructing an accurate and reliable

marine database, which is crucial for conducting marine scientific

research (Wong et al., 2020; Wen et al., 2021). However, the data

collected by ocean moored buoys often suffer from various issues in

practical applications, such as sensor equipment failures,

electromagnetic environmental interference, and component

aging. These issues lead to decreased data quality, resulting in

data drift, fixed values, missing values, and spike anomalies,

severely affecting the accuracy and credibility of marine scientific

research (Vieira et al., 2020; Martı ́nez-Osuna et al., 2021).

Therefore, there is an urgent need for standardized data

processing procedures and quality control (QC) methods to fully

utilize the data collected by the buoys and ensure its high quality

(Zhou et al., 2018; Tan et al., 2021). The QC for the monitoring data

of ocean moored buoys is a crucial issue that not only attracts the

attention of data users but also becomes the focus of buoy

equipment developers. After all, the quality of the data directly

reflects the effectiveness of the observations made by the buoy

equipment, determining whether it can accurately capture the

dynamics of the ocean and provide reliable evidence for various

marine research and practical applications.

Manual, semi-automatic, and visual QC are classic data QC

techniques that have been successfully implemented in major

international and EU marine data infrastructures, such as the

World Ocean Database (WOD) (Palmer et al., 2018), the

Copernicus Marine Environment Monitoring Service (CMEMS)

(von Schuckmann et al., 2017), the International Quality Controlled

Ocean Database (IQuOD) (Cowley et al., 2021), and the

SeaDataNet (SDN) (Schaap and Lowry, 2010), etc. Although these

techniques can eliminate gross errors, the data products generated

still contain data anomalies, with bad data being mislabeled as good

data. Traditional methods of quality control for ocean observing

data primarily relied on statistical theories. These include range

filters, time checks, data distribution checks, spike detection

and Gradient checks, associated with Grubbs, PauTa, and linear

fitting, to detect and correct anomalous data (Ingleby and

Huddleston, 2007; Cummings, 2011; Qian et al., 2019). Moreover,

it generally takes a long time to carry out these quality control

processes, especially when the number of detected suspicious data

is large.
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With the continuous advancement of computer and data

analysis technologies, machine learning methods have emerged as

a promising choice, as they can significantly enhance the efficiency

of quality control. Researchers have progressively incorporated

more efficient approaches, such as time series analysis and neural

networks, to handle larger scales of marine observing data (Jörges

et al., 2021; Chen et al., 2024) Ono et al. (2015) proposed a method

based on Conditional Random Fields (CRF) for error detection,

significantly enhancing the precision of automated quality control

techniques, marking an initial exploration into the use of machine

learning in marine data quality control. Good et al. (2023)

developed an open-source Python package CoTeDe for automatic

quality control to identify anomalies of ocean temperature profiles

with machine learning methods. Mieruch et al (Mieruch et al.,

2021). developed a fully connected Multi-Layer-Perceptron (MLP)

network architecture to quality assess big data collections in the

SeaDataNet data infrastructure, fixing a binary classification

problem of normality and anomaly in ocean temperature profiles.

Iafolla et al. (2022) adopted microseismical signals and utilized a

decision tree and convolutional neural networks (CNNs) to

reconstruct sea wave data and recover missing buoy data.

The Transformer-based neural network, have been firmly

developed as state of the art approaches for natural language

translation, textual entailment, reading comprehension,

abstractive summarization and time-series observation inference

(Vaswani et al., 2017). By using a self-attention mechanism to mine

global and long distance dependencies between input and output,

the Transformer model shows excellent performance in time series

anomaly detection tasks, especially for satellite sensors data (Tuli

et al., 2022; Wang et al., 2022; Wen et al., 2022). Tuli et al. (2022)

successfully developed deep Transformer networks by attention-

based sequence encoders, to solve the problem of anomaly detection

of multivariate time series data in modern industrial applications.

Additionally, a bidirectional Transformer model (BTAD) (Ma et al.,

2023) has be built for anomaly detection of multi-variate time series,

which proves that the multi-head attention mechanism can

improve the detect ion performance and enhance the

generalization ability. In addition, Long Short-Term Memory

Networks (LSTM) (Hochreiter and Schmidhuber, 1997) and

bidirectional Long short-term memory (BiL-STM) (Bi et al.,

2023), typical recurrent neural networks for time series data, have

made tremendous efforts to push the boundaries of recurrent time-

series inference and formed encoder-decoder architectures. LSTM

provides promising solutions to capture time dependencies and

realize anomaly detection (Yao et al., 2022). combined LSTM and

Principal Component Analysis (PCA) to build a six-degree-of-

freedom motion prediction model for damage detection of

mooring systems of a semi-submersible platform, and showed

through experimental results that this model can achieve 100%

anomaly detection accuracy under various damage levels and

environmental conditions. Xie et al. (2023) proposed a method

for quality control of time series of wave observations from Argo

platforms, which effectively enhances the accuracy of anomaly

detection by combining multi-step prediction models with peak

detection. The fusion of the Transformer-encoder and BiLSTM
frontiersin.org
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brings new opportunities for intelligent data processing. Li et al.

(2023) built a sequential-to-sequential model to extract latent causal

relationships from financial news to summarize abstracts of content

with hierarchical Transformer-BiLSTM. To ensure reliable

operation of smart meters, Zhao et al. (2023) built a

Transformer-BiLSTM neural network mode, which achieved an

accurate assessment of the operating state of the meters and

improved the robustness of the state assessment. Wang (2023)

introduced the Temporary Convolution Network (TCN) to conduct

an improved transformer model and adopted BiLSTM to capture

bidirectional information in sequences, enabling accurate

prediction of stock prices.

Although existing studies have used deep learning methods to

solve some of the problems related to the detection of outliers in

univariate and multivariate data in the industrial field, the news

field and the marine data field, there are still some deficiencies such

as vanishing gradient, poor generalization ability and poor

robustness. Marine buoys are exposed to the complex marine

environment all year round, and different sensors may face

various types of failures such as corrosion, power fluctuations,

and the attachment of aquatic organisms. Employing deep

learning technology to construct methods and models that can

rapidly and accurately identify abnormal observations of marine

mooring buoys poses some unique challenges. Firstly, the

observation data of marine buoys contain various anomalies like

fixed values, missing values, and abrupt changes, which are

heterogeneous and irregular. The abnormal data feature both

isolated single-point jumps and continuous drifts, with unfixed

occurrence frequencies and missing and fixed values often

intertwine, greatly heightening the complexity of anomaly

detection and data imputation (Vieira et al., 2020; Tan et al.,

2021). Secondly, abnormal labels are extremely scarce in buoy

observation data. The lack of precise annotations for supervised

learning makes it difficult for the model to learn comprehensive

abnormal features. Existing neural network models have not fully

taken into account the differences in anomalies caused by different

sensor failure modes, resulting in poor adaptability to buoy

observation data (Zhou et al., 2018; Chen et al., 2024). Thirdly,

buoy data distributions vary significantly across different time

periods. Without a periodic time encoding or sliding training

window mechanism, A model is prone to deviations in

imputation or detection results because of “temporal drift” and

high data volatility, affecting its generalization ability.

To address the issues of anchored buoy observing data QC,

including detecting anormal data, filling missing data and correct

stuck values, this paper proposes a customized time-series analysis

model through organic integration of the Transformer encoder and

BiLSTM recurrent neural network. This model named

Transformer-Encoder-BiLSTM, leverages the multi-head attention

mechanism of the Transformer encoder to extract global features

and long-distance dependencies of ocean observing time-series

data, and employs the BiLSTM network for temporal reasoning to

capture the dynamic changes in the time series to generate predicted

data. Using the predicted data as a reference, the model

accomplishes the filling of missing values and the correction of
Frontiers in Marine Science 03
stuck values in the buoy observing dataset, as well as the

identification of anomalous values. Taking the observation data of

anchored Buoy No. 0199 in Maidao Island, Qingdao, China as an

example, this paper analyzes and verifies the performance of the

proposed Transformer-Encoder-BiLSTM model, and uses quality

flags to mark the results of data quality control. Extensive

experiments demonstrate that this method achieves high accuracy

and efficiency in handling tasks such as filling missing data,

correcting stuck values, and identifying anomalies. Compared

with traditional methods, the Transformer-Encoder-BiLSTM

model not only boosts the precision of data quality assessments,

but also effectively resolves issues of data absence and redundancy,

thereby significantly enhancing the practical value of the buoy

observing data. To our best knowledge, the Transformer-

Encoder-BiLSTM model can serve as complementary addition to

existing algorithms and holds great promise for application in the

quality control of other anchored buoy data across China.
2 Design of an intelligent quality
control model for ocean-moored
buoy data

Anomaly types that are difficult to identify with basic statistical

methods, especially those with strong correlation and complex

patterns, this study designs a time series analysis model based on

Transformer encoder and BiLSTM, referred to as Transformer-

Encoder-BiLSTM, on the basis of traditional data pre-processing

checks. The model leverages the multi-head attention mechanism of

the Transformer encoder to extract global features from time series

data, and employs the BiLSTM network for temporal reasoning

training to capture the dynamic changes in the time series, thereby

generating predicted data.
2.1 Model structure

The Transformer-Encoder-BiLSTM model, designed in this

paper, consists of four main components: the input layer, the

Transformer encoder layer, the temporal reasoning layer with two

levels of BiLSTM, and the output layer. The specific structure of the

model is illustrated in Figure 1.

2.1.1 Input layer
The input layer of the model consists of three parts: time feature

encoding, feature merging, and a linear layer. The specific structure

is depicted in Figure 2. The implementation of the input layer is as

follows: First, the time feature encoder processes the time column

using variants of sine and cosine functions as shown in (Equations

1, 2) to encode timestamps. The sine and cosine functions

transform each timestamp into a set of continuous features

regarding days in the year and daily minutes, based on its

temporal position within the time series. The encoding method

helps the model capture the periodic and seasonal variations in
frontiersin.org
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time. In the process of feature merging, an expanded feature matrix

is formed by concatenating the encoded time features with the

original data features. Finally, the merged feature matrix is passed to

a linear transformation layer, which maps the input data to the

feature dimensions required by the Transformer encoder layer.

PEsin(t, 2i) = sin(
pos

104 2i
d

) (1)

PEcos(t, 2i + 1) = cos(
pos
104 2i

d

) (2)

Here, PEsin refers to the sine encoding, PEcos refers to the

cosine encoding, pos represents the position of the current

timestamp within the sequence, i is the index of the feature

dimension, d represents the feature dimension of the input data,

and 104 is a constant used to adjust the frequencies of the sine and

cosine functions.

The buoy-observed data of air temperature, water temperature,

wind speed and air pressure are processed by Z-score

standardization to ensure that the scales of all features are

consistent. The equation for the standardization process is shown

as (Equation 3).

Z =
(X − m)

s
(3)

In (Equation 3), X represents the original data, and m and s are

the mean value and the standard deviation of the data respectively.
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The feature fusion layer combines the time features after

positional encoding with the standardized observed data features

through horizontal expansion, forming an extended feature matrix.

This ensures that the Transformer encoder can utilize both

temporal information and data features simultaneously. The

feature fusion equation is shown in (Equation 4).

F = concat(Foriginal + Fencoded) (4)

In (Equation 4), Foriginal is the feature element of the

standardized observed data, and Fencoded is the encoded time feature.

The linear layer is used to transform the fused features to fit the

subsequent layers of the model. It is a fully connected layer that can

perform additional linear transformations to form the final input

features. The data transformation equation of the linear layer is

shown in (Equation 5).

Output = W · F + b (5)

In (Equation 5),W and b are the weights and biases of the linear

layer respectively, and F represents the features after feature fusion.
2.1.2 Transformer encoder layer
The encoder layer is built on the Transformer architecture and

comprises multiple repeated encoder units, as demonstrated in a red

dotted box in Figure 1. Each encoder layer consists of a multi-head

self-attention mechanism, a feed-forward network, layer

normalization, and residual connections. After the encoder layer,
FIGURE 1

Structure of the Transformer-Encoder-BiLSTM model.
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Dropout is applied at a specified rate to the encoded data for

regularization purposes, preventing the model from overfitting

during the training process.

In the encoder unit, the multi-head attention mechanism is the

core component. By distributing attention across multiple heads,

the model can parallelly execute single-head attention computations

in multiple subspaces, extracting information. This setup allows the

model to directly learn relationships between different positions in

the sequence, effectively capturing complex patterns and long-

distance dependencies. The single-head attention mechanism, as

shown in (Equation 6), involves queries (Q), keys (K), and values

(V) first being transformed through linear transformations to

generate their respective weight matrices WQ, WK, and WV. The

transformed Q, K, and V use a scaled dot-product operation to

compute attention scores, which are then normalized through the

softmax function. Multiple attention heads operate in parallel in

different subspaces performing the same single-head self-attention

computations, producing multiple outputs as shown in

(Equation 7). The outputs from each head are concatenated and

then merged into a unified output through a linear transformation

layer WO, as depicted in (Equation 8). Each encoder layer also

includes a feed-forward network, which independently processes

the output at each position in the sequence using the equation

shown in (Equation 9).
Frontiers in Marine Science 05
Attention(Q,K ,V) = sof tmax(
QKT

ffiffiffiffiffi
dk

p )V (6)

headi = Attention(QWi
Q,KWi

K ,VWi
V ) (7)

MultiHead(Q,K ,V) = concat(head1,head2,…, headh)W
o (8)

FFN(x) = max(0, xW1 + b1)W2   + b2 (9)

In the structure,W1 andW2 are the weight matrices of the linear

layers, while b1 and b2 are the bias terms. To stabilize the training of

deep networks, layer normalization and residual connections are

employed as shown in (Equation 10). These techniques help maintain

gradient stability and accelerate the convergence of the model.

LayerOutput = LayerNorm(X + SubLayerOutput) (10)

2.1.3 BiLSTM-based temporal reasoning layer
The temporal reasoning layer consists of a bidirectional LSTM

neural network (BiLSTM) which serves to enhance the model’s

ability to capture long-term dependencies within the sequence to

enhance time reasoning, thereby improving prediction accuracy.

The structure of the BiLSTM network is shown in Figure 3, where

(Figure 3A) illustrates the structure of a single LSTM cell, and
FIGURE 2

Structure of the input layer of the Transformer Encoder-BiLSTM model.
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(Figure 3B) depicts the overall BiLSTM network structure. Each

layer is composed of a forward LSTM (running from left to right)

and a backward LSTM (running from right to left).

As shown in (Figure 3A), a single cell of the LSTM, which

includes three gate structures: the forget gate (ft), the input gate (it),

and the output gate (Ot). In (Figure 3A), Ct and Ct−1 represent the

states of the memory units at the previous moment and the current

moment respectively, ht and ht−1 represent the states of the hidden

layers at the previous moment and the current moment

respectively, and xt is the data input at the current moment. The

forget gate ft calculates how much past information should be

retained in the memory cell through an activation function sigmoid

is shown in (Equation 11). The input gate it calculates how much

new information enters the memory cell through an activation

function sigmoid, as shown in (Equation 12). The updated value

C( e ) t of the cell state is obtained by performing a weighted matrix

summation on the input data xt and the previous hidden state ht−1,

and then passing the result through the tanh activation function, as

shown in (Equation 13). The output gate Ot determines how much

information is read from the memory cell. It is obtained by

performing a weighted summation of the previous hidden state ht

−1 and the input data xt, and then passing the result through the

sigmoid activation function, as shown in (Equation 14). Finally, Ct

and ht are calculated by (Equations 15, 16) respectively and are

passed to the next round of calculation.

ft = s (xt ∗Uf + ht−1 ∗Wf ) (11)

it = s (xt ∗Ui + ht−1 ∗Wi) (12)

C
e
t = tanh(xt ∗Uc + ht−1 ∗Wc) (13)

Ot = s (xt ∗Uo + ht−1 ∗Wo) (14)

Ct = ft ∗Ct−1 + it ∗C
e
t (15)
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ht = Ot ∗ tanh (Ct) (16)

Among above equations, s represents the sigmoid function. Uf ,

Ui, Uc and Uo are the weight matrices for the input, Wf , Wi,Wc

and Wo are the weight matrices related to the hidden state.

In the BiLSTM network, the forward LSTM receives the output

from the Transformer encoder (depicted in Section 2.1.2) as its

input, which has already integrated the global dependencies and

contextual information of the sequence. Through its recursive

nature, the forward LSTM enhances sensitivity to local dynamic

changes in the time series. This effectively integrates and refines

relevant features, and boosts its ability to parse short-term

dependencies. After receiving the output from the forward

BiLSTM, the backward LSTM continues to process the time series

information, further synthesizing and refining the features to

enhance the model’s ability to recognize complex or deep

temporal patterns. The outputs of the forward and backward

LSTMs are combined to integrate the complete contextual

information of the time-series observation data of buoys, as

shown in (Equations 17, 18, 19).

~H = LSTMforward(E) (17)

~H = LSTMbackward(E) (18)

H = Concat(~H,~H) (19)

Among them, ~H represents the output of the forward LSTM, ~H

represents the output of the backward LSTM, and H is the

final output after the combination of the forward and

backward LSTMs.

The bidirectional structure of the BiLSTM temporal reasoning

layer enables it to integrate information from both forward and

backward directions of the observation data sequence, providing the

model with a more comprehensive contextual perspective and

enhancing its capability to predict future sequences and interpret

past states.

→ ←

→ ←

→

←

FIGURE 3

Structure of the BiLSTM network. (a) LSTM cell structure. (b) Bidirectional LSTM framework.
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2.1.4 Output layer
The output layer is composed of a linear layer, with the input

dimension corresponding to the hidden layer dimension of the

backward LSTM, and the output dimension matching that of the

target prediction variable. Its function is to ensure that the model’s

output matches the dimension of the prediction target. The

responsibility of the linear layer is to perform a linear

transformation, mapping the output of the BiLSTM to the target

space. The output of the BiLSTM is ht, which is the hidden state

vector for each timestamp after processing by the backward LSTM.

Therefore, the output of the linear layer can be represented as

follows with Equation 20:

yt = htW + b (20)

where, ht is the output hidden state from the second layer of the

BiLSTM, W is the weight matrix of the linear layer, b is the bias

term, and yt is the output of the linear layer.

The simplicity and efficiency of the linear layer make it an ideal

choice for the model’s output, ensuring that the model can make

accurate predictions based on the features of the time series. It serves

as the final layer of the entire model and is a crucial step to generate

the final prediction results that match the demanded dimension.

The Transformer-Encoder-BiLSTM model is trained using a

dataset that has undergone quality control and interpolation to learn

the regularities and patterns of time series data, enabling accurate

predictions of buoy observed data. In the experimental phase, the

predictive function of the model is used to generate temporal reference

data for the test set. Finally, the reference data is used to replace

observations marked as missing or fixed values and identify anomalies

in the test set that were not marked with quality flag, thereby further

enhancing the overall quality and reliability of the data.
2.2 Loss function, optimizer, and
error metrics

The Transformer-Encoder-BiLSTM model employs Mean

Squared Error (MSE) as the loss function, which calculates the

average of the squared differences between the predicted values and

actual values. The optimizer selected is Adam, a gradient descent

algorithm that combines momentum with adaptive learning rate

adjustments. The initial learning rate is set to 0.001, and it is

dynamically adjusted using the ‘StepLR’ learning rate scheduler.

The learning rate is multiplied by a gamma value after a certain

number of training epochs, as determined by the ‘step_size’

parameter. Gamma is a multiplicative factor less than 1, used to

gradually decrease the learning rate, helping the model to stabilize

and converge in the later stages of training, thus avoiding overfitting.
3 Implementation of ocean moored
buoy data quality control method

The workflow of the ocean moored buoy data intelligent

quality control method is shown in Figure 4, which includes three
Frontiers in Marine Science 07
stages of data cleaning, model training, and intelligent data

quality control.
3.1 Data cleaning

Data cleaning is performed on both training and test datasets.

The steps for cleaning the training set data involve redundancy

detection, missing data detection, stuck value detection, continuity

detection, and spline interpolation. For the test set, data cleaning

includes redundancy detection, missing data detection, and stuck

value detection. The cleaned data is labeled with quality flags as

shown in Table 1.

The specific data cleaning methods are as follows.

(1). Redundancy checks and missing data detection.

In the implementation process, duplicate data are identified by

comparing the observation time and measured values in the buoy

observation data records. If there are several records at the same

observation timestamp, the average value of these records is taken

as the observed value, and the redundant data are deleted. If a

certain timestamp is absent, an empty record with that timestamp

as the observation time will be added, and the record will be marked

as missing with the symbol “3”.

(2). Stuck value detection

Stuck value detection identifies and handles fixed values in the

sequence by sensor failures, transmission errors, or other technical

issues. The stuck value check adopts a sliding window with a length

of 6 time units, which slides along the time series. It determines

whether the maximum value (Vmax) and minimum value (Vmin)

of an element over a certain period meet the condition in (Equation

21). If not, the data is classified as outliers and marked with the

symbol “4”. According to the China national industry standards for

marine data processing1,2, the threshold values (Hh) within a

sliding window for air temperature, water temperature, wind

speed, and air pressure are set to 0.1, 0.1, 0.2, and 0.1 respectively.

Vmax − Vmin ≥ Hh (21)

Here, Vmax represents the maximum value of the observed data

sequence, and Vmin represents the minimum value of the observed

data sequence. Hh is the constant inspection parameter, which

serves as the threshold for the fixed value detection.

(3). Continuity check

Gradient inspection and spike inspection are adopted to

evaluate the continuity of the change values of the observation

elements within a certain period of time. The specific method of the

gradient inspection is as follows: Assume that the current

observation value is xi, and the previous valid value adjacent to it

in time or space is xi-1. It is supposed to satisfy (Equation 22).

Otherwise, the observation values will be determined as suspicious.

xi − xi−1j j ≤ Hg (22)

Here, Hg is the gradient test threshold. According to the

industry standards for marine data processing1,2, the Hg for air

temperature and water temperature is set to 4.0, the Hg for wind

speed is set to 10.0, and the Hg for air pressure is set to 1.0.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1528587
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Song et al. 10.3389/fmars.2025.1528587
The spike inspection is based on the fact that the changes of

marine observation elements within a spatial or temporal range are

limited. If an observation value is significantly different from the

surrounding observation values, it is determined to be abnormal.

The specific method is as follows: Assume that the current data is xi,

and the first correct values adjacent to it on the left and right in time
Frontiers in Marine Science 08
or space are xi-1 and xi+1 respectively. It is supposed to satisfy

(Equation 23). Otherwise, it is considered suspicious.

xi − (xi−1 + xi−1)=2j j ≤ Hj (23)

Here, Hjis the spike threshold. According to the China national

industry standards for marine data processing1,2, the Hj for air

temperature and water temperature is set to 3.0, the Hj for wind

speed is set to 10.0, and the Hj for air pressure is set to 1.0.

The suspicious data detected in the processing of continuity

check will be marked with the symbol “2”.

(4). Spline interpolation

For the missing data, stuck values, and suspicious data in the

training set, the cubic polynomial spline interpolation method is

used for filling and correction to ensure the continuity and integrity

of the data during model training. The specific implementation

process is as follows: First, define Si(x) as a cubic polynomial (as

shown in (Equation 24)) on the specific interval [xi, xi+1]. This
FIGURE 4

Workflow of the ocean moored buoy data intelligent quality control method.
TABLE 1 Definition of data quality flags.

Quality Control Flag (Quality Code) Meaning

Blank Data not quality controlled

1 Correct data

2 Suspicious data

3 Missing data

4 Stuck value data
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polynomial represents a curve between the corresponding adjacent

data points xi and xi+1. Then, substitute four known data points on

[xi, xi+1] into (Equation 24), and based on this, the values of ai, bi, ci,

and di can be calculated. Finally, substitute the value of any point x

within this interval into (Equation 24) to calculate the corresponding

value, thus completing the interpolation of the data at x.

si(x) = ai + bi(x − xi) + ci(x − xi)2 + di(x − xi)3 (24)
3.2 Model training and optimization

The cleaned data is fed into the Transformer-Encoder-BiLSTM

time series model described in Section 3 for training. Through

training and hyperparameter tuning, the model loss is reduced, and

the model parameters are updated to minimize the loss function,

thereby improving the model’s training effectiveness and prediction

accuracy. After optimization is complete, the adjusted network

model parameters are saved as a model file, which will be used

for intelligent data quality control (as indicated by the red arrow

in Figure 4).

During the model tuning process, the Optuna library, which is a

Bayesian optimization algorithm based on a tree structure that

searches for the best combination of hyperparameters through trials

(Akiba et al., 2019), is used for hyperparameter optimization. The

model’s hyperparameters include the batch size, the sequence

length, the output dimension of input linear layer, the number of

attention heads, the number of encoder layers, the number of

BiLSTM hidden units, the number of BiLSTM layers, the dropout

rate, the step size of the learning rate scheduler, and gamma.

One hundred optimization trials using the Optuna library were

performed to minimize the mean squared error loss (MSELoss) on
Frontiers in Marine Science 09
the validation set for determining the hyperparameter values as

shown in Table 2. The optimal hyperparameters are determined

according to the following process. Firstly, the value ranges were

designed based on the optimal performance configurations derived

from extensive preliminary experiments and performance

evaluations. Subsequently, sensitivity tests were carried out on the

upper and lower bounds of the parameters to ascertain which values

might lead to performance degradation or overfitting. The results of

these preliminary experiments disclosed that overly large or small

hyperparameter values could result in a decline in model

performance or induce overfitting. After that, statistical analyses

were conducted on the model performance under different

hyperparameter combinations, and the combinations that could

significantly boost the model performance were selected. Through

repeated tests, the optimal values of the hyperparameters shown in

Table 2 were identified.
3.3 Intelligent data quality control

The intelligent data quality control process consists of two

modules: data repair and anomaly detection. For the test data

marked as missing or fixed values, the trained Transformer-

Encoder-BiLSTM model is loaded for data repair. Simultaneously,

for data without quality flags, the model is executed to figure out

outliers. In the procedures of data repair and anomaly detection, the

Transformer-Encoder-BiLSTM model works as follows.

Firstly, the preprocessed data, which is marked with quality

flags defined in Table 1, is loaded. For the missing and stuck values

with the symbols ‘3 ‘ and ‘4’, the trained Transformer-Encoder-

BiLSTM is executed to predict the values at corresponding

timestamps and replace the original values with the predicted ones.

Secondly, anomaly detection is performed on the data entries

with empty identifiers. First, load the saved Transformer-Encoder-

BiLSTMmodel to generate the predicted data for the corresponding

positions. Then, Calculate the difference between the predicted

data and the original data, and use the equation outlined in

(Equation 25) to determine if it is suspicious data. Data values

that meet the criteria of (Equation 25) will be marked as suspicious,

to be marked with a quality symbol of ‘2’; if they do not meet the

criteria, they will be considered correct data, with a quality symbol

of ‘1’.

Vi − Vi

�� �� > K · s (25)

Here, Vi is the i-th value of the difference sequence V between

the observed data sequence A and the reference data sequence B; Vi

is the average of the difference sequence V; K is the threshold

coefficient (generally set between 2 and 5) based on the confidence

significance level; and s is the standard deviation of the difference

sequence V.

Finally, the system will save the quality-controlled data and

conduct a comprehensive evaluation to ensure data accuracy and

consistency, confirming that it meets the expected standards.
TABLE 2 Optimal hyperparameters of the Transformer-Encoder-
BiLSTM model.

Hyperparameter Name Value Options Optimal
Value

Batch size [6, 12, 24,32] 12

Sequence Length [3, 6, 12, 24] 6

Output dimension of input
linear layer

[32, 64, 128] 32

Number of attention heads [2, 4, 8] 2

Number of encoder layers [1, 2, 4, 6] 2

Number of BiLSTM hidden units [32, 64, 128, 256] 32

Number of BiLSTM layers [1, 2, 3, 4] 2

Dropout rate [0.1, 0.2, 0.3,
0.4, 0.5]

0.2

Step_size of learning
rate scheduler

[10, 15, 20, 25, 30] 15

gamma Range between 0
and 1

0.5
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3.4 Data quality control evaluation metrics

The evaluation of quality control results is conducted using

Accuracy, Precision, Recall, and F1 score. Accuracy refers to the

proportion of correctly predicted samples by the model out of the

total number of samples, calculated using (Equation 26); Precision

refers to the proportion of samples determined as anomalies by the

model that are actually anomalies, calculated using (Equation 27);

Recall refers to the proportion of actual anomalies that are

correctly identified as anomalies by the model, calculated using

(Equation 28); and the F1 score is the harmonic mean of precision

and recall, used to balance precision and recall, calculated using

(Equation 29).

Accuracy =
TP + TN

TP + TN + FP + TN
(26)

Precision =
TP

TP + FP
(27)

Recall =
TP

TP + FN
(28)

F1 score = 2� accuracy + recall
accuracy � recall

(29)
Here, TP stands for True Positive, indicating the number of data

points that are actually anomalies and correctly detected as

anomalies by the model; TN stands for True Negative, indicating

the number of data points that are actually normal and

correctly detected as normal by the model; FP stands for False

Positive, indicating the number of data points that are actually

normal but incorrectly detected as anomalies by the model; and FN

stands for False Negative, indicating the number of data points that
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are actually anomalies but incorrectly detected as normal by

the model.
4 Experiments and analysis

4.1 Hardware and software environment
and experimental data

The experiments in this study were conducted on a standard

desktop computer equipped with an AMD Ryzen 7 6800H

processor and an RTX 3050 discrete graphics card. The software

environment included the Ubuntu 20.04 operating system, the

Python programming language, the neural network library

PyTorch 2.2.1, the GPU computing library CUDA 12.1, and the

hyperparameter optimization library Optuna.

The experimental data are sourced from Buoy No. 0199 which is

deployed in the sea area near Maidao Island, Qingdao, China [the

location is indicated in (Figure 5A)]. This buoy is a circular buoy with

a diameter of 15 meters and is moored by three anchors [see

(Figure 5B)]. The time range of the selected experimental data is

from May 28, 2023, to September 8, 2023. The interval between

adjacent data records is 10 minutes, and the number of data samples is

14,834. The experimental data were selected because this time period

spans from late spring to early autumn. During this period, significant

changes have taken place in meteorological and oceanic conditions,

including the increase in temperature, fluctuations in wind speed, and

changes in air pressure. Analyzing these data is of great significance

and can help us better understand the impact of seasonal changes on

the surrounding meteorological environment. In addition, the

experimental data are derived from the actual observations of the

in-situ buoys, which can reflect the real changes in the marine

environment. The results of the data analysis are of even greater

practical guiding significance for the R&D team of buoy equipment.
FIGURE 5

Deployment location and structure of Buoy 0199. (a) Geographical location of Buoy 0199 near Maidao Island, Qingdao, China. (b) Real-world
photograph of the buoy, showing the main buoy and three floating drums connected to underwater anchors.
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In the experiments, the average air temperature, water

temperature, average wind speed, and average air pressure were

taken as the objects of data quality control. Through the Pearson

correlation coefficient test, it was found that the correlations

between the air temperature and the water temperature and that

between the wind speed and the air pressure are high. Additionally,

data elements in the buoy observation dataset include the air

temperature per minute, wind speed per minute, air pressure per

minute within every 10 minutes, as well as the water temperature,

average air temperature, average wind speed, and average air

pressure. The input characteristic elements for the four target

elements (average air temperature, water temperature, average

wind speed, and average air pressure) are shown in Figure 6. The

input feature elements for detecting average air temperature and

water temperature include air temperature per minute within 10

minutes, average air temperature and water temperature. The input

feature elements for detection average wind speed include wind

speed per minute within 10 minutes, average wind speed and

average air pressure. The input feature elements for detecting

average air pressure include air pressure per minute within 10

minutes, average air pressure and average wind speed.

The entire experimental dataset was divided into training and test

sets. The training set covers the time period from May 28, 2023, to

August 6, 2023, with 10,258 data points; the test set covers the period

from August 7, 2023, to September 8, 2023, with 4,576 data points.

During the execution of the Transformer-encoder-BiLSTM model

(described in Section 2.1.1), the variation in the dimensions of the

feature data of the four target elements (average air temperature, water

temperature, average wind speed, and average air pressure) in each

data processing layer is shown in Table 3. The original input feature

dimension is 12. After combined with encoded time feature in the

procedure of feature merging, the feature dimension changes to16.

After being processed by the input linear layer, the feature dimension

changes to 32. Then, after passing through the Transformer-Encoder

layer, deep features are extracted, and the feature dimension remains

unchanged. After being processed by two layers of BiLSTM, the

feature dimension reaches 64. Finally, after the processing of the

linear layer, the output dimension is fixed at 1.
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4.2 Analysis of data quality control
effectiveness

4.2.1 Analysis of missing data and stuck value
detection results

Missing data and stuck value detection was conducted on the four

target elements (average air temperature, water temperature, average

wind speed, and average air pressure) within the test set. Missing

values are marked with the symbol ‘3’ and stuck values are marked

with the symbol ‘4’. The visual results of missing data and stuck value

detection are shown in Figure 7. In Figure 7, empty spaces indicate

missing data and red dots indicate stuck values. The experimental

results indicate that missing data for all four elements is concentrated

within several identical time periods, with a missing rate of 8.85%.

The missing data originates from common external factors, such as

data transmission issues or system interruptions. For stuck value

detection, threshold values for air temperature, water temperature,

wind speed, and air pressure were set at 0.1, 0.1, 0.2, and 0.1
FIGURE 6

The mapping relationship between the input feature elements and the quality control target elements.
TABLE 3 Dimensions of feature data in the Transforme-Encoder-BiLSTM
network structure.

Type Input size Output size

Time coding
[batch size,

sequence length,1]
[batch size,

sequence length,4]

Fearure merging
[batch size,

sequence length,12]
[batch size,

sequence length,16]

Linear layer
batch size,

sequence length,16]
[batch size,

sequence length,32]

Transformer
Encoder layer

[batch size,
sequence length,32]

[batch size,
sequence length,32]

BiLSTM Layer1
[batch size,

sequence length,32]
[batch size,

sequence length,64]

BiLSTM Layer2
[batch size,

sequence length,64]
[batch size,

sequence length,64]

Output layer [batch size,64] [batch size, 1]
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respectively. A sliding window of six time points was applied along

the time series to identify stuck values. The stuck value rates for air

temperature, water temperature, wind speed, and air pressure are

4.1%, 8.1%, 0.79%, and 2.69%, respectively, indicating varying degrees

of stuck values among the different elements. The stuck value rate for

seawater temperature is the highest, due to prolonged operation of

the water temperature sensor in seawater, where it is subject to

environmental interference. In contrast, the stuck value rate for wind

speed is the lowest, as the wind sensor is mounted on a bracket at the

top of the buoy platform, operating in open air and thus experiencing

less environmental interference.

4.2.2 Analysis of data repair results
Data repair is performed before anomaly detection to ensure

data integrity. In the data repair process, the predicted values

generated by the Transformer-Encoder-BiLSTM model are used

to impute the missing values and replace stuck values. Figure 8

illustrates the repaired results calculated by the Transformer-

Encoder-BiLSTM model for missing and stuck value data. In

Figure 8, green dots represent filled values of missing data and

red dots represent replaced values of stuck data. The magnified

area in Figure 8 highlights the recovery of air temperature data

from August 31 to September 2, 2023. It shows that the

Transformer-Encoder-BiLSTM model effectively corrects
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missing and stuck values, providing a reliable data foundation

for anomaly de tec t ion and enhanc ing i t s accuracy

and effectiveness.

4.2.3 Analysis of anomaly detection results
The Transformer-Encoder-BiLSTM model performs further

anomaly detection on data from the testing dataset that is not

marked with any quality flags. Figure 9 shows the anomaly

detection results based on the Transformer-Encoder-BiLSTM

model, where the red dots represent outliers. The results indicate

that 253, 275, 87, and 191 records are identified as anomalous for air

temperature, water temperature, wind speed, and air pressure,

respectively. The corresponding error rates are 6.35%, 7.69%,

2.12%, and 4.77%. It indicates that the model’s performance varies

when detecting different elements, which is related to the external

environment that the monitoring sensors work in. Specifically, the

error rate of seawater temperature is the highest, as the water

temperature sensors are installed underwater and are susceptible to

fluctuations caused by waves and ocean currents, leading to increased

data error rates. In contrast, the error rate of wind speed is relatively

low, because the wind sensors are mounted on a 10 m high frame on

top of a buoy platform, which protects them from seawater erosion,

resulting in more stable data with fewer anomalies. This is consistent

with the cause analysis of the stuck value detection results.
FIGURE 7

Results of missing and stuck value detection on the testing dataset.
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4.2.4 Evaluation of data quality control results
The anomaly detection results of the Transformer-Encoder-BiLSTM

model are evaluated and the assessment results are shown in Table 4.

From Table 4, it can be observed that the accuracy rates for the four

target elements are all above 97%, demonstrating themodel’s efficiency in

distinguishing between correct data and anomalies. The precision rates

are all above 84%, indicating the model’s accuracy in identifying

anomalous data. The recall rates range between 75.61% and 85.71%,

demonstrating that the model effectively identifies real anomalies with

very few missed detections. The F1 scores range from 81.61% to 90.09%,

further confirming the model’s high overall performance. Among the

four elements, the quality control assessment for air temperature

performs the best, with an F1 score of 90.09%. Overall, the

Transformer-Encoder-BiLSTM model demonstrates high reliability in

detecting anomalies across all four parameters: air temperature, water

temperature, wind speed, and air pressure.

4.2.5 Analysis of time efficiency
Using the Transformer-Encoder-BiLSTM model to carry out outlier

detection for the four target elements is highly time-efficient. As shown in

Figure 10, the time consumed in the four data processing stages, namely data

processing, sample segmentation, model training, and model evaluation, is

presented. Themodel training time for 10,258 data records of the training set
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ranges from 1,550 seconds to 1,750 seconds. Meanwhile, the model

evaluation time needed for performing outlier detection on 4,576 data

records of the test set is between 2.6 seconds and 3.6 seconds, suggesting a

relatively fast calculation speed and its practicability in actual scenarios. By

invoking the trained model, real-time outlier detection can be accomplished

within 4 seconds. Experiments have verified that the Transformer-Encoder-

BiLSTM model enjoys high computational efficiency.

Actually, the computational efficiency of the Transformer-Encoder-

BiLSTM model will inevitably vary due to changes in on-site hardware

configurations, making it difficult to ensure real-time response

performance. Therefore, offline data imputation is adopted as an

alternative to real-time imputation. The specific process is as follows:

First, themodel is pre-trained on the server every hour using the historical

observation data from at least 30 days ago. Then, data anomaly detection

and imputation are carried out for the data fromone hour ago. Finally, the

processed data is imported into the real-time data system.
4.3 Ablation experiments

In the ablation experiments, the performance of three models—

BiLSTM, Transformer-Encoder-LSTM, and Transformer-Encoder-

BiLSTM—is compared. Figures 11–13 show predicted values and
FIGURE 8

Results of repairing missing and stuck values with the Transformer-Encoder-BiLSTM model.
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anomaly detection results for the BiLSTM, Transformer-LSTM, and

Transformer-Encoder-BiLSTM models, respectively. The different

detection methods revealed their sensitivity and ability to identify

anomalies in temperature, water temperature, wind speed, and air

pressure. For the BiLSTM model, the number of detected suspicious

data points is as follows: 272 for air temperature, 263 for water

temperature, 74 for wind speed, and 196 for air pressure. The

Transformer-LSTM model detected slightly more suspicious data

points: 291 for air temperature, 270 for water temperature, 85 for wind

speed, and 181 for air pressure. In contrast, the Transformer-Encoder-

BiLSTM model, which integrates both the Transformer encoder and

BiLSTM, identified 253 suspicious data points for air temperature, 275 for

water temperature, 87 for wind speed, and 191 for air pressure. These time

series models demonstrate high sensitivity in identifying anomalous data.

Further quality evaluation of these anomaly detection methods was

conducted, with detailed results shown in Table 5. Experimental results
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indicate that the Transformer-Encoder-BiLSTM model outperforms the

other two models in accuracy, precision, recall, and F1 score for detecting

anomalies in air temperature, water temperature, wind speed, and air

pressure, highlighting its superior anomaly detection capability.

Further comparison of the three models in terms of MAE, MSE,

RMSE, and R² metrics is provided in Table 6. The results show that the

proposed Transformer-Encoder-BiLSTM model, which combines the

efficient data encoding capabilities of the Transformer encoder with the

strong temporal information processing abilities of the bidirectional

LSTM, demonstrates excellent model performance. Specifically, this

model achieves anMAE of 0.122, MSE of 0.032, RMSE of 0.180, and an

R² score of 0.916, outperforming the other two models in all metrics.

The above results of ablation experiments indicate that

incorporating the Transformer encoder and the bidirectional LSTM

to build the Transformer-Encoder-BiLSTM model significantly

enhances the performance of anomaly detection. The Transformer
frontiersin.org
FIGURE 9

Anomaly detection results of air temperature, water temperature, wind speed, and air pressure with the Transformer-Encoder-BiLSTM model.
TABLE 4 Evaluation metrics of the Transformer-Encoder-BiLSTM model for buoy data anomaly detection.

Ocean Parameters Accuracy (%) Precision (%) Recall (%) F1 (%)

air temperature 98.67% 94.86% 85.71% 90.09%

water temperature 98.18% 84.28%. 78.64% 81.61

wind speed 99.32 89.66% 80.41% 84.73%

air pressure 97.82% 92.73% 81.41% 86.78
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FIGURE 10

The calculation time of the Transformer-Encoder-BiLSTM model for QC of air temperature, water temperature, wind speed and air pressure.
FIGURE 11

Predicted values and anomaly points got using the BiLSTM model.
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encoder layer effectively captured the complex dependencies and

nonlinear features in the ocean observation data. The bidirectional

LSTM further strengthened the model’s capacity to capture contextual

information in the time series. This enhanced the model’s ability to

understand long-term trends and, ultimately optimized the model’s

overall predictive performance for detecting anomalous data.
4.4 Comparative experiments

The QC method using the Transformer-Encoder-BiLSTM

model was compared with traditional ocean data QC methods,
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namely Grubbs’ test and the 3s criterion, as well as the state-of-the-

art AI models, such as the Seasonal and Trend decomposition using

Loess and LSTM model (STL-LSTM) (Feng et al., 2021) and the

CNN-BiGRU-Attention model (Song et al., 2024), with detailed

results shown in Table 7. The experiments indicate that traditional

methods have lower recall rates, making them prone to missing

anomalous data, resulting in lower overall performance (F1 score)

compared to deep learning models. Among all metrics, the

Transformer-Encoder-BiLSTM model performed the best,

particularly excelling in precision and F1 score, demonstrating its

ability to effectively balance accuracy and recall in detecting

anomalous data, and showcasing the strongest overall performance.

The Transformer-Encoder-BiLSTMmodel was compared with the

CNN-BiGRU-Attention model and the STL-LSTM model in terms of

four performance indicators: MAE, MSE, RMSE, and R2. The results

are shown in Table 8, which indicates that the Transformer-Encoder-

BiLSTM model proposed in this paper has high performance.
4.5 Robustness verification

The robustness verification of outlier detection was additionally

conducted on the datasets of Buoy No. 0234, situated in Jiaozhou
FIGURE 12

Predicted values and anomaly points got using the Transformer-Encoder-LSTM model.
TABLE 5 Evaluation metrics of the BiLSTM model, the Transformer-
Encoder-LSTM model and the Transformer-Encoder-BiLSTM model for
detecting anomalies.

Detection Accuracy Precision Recall F1

BiLSTM 97.30% 84.60% 78.46% 80.20%

Transformer-
Encoder-LSTM

98.35% 89.20% 81.60% 85.42%

Transformer-
Encoder-BiLSTM

98.50% 90.38% 81.64% 85.80%
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Bay, China, and Buoy No. 0235, which is located in the Bohai Strait.

The performance comparison of the Transformer-Encoder-

BiLSTM model for data outlier detection of Buoy No. 0199, Buoy

No. 0234, and Buoy No. 0235 is presented in Table 9. It can be noted
frontiersin.org
FIGURE 13

Predicted values and anomaly points got using the Transformer-Encoder-BiLSTM model.
TABLE 6 Performance comparison of the BiLSTM model, the
Transformer-Encoder-LSTM model and the Transformer-Encoder-
BiLSTM model.

Model MAE MSE RMSE R2

BiLSTM 0.208 0.062 0.249 0.838

Transformer-
Encoder-LSTM

0.137 0.038 0.197 0.898

Transformer-
Encoder-BiLSTM

0.122 0.032 0.180 0.916
ABLE 7 Evaluation metrics of Grubbs Test, 3s Criterion, the CNN-
iGRU-Attention model, the STL-LSTM model and the Transformer-
ncoder-BiLSTM model for Buoy Data Detection.

Detection Accuracy Precision Recall F1

Grubbs Test 94.52% 82.29% 60.20% 81.20%

3s Criterion 95.63% 82.86% 60.10% 81.58%

CNN-BiGRU-Attention 96.63% 84.28% 75.48% 82.61%

STL-LSTM 97.50% 88.69% 80.52% 84.50%

Transformer-
Encoder-BiLSTM

98.50% 90.38% 81.64% 85.80%
TABLE 8 Performance comparison the CNN-BiGRU-Attention model,
the STL-LSTM model and the Transformer-Encoder-BiLSTM model.

Model MAE MSE RMSE R2

CNN-BiGRU-Attention 0.228 0.068 0.261 0.903

STL-LSTM 0.330 0.036 0.190 0.890

Transformer-
Encoder-BiLSTM

0.122 0.032 0.180 0.916
TABLE 9 Performance comparison of the Transformer-Encoder-BiLSTM
model on dataset of three buoys.

Buoy No. MAE MSE RMSE R2

0234 0.208 0.106 0.254 0.862

0235 0.211 0.114 0.338 0.858

0199 0.122 0.032 0.180 0.916
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that the MAE of the data is below 0.22, the MSE is below 0.12, the

RMSE is below 0.34, and the R2 value is above 85%. This suggests

that the Transformer-Encoder-BiLSTM data quality control model

proposed in this paper possesses good robustness and is able to

detect outliers in the observed data from various buoy stations.
5 Conclusion and discussion

The long-term and continuous observations provided by

moored buoys are of immense scientific value, but anomalies and

data gaps disrupt this continuity and diminish the data’s

applicational value. This article innovatively establishes an

intelligent buoy data QC method through the organic fusion of

the Transformer encoder and a BiLSTM time series analysis model,

named Transformer-Encoder-BiLSTM. The buoy data QC method

based on the Transformer-Encoder-BiLSTM model overcomes the

defects of traditional QC methods, which can only identify gross

errors and are unable to automatically detect outliers. The

Transformer-Encoder-BiLSTM model demonstrates strong

sensitivity to complex time-series buoy data for detecting subtle

differences in nonlinearity and achieves high recall rates in anomaly

detection. The innovation of the proposed data QC method is

manifested as follows: 1) By taking advantage of the Transformer

model, the positional data of each observation point is calculated

through the self-attention mechanism. This enables the method to

capture the long-distance correlations existing in the time series.

Moreover, it can automatically learn the importance weights among

the data of different time points in the time series data and encode

feature data, which efficiently reflects the inherent temporal

correlations within the data. It also boosts robustness to noisy

data and improves the generalization ability of the Transformer-

Encoder-BiLSTM model. 2) Employing BiLSTM enables the

modeling of elements in each dimension of the encoded feature

sequence from both the forward and backward directions, realizing

temporal reasoning, and enhancing the accuracy of data prediction.

Ablation experiments, along with a large number of comparative

experiments, and robustness experiments have been conducted to

verify the effectiveness, robustness, and generalization ability of the

Transformer-Encoder-BiLSTM model. Experiments have

demonstrated that the model attains high performance. Specifically,

for the four target elements (average air temperature, water

temperature, average wind speed and average air pressure) of Buoy

No. 0199 in Maidao Island, Qingdao, China, it has an R² exceeding

0.9, a quality control accuracy higher than 97%, precision and recall

above 84%, and F1 scores ranging from 81.61% to 90.09%. The

performance of the Transformer-Encoder-BiLSTM model has been

proven to be superior to that of STL-LSTM and CNN-BiGRU-

Attention. When the model was used to detect outliers in the data

of another two buoys (No. 0234 and No. 0235), it also achieved good

results, with the R2 values being greater than 85%, which

demonstrates that the Transformer-Encoder-BiLSTM model has

high robustness.
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This article focuses on addressing the key technical issues during

the development of marine buoy equipment. Great efforts are made

to detect outliers, impute missing data, and repair stuck values and

abnormal data in the observation dataset collected by our own in-situ

buoy devices to enhance the quality and reliability of the data. In the

future, public datasets like those in SeaDataNet will be used for model

experimental verification. Additionally, future research will focus on

optimizing the Transformer-Encoder-BiLSTM model for

spatiotemporal quality control of other ocean buoy data elements,

considering multi-station data quality across different observation

sites, elements, and scales, so as to improve the robustness and

generalization ability of the model.We also plan to study other neural

network models, such as the spectral temporal convolutional neural

network, for the high-precision QC of marine buoy data. In

conclusion, this article reports an effective attempt at addressing

issues of buoy data QC by leveraging the state-of-the-art neural

networks, namely the Transformer-Encoder-BiLSTM. It holds great

potential for establishing a comprehensive intelligent quality control

method for ocean-moored buoy data.
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