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Chlorophyll-a (Chl-a) plays a vital role in assessing environmental health and

understanding the response of marine ecosystems to physical factors and

climate change. In situ sampling, remote sensing, and moored buoys or floats

are commonly employed methods for obtaining Chl-a in marine science

research. Although in situ sampling, buoys, and floats could provide accurate

data, they are limited by the spatial and temporal resolution. Remote sensing

offers continuous and broad spatial coverage, while it is often hindered by cloud

cover in the South China Sea (SCS). This study discussed the feasibility of a

predictive model by linking the physical factors [e.g., wind field, surface currents,

sea surface height (SSH), and sea surface temperature (SST)] with surface Chl-a in

the SCS based on the ResUnet. The ResUnet architecture performs well in

capturing non-linear relationships between variables, with the model achieving

a prediction accuracy exceeding 90%. The results indicate that (1) the

combination of oceanic dynamical and meteorological data could effectively

estimate the Chl-a based on deep learning methods; (2) the combination of

meteorological and SST effectively reproduces Chl-a in the northern SCS, while

adding surface currents and SSH improves model performance in the southern

SCS; (3) With the addition of surface currents and SSH, the model effectively

captures the high Chl-a patches induced by eddies. This research presents a

viable method for estimating surface Chl-a concentrations in regions where they

are highly correlated with dynamic factors, using deep learning and

comprehensive oceanic and atmospheric data.
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1 Introduction

Phytoplankton chlorophyll-a (Chl-a) is a key indicator of

marine phytoplankton biomass and primary productivity

(Fernández-González et al., 2022). The SCS is characterized by

diverse biogeochemical regimes, which is related to the dynamical

process over the SCS. Nutrients from rivers such as the Pearl River

and the Mekong River typically dominate the shelf regions (Dai

et al., 2022). While the central SCS exhibits oligotrophic conditions

with low productivity and depths exceeding 5000 m (Chen, 2005).

The East Asian monsoon largely drives the circulation in the South

China Sea (SCS), forming the South China Sea Western Boundary

Current influencing the distribution of nutrients (Fang et al., 2012).

Under northeasterly monsoon and stronger Kuroshio intrusion, a

cyclonic circulation prevails in the upper layer during winter (Qu,

2000; Gan et al., 2006). However, some studies indicate an

anticyclonic circulation pattern (Chu et al., 1999; Xue et al., 2004;

Fang et al., 2009), while others describe a cyclonic circulation in the

northern SCS (NSCS) and an anticyclonic circulation in the

southern SCS (SSCS) (Figure 1; we recreated it based on the Shu

et al., 2018; Liu et al., 2008).

In the NSCS, Chl-a concentrations display a marked seasonal

cycle, with high levels in winter and low levels in summer (Ning

et al., 2004; Xian et al., 2012). The SCS connects to the Pacific Ocean

through the Luzon Strait, allowing the Kuroshio to intrude into the

SCS and contribute to its circulation (Xue et al., 2004; Qian et al.,

2018; Cai et al., 2020). Winter phytoplankton blooms in Luzon

Strait are often attributed to the interaction between monsoon-

driven or current-induced upwelling, vertical mixing, meso-scale

eddies, and fronts (Peñaflor et al., 2007; Shen et al., 2008; Wang

et al., 2010, 2023; Shang et al., 2012; Lu et al., 2015; Xiu et al., 2016;

Guo et al., 2017; Chang et al., 2022; Lao et al., 2023). The Luzon

Cold Eddy, generally prevailed in winter and spring near the

northwestern coast of Luzon Island, would alter the distribution

of the Chl-a near the Luzon Island (Lu et al., 2015; Huang et al.,

2019; Sun et al., 2023). During the summer, when the southwest
Frontiers in Marine Science 02
monsoon prevails, upwelling and a northeastward jet are induced

along the coast of Vietnam (Kuo, 2000; Fang et al., 2002; Xie et al.,

2003; Lin et al., 2009; Ma et al., 2012). The upwelling elevates

nutrients into shallow layers, supporting phytoplankton growth,

resulting in the surface high Chl-a (Yang et al., 2012; Chen et al.,

2021). With the transport of this jet in nutrients and biomass, the

Chl-a off the east of the Vietnam significantly was enhanced. The

interaction between cyclonic and anticyclonic eddies with the jet

stream formed a high Chl-a belt (Liang et al., 2018).

There are several methods to measure Chl-a concentrations in

the ocean, each with its own limitations. Traditionally, in situ ship-

based, autonomous profiling float, and remote sensing satellites are

the primary means of acquiring Chl-a data in the ocean (Kishino

et al., 1997; Wright, 1997; Dierssen, 2010; Rykaczewski and Dunne,

2011; Boyce et al., 2012; Wernand et al., 2013). In situ ship-based

and floats generally have low spatial or temporal resolution. Remote

sensing satellite, offering high spatial and temporal resolution data,

is easily affected by cloud cover (Shropshire et al., 2016).

Considering the difficulties in acquiring the Chl-a, simulating the

Chl-a or phytoplankton with marine ecological numerical model

was an excellent method. However, the accuracy of numerical

model results depends on the parameterization scheme of

ecological (or biogeochemical) processes and the optimization of

parameters. Developing a robust ocean ecological model requires

substantial time for construction, calibration, and computation.

Recently, machine learning techniques, particularly deep

learning, have advanced rapidly. The application of machine

learning in ocean science has provided new insights into

predicting key environmental or hydrodynamic indicators (Jouini

et al., 2013; Aleshin et al., 2024; Krestenitis et al., 2024). Due to its

strong capabilities in nonlinear regression, deep learning has been

extensively utilized in oceanography, for tasks such as predicting sea

surface temperature (SST), eddies, waves, and Chl-a (Liu et al.,

2021; Liu and Li, 2023; Roussillon et al., 2023; Zhao et al., 2024).

Ding and Li (2024) compared the performance of CNN, LSTM, and

hybrid CNN-LSTM models for Chl-a prediction, concluding that

the hybrid CNN-LSTM model outperformed standalone models

with an R-squared, R² = 0.72. Similarly, Zhou et al. (2024)

contributed further insights into the application of machine

learning for ecological predictions. However, in some cases,

machine-learning was not performed well than empirical

algorithms. Bygate and Ahmed (2024) combined observational

data and Landsat 8 surface reflectance to evaluate empirical and

machine learning models for retrieving water quality indicators in

Matagorda Bay, highlighting the limitations of traditional machine

learning models in water quality inversion. Yang et al. (2024)

developed a self-attention mechanism-based deep learning model

to estimate nine phytoplankton pigment concentrations within the

upper 300 m of the ocean, achieving R² > 0.8 and revealing a

positive correlation between the maximum phytoplankton layer

location and the Niño 3.4 index in the Equatorial Pacific Niño 3.4

region. Roussillon et al. (2023) introduced a multi-mode CNN to

globally reconstruct phytoplankton biomass by learning region-

specific responses to physical forcing. Their model achieved an R² >

0.87, highlighting the capacity of multi-mode approaches to

uncover spatially consistent responses to ocean dynamic.
FIGURE 1

Diagram of the surface current patterns (based on data from Shu et
al. 2018; Liu et al., 2008). Red (Green) means current pattern in
winter (summer). LCE, Luzon Cold Eddy; SCSWBC, South China Sea
Western Boundary Current; VCE, Vietnam Cold Eddy; KC,
Karimata Current.
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On the one hand, previous studies have revealed various

complex dynamical processes related with the surface Chl-a in the

SCS (Dai et al., 2022; Xian et al., 2012; Wang et al., 2023; Guo et al.,

2017; Ma et al., 2012; Yu et al., 2019). On the other hand, machine

learning has the advantage of finding complex nonlinear

relationship among variables in an environmental setting (Song

and Jiang, 2023). Hence, machine learning can provide a powerful

support in elucidating the complex quantitative relationship

between the physical factors (such as wind, SST) and the surface

Chl-a. A few studies have used machine learning or deep learning to

build a model link the physical factors and surface Chl-a with

monthly data (Li et al., 2023; Roussillon et al., 2023). However, the

possibility and performance by using the atmospheric and oceanic

physical data to predict surface Chl-a with daily data remains

unclear. This study discussed the feasibility of a predictive model

based on the ResUnet architecture (Diakogiannis et al., 2020) to

predict daily Chl-a concentrations in the SCS (100°E-124°E, 0°N-

25°N) by atmospheric and oceanic dynamic factors. The ResUnet

model enables the capture of the effects of multiple ocean dynamical

processes on Chl-a evolution from the data. This approach yields

accurate results while significantly reducing computational costs

compared to traditional ocean ecological modeling methods.
2 Data and methods

2.1 Data

The dataset used in this study was derived from the atmosphere

and ocean reanalysis datasets, European Centre for Medium-Range

Weather Forecasts (ECMWF) Reanalysis v5 (ERA-5; https://

www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5) and

Hybr id Coordinate Ocean Model (HYCOM; https : / /

www.hycom.org/). The 10 m wind fields were derived from the

ERA-5, with spatial resolution as 0.25°×0.25° and the temporal

resolution as 1-hourly. We calculated the mean value per 24 hours

for acquiring the daily air forcing data to keep the same temporal

resolution in our study. The SST, surface currents (eastward and

northward velocity) and sea surface height (SSH) were derived from
Frontiers in Marine Science 03
the HYCOM. The original spatial resolution is 0.08° and temporal

resolution is 3-hourly. We interpolated the original data to the

ERA-5 resolution and calculated the daily data every 8 times layer.

These physical factors, such as wind, current, SSH, and SST, have

been shown to be closely related to the variation in surface Chl-a in

previous studies (Yu et al., 2019; Xiu et al., 2016; Geng et al., 2019).

This study focuses on discussing feasibility of a predictive model

capable of forecasting future Chl-a concentrations by establishing a

link between oceanic and atmospheric dynamic variables (e.g., wind

fields, sea surface temperature, and current fields) and surface Chl-

a. The predictive model requires complete and valid Chl-a as the

label to ensure the effectiveness of the model. However, there is a

number of missing values in the SCS from the remote sensing

satellite data. Therefore, the Chl-a data used as the target variable

(True) was derived from the Ye et al. (2024). The data covers the

period from January 1, 2013, to December 31, 2017, with a temporal

resolution of daily averages. This dataset was reconstructed using a

combination of satellite and observational data, employing optimal

interpolation and the SwinUnet method. Ye et al. (2024)

successfully reconstructed a high-quality surface Chl-a dataset;

however, the approach relies heavily on satellite remote sensing

data, which limited the application in short-term prediction. In

contrast, numerical models, such as HYCOM and ERA5, could

provide oceanic and atmospheric dynamic factors, which can be

leveraged to predict short-term variations in surface Chl-a. For this

purpose, we considered the datasets from Ye et al. (2024) as the true

Chl-a to train a model with physical factors. More information is

listed in Table 1.
2.2 Methods

2.2.1 Data pre-processing
In order to achieve spatial resolution consistency across all

predictor variables, we employed linear interpolation to adjust

predictor variables from HYCOM to a resolution of 0.25° × 0.25°.

Each predictor variable contained 97 × 101 data grid points,

covering the period from 2013 to 2017. To maintain consistency

among the variables, data standardization was applied. The daily
TABLE 1 Introduction of the datasets used in this study.

DataSets Unit Min Max Spatial Resolution Time Period Data Sources

Chl-a mg  m−3 0.0012 4:9� 1033 0.0105°

2013.01
–

2017.12

Ye et al. (2024)

Wind speed m   s−1 1.4 15.4

0.25°

ERA5
(Wind stress curl is
calculated based on
the Equations 1, 2)

Wind stress curl N  m−3 − 2� 10−7 2:5� 10−7

10m v wind m   s−1 -32.6 32.9

10m u wind m   s−1 -31.3 32.2

Sea surface temperature °C 12.35 34.05

0.08° HYCOM
u-velocity m   s−1 -1.7 1.8

v-velocity m   s−1 -2.0 1.8

Sea surface height m -0.1 1.6
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predictor variables, represented as two-dimensional arrays of 97 ×

101, were then concatenated to form a three-dimensional array with

dimensions N × 97 × 101, with each variable occupying a separate

channel within the data structure. In our experimental design, the

predictors include data points for all available variables on a given

day, which are subsequently used to forecast the Chl-a

concentration (predictand) for that same day. To align the

predictand data with the model output, Chl-a data was resampled

to 0.25° × 0.25° before model training and was standardized

thereafter. Following training, the model outputs were

denormalized to retrieve the predicted Chl-a values. The

experimental results demonstrated that this methodology

effectively enhances the model’s fitting performance. The wind

stress and wind stress curl in Table 1 are calculated as follows:

~t = rC~u · ~uj j (1)

∇�~t =
∂ty
∂x

−
∂tx
∂y

(2)

The ~u is the wind vector, and ~t is the wind stress. tx and ty
represent the eastward and northward component of the wind

stress. The r and C are the air density and drag coefficient,

respectively. The C is estimated based on Large and Pond (1981).
2.2.2 Residual U-Net model
The UNet is a deep learning architecture for image

segmentation that utilizes a symmetric encoder-decoder structure

with skip connections to effectively capture and preserve detailed

spatial information (Ronneberger et al., 2015). In this study, we
Frontiers in Marine Science 04
employed a modified UNet architecture to enhance effectiveness, as

shown in Figure 2. The model features a U-shaped structure with

four encoder-decoder modules. To enhance the model’s ability to

handle non-linear relationships, the traditional ReLU activation

function was replaced with the Sigmoid Linear Unit (SiLU)

activation function due to its advantage in smooth activation

(Elfwing et al., 2017). To address overfitting and mitigate issues of

exploding or vanishing gradients, Batch Normalization (BN) was

applied after the convolutional layers. Furthermore, the AdamW

optimizer was employed to improve training stability and

performance by effectively managing weight decay (Loshchilov

and Hutter, 2019). Consistent with most regression tasks, Mean

Squared Error Loss (MSELoss) was utilized as the loss function.

These modifications were implemented to collectively improve the

model’s performance, accuracy, and computational efficiency.

The basic module of the UNet network is a residual module,

each of which consists of two 3 × 3 two-dimensional convolutional

layers, two BatchNorm2d layers, and two SiLU activation functions.

The encoder part (left half of Figure 2) consists of a residual module

and a max pooling layer. This configuration gradually reduces the

feature mapping dimensions in length and width, thereby

enhancing higher-order features. Following the encoder, the same

number of decoders (right half of Figure 2) decode the features,

including up-sampling to double the size of the feature map and

skip connections. This process produces a feature map of size [64,

97, 101]. The final layer of the model is a 1 × 1 convolutional layer

that reduces the number of channels to 1, producing the final 97 ×

101 Chl-a outputs of the model. Definitions of deep learning terms,

including Residual Block, SiLU, and max pooling, are provided in

the Appendix.
FIGURE 2

An illustration of the ResUNet architecture. Each colored cube symbolizes a feature map, with the numbers within the parentheses indicating the
(width × height × channels).
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2.2.3 Data split and model accuracy metrics
In this study, Chl-a data from 2013 to 2016 were allocated for

model training, testing, and validation at proportions of 70%, 20%,

and 10%, respectively. Data from 2017 was subsequently utilized to

evaluate the model’s effectiveness in applications. There are some

extremely large anomalies (> 1010) in Chl-a data from Ye et al.

(2024). Therefore, during data preprocessing, we conducted

thorough data cleaning and identified anomalies in the Chl-a data

for a total of 26 days, which were removed to maintain the accuracy

and consistency of the dataset. To comprehensively evaluate model

performance, we employed three key metrics: the correlation

coefficient (r), Root Mean Square Error (RMSE), and Mean

Absolute Error (MAE). These metrics offer a quantitative

assessment of the correlation and discrepancies between predicted

and True data, thus providing valuable insights into the model’s

performance and reliability.
Fron
1. Correlation Coefficient (r): It measures the strength and

direction of the linear relationship between predicted and

True values, calculated as:

r = o(yi − y)(ŷ i − ŷ )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o(yi − y)2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o(ŷ i − ŷ )2

q

2. Root Mean Square Error (RMSE): RMSE quantifies the

average deviation of predictions from actual values, given

by:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(yi − ŷ i)

2

s

3. Mean Absolute Error (MAE): MAE provides a

straightforward interpretation of the average prediction

error:

MAE =
1
no

n

i=1
yi − ŷ ij j
The symbols used in the equations are defined as follows: yi
represents the True value, ŷ i denotes the predicted value, y is the

mean of the True values, ŷ is the mean of the predicted values, and n

refers to the number of observations. It is already known that there

is a certain correlation between atmospheric and oceanic dynamic

data and surface Chl-a in the SCS (Yu et al., 2019). The temporal

and spatial variation of Chl-a are influenced by factors such as wind

fields, ocean currents, and SST. To test the accuracy of model in

different predictors, we conducted two sets of experiments: (1) using

10 m wind field, wind speed, wind stress curl, and SST (Exp1), and

(2) using 10 m wind field, wind speed, wind stress curl, SST, surface

current, and SSH (Exp2). In the SCS, wind fields and SST are

strongly correlated with surface Chl-a (Yu et al., 2019). Therefore,

the goal of the Exp1 was to explore the feasibility of building a

robust model. On the other hand, surface current and SSH are

related to the horizontal advection process and vertical structure of
tiers in Marine Science 05
density to some extent (e.g., mesoscale eddies), which, to some

extent, influence the distribution of nutrients and phytoplankton

(Xiu et al., 2016). The goal of the Exp2 was to explore the

performance of the model when considering the currents and SSH.
3 Results and discussion

3.1 Model evaluation using
statistical indicators

The comparisons between predicted and true Chl-a

concentrations of two experiments based on the Chl-a from 2013

to 2016, separated into three parts (training, testing, and validation

sets), are shown in Figure 3. In general, the data points are primarily

distributed along the 1:1 line, with correlation coefficients between

predicted and true Chl-a exceeding 0.9 across all datasets (Figure 3). It

indicated that both Exp1 and Exp2 could well predict the surface Chl-

a in the SCS. However, there were some discrepancies in

performances between these two experiments. The Exp2 showing

higher correlation coefficient (Figures 3a–f) among training (0.929 in

Exp1 versus 0.935 in Exp2), testing (0.911 in Exp1 vs 0.918 in Exp2)

and validation datasets (0.913 in Exp1 versus 0.925 in Exp2). And the

RMSE of Exp2 were 0.1, 0.112, and 0.107 for the training, testing, and

validation datasets, respectively (Figures 3d–f). It also indicated that

the deviation between the predicted values and the true values of the

model is smaller. The comparison of MAE between Exp1 and Exp2

also denoted the Exp2 might be better. Li et al. (2023) employed four

machine learning methods to predict the Chl-a using physical factors

with Random Forests demonstrating the best performance (R2 ~ 0.8).

Aleshin et al. (2024) applied LightGBM and ResNet-18 to predict the

Chl-a with an R2 ~ 0.7. Roussillon et al. (2023) used a multi-mode

convolutional neural network to reconstruct satellite-derived Chl-a

with monthly physical drivers, such as SST, with R2 ~ 0.85. In

comparison, our model exhibited superior performance in predicting

the Chl-a in the SCS.

Further, the residuals between predicted and true Chl-a,

separated into training, testing, and validation sets, from 2013 to

2016 were calculated and shown in Figure 4. The results showed

that frequency of the residuals shown normal distribution

(Figure 4). The average of the residuals is -0.00039, -0.00095,

-0.00045 for training, testing, and validation datasets in Exp1,

respectively (Figures 4a–c). While the averages of the residuals

are -0.00015, -0.00163, and -0.00061 for training, testing, and

validation datasets in Exp2, respectively (Figures 4d–f). Although

the mean residuals in Exp2 was less than Exp1, both Exp1 and Exp2

had small mean residuals (< 1%), which indicated a good

performance of the model without significant systematic bias.

This reflected the robustness and reliability of the model in

capturing the surface Chl-a. In addition, the s were about 0.14,

0.22, and 0.21 for training, testing, and validation datasets in Exp1,

respectively (Figures 4a–c). They were slightly higher than the

corresponding parts in Exp2 (Figures 4d–f). It denotes the results

of Exp2 are more stable compared to the result of Exp1.
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3.2 Model evaluation in terms of Chl-a
temporal and spatial distributions

The model performance was evaluated using correlation

coefficients, RMSE, and MAE, all of which indicated good

performance for this deep learning model. Experimental results

suggested that surface currents (eastward and northward velocities)

and SSH slightly enhance the model’s performance. The model’s

ability to predict the spatial distribution and seasonal variation of

surface Chl-a requires further evaluation.

To represent seasonal variations (Spring, Summer, Autumn,

andWinter), surface Chl-a values from the validation dataset on the

dates 2013/03/05, 2013/06/15, 2013/09/28, and 2013/12/11 were

selected. Figure 5 illustrates the spatial distributions of Chl-a for

these selected dates across the true, Exp1, and Exp2. Generally,

surface Chl-a exhibits high concentrations on the shelf, particularly

along the coast, and low concentrations in the basin of the SCS (Liu

et al., 2002, 2012; Shen et al., 2008; Fang et al., 2014). The high Chl-a

on the shelf is typically attributed to riverine inputs, such as

nutrients, biomass, terrestrial transport, and upwelling (Li et al.,

2018; Lu and Gan, 2015). Both the Exp1 and Exp2 effectively

captured the prominent feature of the higher Chl-a along the

coast and lower Chl-a in the basin (Figures 5e–l).

Meanwhile, seasonal Chl-a variation were exhibited

significantly (Figures 5a–d). Along the coast, the area with high

Chl-a (e.g., > 0.4) were more prominent in the Spring and Winter

(Figures 5a, d), while they were lower in the Summer and Autumn

(Figures 5b, c). And the Chl-a in the basin were lowest during the
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Summer (Figures 5b). This feature was also captured by the model

in both Exp1 and Exp2 (Figures 5f, j). Additionally, the Luzon Strait,

as a major pathway between the Pacific and the SCS, shows

significant blooms in winter and spring when northeasterly winds

prevail (Peñaflor et al., 2007; Shen et al., 2008). The true Chl-a data

includes a notable phytoplankton bloom on the western side of the

Luzon Strait (see arrow in Figures 5a, d). Both Exp1 and Exp2

predicted similar phytoplankton blooms, although the area might

be slightly larger.

In terms of the overall Chl-a distribution, both Exp1 and Exp2

successfully captured the high Chl-a on the shelf and low Chl-a in

the basin, and the seasonal variation of the surface Chl-a. They also

reproduced the relatively high Chl-a concentration on the

northwest side of Luzon Island (Figures 5e, h, i, l) in Spring and

Winter. Based on the evaluation of the Chl-a spatial pattern

and seasonal variation, the two experiments demonstrated

good performance.
3.3 Spatial distribution of temporal
correlation coefficients

The model well captured the spatial pattern and seasonal

variation of the Chl-a in both Exp1 and Exp2. However, the

temporal correlation between true Chl-a and model predicted

Chl-a was unclear. To evaluate the model’s performance in

capturing Chl-a temporal variation, the Pearson correlation

coefficients between true Chl-a and model predicted Chl-a for
FIGURE 3

Scatter plots between predicted and the counterpart locations of the True Chl-a in training (a, d), testing (b, e), and validation (c, f). The first
(second) row represents Exp1 (Exp2).
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each grid were calculated (Figure 6). Figure 6 illustrates the spatial

distribution of correlation coefficients in training (Figures 6a, d),

testing (Figures 6b, e), and validation (Figures 6c, f).

In general, the correlation coefficients in the training dataset

(Figures 6a, d) were the highest, which is reasonable given that the

training dataset was used to train the model. Regarding the spatial

pattern of the correlation coefficients, whether in the Exp1 or Exp2,

the values to the north of 16°N were notably higher than those to the

south of 16°N in training, testing, and validation (Figures 6a–f).

Specifically, the correlation coefficients in the NSCS were generally

above 0.8, while in the SSCS, they typically ranged from 0.6 ~ 0.8, with

the highest values observed in the training dataset (Figures 6a, d). This

discrepancy might be caused by the strength of the relationship

between physical factors and surface Chl-a in the NSCS and SSCS.

Significant seasonal and inter-seasonal variability of Chl-a is observed

in the NSCS (Shen et al., 2008; Palacz et al., 2011; Tang et al., 2014),

which is generally associated with the seasonal dynamics of factors

such as the monsoon and Kuroshio intrusion (Xue et al., 2004; Xian

et al., 2012; Chang et al., 2022; Sun et al., 2023). Previous studies have

shown a high correlation between SST and Chl-a (Shen et al., 2008;

Tang et al., 2014; Yu et al., 2019). In summer, the mixed layer depth

(MLD) is shallow, and the presence of strong stratification due to high

SST and weaker winds inhibits the supply of nutrient-rich subsurface

water. However, in winter, the MLD usually deepens due to

intensified northeasterly monsoons and buoyancy flux,

accompanied by a reduction in SST (Tang et al., 2003). As the

MLD deepens, nutrient-rich water from the subsurface is

transported to the surface layer. With sufficient nutrient support,

phytoplankton flourishes during winter. Consequently, Exp1

performs well in capturing the temporal variability of surface Chl-a

in NSCS (Figures 6a–c). However, in the SSCS, Geng et al. (2019)
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revealed that wind- and buoyancy-induced mixing are less intense in

the central SCS than in the NSCS, limiting vertical nutrient transport

to above the subsurface Chl-a maximum layer. This may explain the

lower correlation coefficients in the SSCS (Figures 6a–f).

In respect of the comparison between Exp1 and Exp2, the

correlation coefficients in the Exp2 were generally slightly higher

than that in the Exp1 in the SCS (Figures 6g–i). However, in the

Exp1, the correlation coefficients in the NSCS were comparable with

those of Exp2, especially in the training dataset, with increasing

correlation coefficients less than 0.03 (Figures 6g–i). It indicated

that atmospheric data and SST are crucial factors for simulating the

Chl-a in the NSCS. However, between 12°N and 16°N, Exp2

performed well in capturing the temporal variation of Chl-a, with

Dr (rExp2 − rExp1) exceeding 0.04 (Figures 6h, i). Generally, Exp2

performed better than Exp1, although there were small areas with

decreased correlation coefficients to the south of 16°N. In the basin

of SSCS, the correlation coefficients were higher than that on the

shelf. For Exp1, the correlation coefficient in the Sunda Shelf were

not as strong as in Exp2, with r < 0.7 (Figure 6c). However, the Exp2

showed slightly improvement in the Sunda Shelf with slightly

higher r (Figure 6i). Comparisons between Exp1 and Exp2

demonstrated that the model achieved the best performance when

SSH and currents were included as an input variable, especially in

the SSCS.
3.4 Model performance in capturing local
important features

We evaluated the model based on spatial distribution of Chl-a

and the temporal correlation by Pearson correlation coefficients
FIGURE 4

Frequency plots with x-axis as residuals (model results – True value) in training (a, d), testing (b, e), and validation (c, f). The first (second) row
represents Exp1 (Exp2).
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between true Chl-a and model predicted Chl-a. It denoted the

performance of the model was excellent, especially for the NSCS.

However, the model’s ability to reproduce local spatial

characteristics of Chl-a required further assessment. We selected

typical high surface Chl-a patches near the Luzon Strait, Hainan

Island, and Vietnam (see red arrows in Figures 7a, d, g) to validate

the model’s ability in capturing details from validation datasets

(2014/01/30, 2013/10/20, 2014/7/23). Figures 7a, d showed a high

surface Chl-a patch surrounded by low surface Chl-a. Previous

studies have demonstrated that cold eddies contribute to this
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phenomenon (Wang et al., 2010; Lu et al., 2015; Sun et al., 2023).

In fact, these high Chl-a patches were generally closed to the cold

eddies, as indicated by SSH (0.4 contours in Figures 7a, d). Off the

coast of Vietnam, high Chl-a concentrations usually followed the jet

during the summer (Liang et al., 2018), as shown in Figure 7g (see

red arrow). The high Chl-a patch off the Vietnam closely matched

the location of the strengthened current velocity.

Both Exp1 and Exp2 captured the main features of these high

Chl-a patches. To the northwest of Luzon Island, while Exp1

predicted high Chl-a patch (Figure 7b), the Chl-a concentration
FIGURE 5

Spatial distributions of Chl-a in 2013/03/05 (a, e, i), 2013/06/15 (b, f, j); 2013/09/28 (c, g, k); 2013/12/11 (d, h, l). The first column is the true Chl-a,
while the second and third column represent Chl-a in Exp1 and Exp2, respectively.
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was not as high as in Figure 7a. However, Exp2 performed better in

simulating this patch with higher Chl-a concentration closed to the

0.4 contour (Figure 7c), although it was still lower than that in Exp1.

In addition, to the northwest of the high Chl-a patch, the Chl-a

concentration was higher than in the True Chl-a (Figures 7a, b).

Nonetheless, Exp2 provided a better prediction of Chl-a

distribution (Figure 7c) in this area as True Chl-a (Figure 7a).

Similarly, the high Chl-a patches near 112°E, 16°N, predicted by the

Exp1 and Exp2, were different (Figures 7e, f). The Chl-a

concentration in Exp1 was higher than in the True Chl-a

(Figure 7d) and Exp2 (Figure 7f). The high Chl-a derived from

Exp2 was more comparable to that in the true Chl-a (Figures 7d, f).

East of Vietnam, high surface Chl-a is generally induced by

upwelling and a southwesterly wind-driven jet (Qiu et al., 2011;

Liu et al., 2012; Gao et al., 2013; Chen et al., 2014, 2021). A snapshot

of high Chl-a extending from the coast to the east of Vietnam,

aligned with the jet (indicated by the strengthened velocity), was

shown in Figure 7g. Our model successfully reproduced the high

Chl-a along the jet (Figures 7h, i), although the concentrations were

not as pronounced as those in the true Chl-a (see red arrow in
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Figure 7g). Exp2 demonstrated a better prediction of Chl-a along

the jet, with higher Chl-a concentrations (see red circles in

Figure 7h, i).

This comparison between Exp1 and Exp2 demonstrated that

additional variables, SSH and currents, are beneficial to predict the

details of the Chl-a distribution. To some extent, the spatial distribution

of SSH reflects vertical information, such as the thermocline.

Approximately 28.7 cyclonic eddies and 27.9 anticyclonic eddies

occur annually in the SCS, which significantly influence the

ecosystem of the SCS (Xiu et al., 2010). Mesoscale eddies played a

significant role in modulating surface Chl-a through eddy advection,

eddy pumping, eddy trapping, and eddy-induced Ekman pumping in

the SCS (Gaube et al., 2014; Xiu et al., 2016). Eddy pumping played an

important role in controlling surface Chl-a variability to the west of the

Luzon Strait and northwest of Luzon Island (Xiu et al., 2016). Yu et al.

(2019) found that sea level anomalies are highly correlated with surface

Chl-a. Meanwhile, Xiu et al. (2016) revealed that horizontal eddy

advection highly influenced the Chl-a off the Vietnam coast. Therefore,

including SSH and advection as model inputs enabled the predicted

data to more effectively reproduce surface Chl-a.
FIGURE 6

Spatial distributions of Pearson correlation coefficients (with p < 0.05) in training (a, d), testing (b, e), and validation (c, f) datasets. The (g–i) were, Dr,
calculated by (d) minus (a), (e) minus (b), and (f) minus (c), respectively. The first column represents Exp1 (Exp2). Boxes A, B, and C in (i) covered the
NSCS, central SCS, and Sunda Shelf.
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3.5 Application of the model in 2017

The model trained in Exp2 was further applied to predict

surface Chl-a in 2017. Based on model performance in the NSCS

and SSCS (Figure 6), spatially averaged Chl-a in Boxes A, B, and C

was used to assess temporal variability. The predicted Chl-a largely

captured the magnitude and temporal variability of surface Chl-a

across Boxes A, B, and C (Figures 8a-1, b-1, c-1). Model

performance, as measured by correlation coefficients, was highest

in the NSCS, followed by the Sunda Shelf and the central SCS

(Figures 8a-2, b-2, c-2). Although the model effectively reproduced

the temporal variability of surface Chl-a, particularly the seasonal

cycle, its performance was relatively less accurate for daily-scale

Chl-a variations, as indicated by the distribution of observed Chl-a

(Figures 8a-1, b-1, c-1). To improve model validation, we further

calculated 8-day averaged surface Chl-a and compared predicted

values with observed Chl-a. On the 8-day scale, correlation

coefficients between predicted and observed Chl-a were higher

than those on the daily scale (Figures 8d-2, e-2, f-2). Observed

Chl-a data aligned more closely with predicted values, and both
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RMSE and MAE indicated reduced errors in 8-day averaged results

(Figures 8d-1, e-1, f-1).

One possible reason for the reduced daily-scale accuracy was that

daily variations in surface Chl-a were more complex than those on

longer timescales. Small-scale dynamic processes, such as fronts and

submesoscale eddies, played an essential role in vertical nutrient

transport (Callbeck et al., 2017; Jing et al., 2021; Zheng and Jing,

2022). However, the horizontal resolution of model inputs may limit

the model’s ability to capture these small-scale features, affecting day-

scale performance. Additionally, surface Chl-a is often associated

with vertical nutrients distribution (Geng et al., 2019; Liu et al., 2020),

but obtaining continuous, widespread data on nutrient distribution in

the vertical direction remains challenging. These factors constrain the

model’s precision in predicting daily-scale Chl-a variability.

4 Conclusion

In this study, we developed a statistical model based on the ResUnet

architecture to predict daily Chl-a in the SCS through atmospheric and

oceanic physical data. The strong correlation between the model-
FIGURE 7

Spatial distributions of Chl-a snapshots in the True (a, d, g) and Validation datasets (b, c, e, f, h, i). The second and third columns show surface Chl-a
in Exp1 and Exp2, respectively. The gray contours represent SSH (0.1 m interval between solid and dashed contours), and the black arrows indicate
velocity, exceeding 0.4 m s−1, vectors in HYCOM.
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predicted and true Chl-a demonstrates that the model performed well

in estimating surface Chl-a. It supported the feasibility of predicting

surface Chl-a based on atmospheric and oceanic data.

The model performed better in the NSCS than in the SSCS. In

the NSCS, the combination of atmospheric factors and SST was

sufficient to reproduce the temporal variability in Chl-a. This

superior performance can likely be attributed to the strong

correlation between SST and surface Chl-a in this region. In the

SSCS, the model-predicted variability of Chl-a had better

performance in Exp2, which denoted that the oceanic dynamic

factors, such as surface currents and SSH, played a vital role in

estimating the Chl-a in the SSCS using deep learning methods.

While the model moderately captured the spatial distribution

features in Chl-a when considering only wind-related variables and

SST, its performance improved significantly when oceanic dynamic

data were included. The addition of surface currents and SSH

enabled the model to accurately represent areas with elevated

Chl-a due to eddies, particularly around the Luzon Strait and the

southeastern side of Hainan Island. The SSH is generally associated

with eddies, which enhances the ability of model to predict elevated

Chl-a resulting from eddies. In conclusion, the incorporation of

ocean dynamics into ecological prediction models based on deep
Frontiers in Marine Science 11
learning technology offers effectively ways and enhances the

accuracy of Chl-a predictions in the SCS.
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J., and Marañón, E. (2022). Phytoplankton responses to changing temperature and
nutrient availability are consistent across the tropical and subtropical Atlantic.
Commun. Biol. 5, 1035. doi: 10.1038/s42003-022-03971-z

Gan, J., Li, H., Curchitser, E. N., and Haidvogel, D. B. (2006). Modeling South China
Sea circulation: Response to seasonal forcing regimes. J. Geophys. Res. 111, C06034.
doi: 10.1029/2005JC003298

Gao, S., Wang, H., Liu, G., and Li, H. (2013). Spatio-temporal variability of
chlorophyll a and its responses to sea surface temperature, winds and height
anomaly in the western South China Sea. Acta Oceanol. Sin. 2, 48–58. doi: 10.1007/
s13131-013-0266-8

Gaube, P., McGillicuddy, D. J., Chelton, D. B., Behrenfeld, M. J., and Strutton, P. G.
(2014). Regional variations in the influence of mesoscale eddies on near-surface
chlorophyll. J. Geophys. Res. Oceans 119, 8195–8220. doi: 10.1002/2014JC010111

Geng, B., Xiu, P., Shu, C., Zhang, W., Chai, F., Li, S., et al. (2019). Evaluating the roles of
wind- and buoyancy flux-induced mixing on phytoplankton dynamics in the northern and
central South China Sea. J. Geophys. Res. Oceans 124, 680–702. doi: 10.1029/2018JC014170
frontiersin.org

https://doi.org/10.3389/fmars.2024.1412883
https://doi.org/10.3389/fmars.2024.1412883
https://doi.org/10.4319/lom.2012.10.840
https://doi.org/10.4319/lom.2012.10.840
https://doi.org/10.3390/rs16071120
https://doi.org/10.3390/rs16071120
https://doi.org/10.1016/j.pocean.2019.102246
https://doi.org/10.1371/journal.pone.0170059
https://doi.org/10.1080/15481603.2022.2051384
https://doi.org/10.1080/15481603.2022.2051384
https://doi.org/10.1016/j.dsr.2004.11.001
https://doi.org/10.3389/fmars.2021.740130
https://doi.org/10.3389/fmars.2021.740130
https://doi.org/10.1007/s10872-014-0232-x
https://doi.org/10.1175/1520-0485(1999)029%3C2971:DMFTSC%3E2.0.CO;2
https://doi.org/10.1146/annurev-earth-032320-090746
https://doi.org/10.1016/j.isprsjprs.2020.01.013
https://doi.org/10.1073/pnas.0913800107
https://doi.org/10.1016/j.ecoinf.2024.102664
https://doi.org/10.1016/j.ecoinf.2024.102664
http://arxiv.org/abs/1702.03118
http://arxiv.org/abs/1702.03118
https://doi.org/10.1029/2002JC001343
https://doi.org/10.3319/TAO.2014.11.14.01(Oc
https://doi.org/10.3319/TAO.2014.11.14.01(Oc
https://doi.org/10.1007/s13131-012-0231-y
https://doi.org/10.1016/j.dynatmoce.2008.09.003
https://doi.org/10.1038/s42003-022-03971-z
https://doi.org/10.1029/2005JC003298
https://doi.org/10.1007/s13131-013-0266-8
https://doi.org/10.1007/s13131-013-0266-8
https://doi.org/10.1002/2014JC010111
https://doi.org/10.1029/2018JC014170
https://doi.org/10.3389/fmars.2025.1528921
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Fang et al. 10.3389/fmars.2025.1528921
Guo, L., Xiu, P., Chai, F., Xue, H., Wang, D., and Sun, J. (2017). Enhanced
chlorophyll concentrations induced by kuroshio intrusion fronts in the northern
South China Sea. Geophys. Res. Lett. 44, 11,565–11,572. doi: 10.1002/2017GL075336

Huang, Z., Zhuang, W., Hu, J., and Huang, B. (2019). Observations of the Luzon cold
Eddy in the northeastern South China Sea in May 2017. J. Oceanogr. 75, 415–422.
doi: 10.1007/s10872-019-00510-z

Jing, Z., Fox-Kemper, B., Cao, H., Zheng, R., and Du, Y. (2021). Submesoscale fronts
and their dynamical processes associated with symmetric instability in the northwest
Pacific subtropical ocean. J. Phys. Oceanogr. 51, 83–100. doi: 10.1175/JPO-D-20-0076.1
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Appendix A. terms in deep learning
method used in this study
Fron
• Feature: In the context of deep learning, a feature represents

an individual measurable attribute or characteristic that can

be used to describe and analyze an observation

or phenomenon.

• Batch Normalization (BatchNorm) Layer: This layer

standardizes the inputs of each minibatch, which

enhances the stability and efficiency of the training

process by reducing internal covariate shift.

• Convolutional Layer: The convolutional layer applies a set

of filters to the input data, producing feature maps that

capture spatial hierarchies and patterns. This layer performs

the convolution operation by sliding the filters over the

input and computing the dot product between the filter and

the input data, which is fundamental for feature extraction

in convolutional neural networks.

• Max Pooling Layer: This layer decreases the spatial

dimensions of the input feature maps by extracting the

maximum value from each sub-region. Max pooling aids in

m i n im i z i n g c ompu t a t i o n a l c omp l e x i t y a n d

mitigating overfitting.

• Sigmoid Linear Unit (SiLU) Activation Function: The SiLU

activation function, also known as the Swish function, is

defined as:
SiLU(x) = x · s (x)

where s (x) is the sigmoid function, given by:

s (x) =
1

1 + e−x

It combines the properties of linear and sigmoid functions,

allowing for smooth, non-linear transformations that can improve

the training dynamics of neural networks. The SiLU function has

been shown to perform well in various deep learning tasks due to its

ability to enhance gradient flow and adaptively control the output.
• Residual Connection: A residual connection bypasses one

or more intermediate layers, directly feeding the output of

one layer to subsequent layers. This technique aids in

training deeper networks by alleviating the vanishing

gradient problem.

• Skip Connection: A skip connection, also known as a

shortcut connection, involves bypassing one or more

layers in the neural network and directly passing the

output from an earlier layer to a deeper layer.

• Up-Sampling: In the UNet architecture, up-sampling is

employed in the expansive path to restore the resolution

of the feature maps. This step is essential for reconstructing

high-resolut ion outputs from lower-resolut ion

feature representations.

• Down-Sampling: Down-sampling decreases the spatial

dimensions of the input feature maps, commonly used in

the contracting path of the UNet. This process simplifies the
tiers in Marine Science 15
information, enabling the model to capture more global

features in the earlier layers.

• AdamW Optimizer: The AdamW optimizer is an extension

of the Adam optimization algorithm that incorporates

weight decay directly into the optimization process.

Unlike traditional Adam, which applies weight decay as

part of the regularization term added to the loss, AdamW

decouples weight decay from the optimization steps, leading

to better regularization and improved training dynamics.
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